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Analysis of the linear response function along the adiabatic connection
from the Kohn—Sham to the correlated system
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Careful calculations are performed to obtain the radial density—density response function for the He
and the Be series. This is also done along the adiabatic connection of the density functional theory
(as the system evolves from the real, physical system to the Kohn—Shamirotigs process the
electron density is kept constant, while the strength of the interaction between electrons changes.
The response functions are analyzed in terms of their eigenvalues and eigenfunctions. The latter
change only little along this process. The absolute value of the eigenvalues is in general reduced by
the interaction: A screening effect is present. For the near-degenerate systems, we notice that the
opposite effect can appeéantiscreening © 2001 American Institute of Physics.
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I. INTRODUCTION physical and Kohn—Sham systems; it is the way most ap-

4 , . proximations are understood. Although it is not necessary
The Hohenberg—Kohn theorerestablishes the mapping (¢ Refs. 36, it is usually preferred to keep the density
between the external potential of a given systegy, and  onstant along the adiabatic connectioh: In order to
the ground state density. As a chemical process implies a 5cphieve it, the external potential changes continuously from
change irv o, it Seems natural in this context, as a first step,vext 10 ks Vex—= Uy (Uy21=Vexts Ur—o0="Uks). We will also

to study the relationship between small changesd,  show in the following some results for the linear response
Ovey, and the corresponding changesinsn. The connec- ¢ ,nction along the adiabatic connectigiin) = y(r,r':\):
tion between these quantities is given by the linear response

function x(r,r’): on=x(\)xdv, .

, s, Usually, approximations are made only for the
5n(r)=f X(Fr7) v ex(r' )d>r’, (1) exchange-correlation part of the energy, which corresponds

. . . to approximating the exchange-correlation potentigl,
wherex(r,r") is defined perturbationally. We use a compact PP g 9 P a

notation by introducing the star symb@!): UKST VextT UnTUxc

SN= Y% 8 oy wherev,= [(n/r15)d%,. Now using the fact that the same
density change is obtained bjvgs and dvey, and after

about y by performing reasonably accurate calculations formtmdlf(img,tpe inverse response functiofsee, e.g., Ref.
small systems: the He series and the Be series. 12), X% Xs:
The second important aspect of density functional theory  §p .= xy 1% én,
(DFT) is the Kohn—Sham approaéhfhe vast majority of )
practical calculations are performed by considering the fictione obtains
tious system of noninteracting electrons, yielding the same 1
density as the(physica) system of interest. As the X.Z31=X_1+ r_+ fyc
Hohenberg—Kohn theorem is valid for any type of interac- 12
tion between particles, there also is a mapping betwesemd ~ where f,.= dv,./dn. Thus the problem of findingy or
the potential in the Kohn—Sham systems. It is thus in-  (x %) is transferred, in the Kohn-Sham approach, to that of
teresting to study the corresponding Kohn—Sham respondnding f,.
function ys: In the simplest approach, the random phase approxima-
tion (RPA), f,. is set to zero:
It is usually assumed that it is possible to reach the Kohn— XEéA: XEsl— i
Sham system by switching off the electron—electron interac- o

tion (1fr;;—M/ryp; O<A<1). This adiabatic connection Please note thagrpa contains a self-interaction error, as for

plays a central role in DFT, being the bridge between thedny one-electron systeny,is equal toyys and Not toxges.

This error is also present in the popular local density ap-
dElectronic mail: savin@Ict.jussieu.fr proximation, wherev,(r) is a function of n(r), and

The aim of this study is to provide more information

ON= xys* Ovks-
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foo(r,r')=06vy(r)/on(r’) thus has the fornf,(n(r))s(r 1. METHOD
—r"). Of course, this is also wrong, as for a one-electron
systemf,(r,r')=—21r—r’'|.

The connection betweefuv .,; and dvks IS given by

The response functions are derived from perturbation
theory, by using

_ ()] (1)
Soke=€ 1% Sv oy, on(r)=2(r|p(r)|rhy,

where ¥ is the unperturbed ground state wave function,
¥@) the first-order correction to it, due to the perturbing
potential Sv(r’), and p(r) the density operator. To obtain
€ 1= xyaxx. (2 x:(r,r') we use Eqgs(1) and(3):

where e~ is the inverse dielectric function, which can be
written as

Physically,e ! reflects the effect of the interaction be-
tween electrons, and one might expect that this produces a
screening ofév,; and thus a reduction gf with respect to

xks (e 1<1). One of the objectives of this work is to check Thlfs' XL(ZV,F ') is on(r) obtained with 6v(F)= 5(7)
whether this is true in the systems considered. —r')/47T2. In some cases, such as the hydrogen atbf?

With x(\) one has to deal with functions of six variables. @d thusy; can be obtained analytically. In many cases, like

As we are interested ifv in atoms, we develop these func- the noninteracting systems, it is common to use the sum-
tions in terms of spherical harmonics over-states formula to obtair*) and thusy, . With many

programs, it is also convenient to use a small finite perturb-
ing potential and analyze the resulting density.

b‘n(r)z&n(r):f X (1r,F) 6v(F)4nT2dF. (4)

X(r,r';)\)=§,n 2, x(r,lmir 1, m*a) For the noninteracting closed-shell system, it is easy to
S use the expression ofgs in terms of Kohn—Sham orbitals,
XY im(Q)Yrm (). @i, and eigenvalues; (in a finite basis
As we consider only spherical densitiéa(r)= én(r), 20 W% (N @a(N @i(r ) @a(r’)
and furthermore only spherical potentia (r)= sv(r). Xks(r,r)=4> > — .
Thus, boe i~ €a
For interacting systems we genergté\) in the basis of
5n(r):f x(r,I=0m=0;r",I’=0m’'=0) the ¢;(r;A=0). To obtain it, we made a configuration inter-
action calculation after changing the external potential by
X 8V (T )1 2dr’ . Sv(r)=10"3y,(r,A\=0), and decompose the resulting

density changes onto the same bagiér,\ =0); from
To simplify notation, we will drop in what followd =1’

- mem'=0, and wite X0 0= iy (VU (TA=0)4 (/i1 =0),
X,(r,r’;)\)=%X(r,l=O,m=0;r’,|’=0,m’=0;)\). (6)
3) SnK(rin) =2 Snf(N) (1 =0),

In order to manipulate the information we will consider the

eigenvector decomposition, see, e.g., Ref. 13: we obtain that the change ioni'(\) = 280 (riX) yi(r;\

=0)dr induced bysv, will be, to linear order, 10%y;(\).
Some technical details are given in Appendices A and B.

Xr(r,f';g|)=2 Ki(N) (M) g (r'sn), We now check some limits of the procedures just de-
scribed. A first one is given by the finite size of the basis set.
where they; are orthonormal: One possibility to check it, is to compare the eigenvalues
x;(A=0), for a given basis set, with those obtained from a
. . _ larger basis set, or those obtained on a dense numerical grid,
A | r20(rN) g (rN)dr= 68 , _
Trj UiFN) (iR ! by using the exact response function of the hydrogen atom

gcf. Appendix §. We show in Fig. 1 the decimal logarithm
of the first 35 eigenvalues;(A=0) of yxs of the H atom:

off the above-mentioned expansion by selection of the termfrom calculations on a grid with 256 points and on two
P Y aussian basis sets. Of course, an increase of the size of the

corresponding to the m_ost important eigenvalues. Notige thebasis set produces a larger domain of validity of #s.
a change of the potential by a constant does not modify th%igure 1 shows a significant loss of quality of the smaller

density, implying[y=0; this in turn means that eigenvaluegnotice the logarithmic scale of the plott is

One advantage of this decomposition is that we can get th
best approximation tg, (in a least-squares sendsy cutting

clear that only a limited number of nodes can be represented
477f r2y;(r)dr=0 with finite basis sets. It is thus not surprising that not all
eigenvalues are pertinent. Notice also tathas a number
so that they;(r) necessarily have nodes. of eigenvalues larger than the number of basis functions. In
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0 . : T T T T TABLE |. First seven eigenvalues of the response function in the He series.
1w 1 For each system,ki(A=0), kj(A=1), and their ratioNei’1=Ki()\
& =1)/k;(A=0) are showrfirst, second, and third lines, respectively
2t & i
B o o - o - o - o
3t ﬁﬁﬁAAAA' _ i=1 i=2 i=3 i=4 i=5 i=6 i=7
=] AC®
-4 ¢ bog — -051 -0.09 -004 -002 -001 -001 -0.01
5 b o4 He -040 -0.08 -0.04 -0.02 -0.01 -0.01 -0.01
0.79 0.97 1.00 1.00 1.00 1.00 1.00
_6 1 1 L i 1 1
5 10 15 20 25 30 35 -0.74 -0.13 -0.06 -0.04 -0.02 -0.02 -0.01
eigenvalue label Li* -0.65 -0.13 -0.06 -0.04 -0.02 -0.02 -0.01

0.87 0.98 1.00 1.00 1.00 1.00 1.00

FIG. 1. Decimal logarithm of the 35 first eigenvalues of the hydrogen atom
response function. The results obtained on a dense numerical grid are showEe+2
as dots, while calculations with 31 and 21 Gaussiimctions are shown as
triangles and squares, respectively.

-099 -0.18 -0.08 -0.05 -0.03 -0.02 -0.01
-089 -0.18 -0.08 -0.05 -0.03 -0.02 -0.01
0.90 0.99 1.00 1.00 1.00 1.00 1.00

-123 -023 -0.11 -0.06 -0.04 -0.03 -0.02

o _ B  -114 -023 -010 -0.06 -0.04 -0.03 -0.02
fact, the problem of not describing the small eigenvalues is 092 099 100 100 100 1.00 1.00
][elatgd to that of ImeRarfdei)zndznues in the products of basis 148 -028 -013 007 -005 -003 002
unctions(see e.g., Refs. 14—1 c*“  -139 -028 -013 -007 -005 -0.03 -0.02

The second problem is the finite perturbation approach 094 099 100 1.00 100 1.00  1.00
which was used to obtaig(A#0). For y(A=0) the exact
snk are equal to zero far#k. Due to the finite perturbation ~1rz -033 015 —009 ~006 -—0.04 —0.03
' kq ) 5 P ' N'5  -163 -032 -015 -0.09 -0.06 -0.04 —0.03
theseon; are, however, of the order ob¢,)“. For example, 095 099 100 100 1.00 1.00  1.00

for the hydrogen atom, usingv,(r) =10 3y,(r), the 5n} 167 037 —017 —010 —0.06 005 003
; 10 -1 —-0. —0. -0. —0. —-0. —0.
are of the order of 10* while the on/'(i+1) are of the order O'6  _188 —037 —017 —010 —008 —005 —003

— 8
of 10"° or smaller. 095 099 1.00 1.00 100 100  1.00
222 042 -019 -011 -007 -005 -0.04

Il RESULTS F*7  -213 -042 -019 -011 -007 -0.05 -0.04
Typical plots ofr2x(r,r’)r’? are shown in Fig. 2, taking 09 099 100 100 100 100  1.00
as examples the hydrogen, helium, and beryllium atoms. The —246 -047 —022 -0.12 -0.08 -006 -0.04
plot for the H atom shows that there are essentially two re-Ne*®*  -2.37 -0.47 -021 -0.12 -0.08 -0.06 -0.04
gions in the aton{the inner sphere, and the outer shed 09 09 100 100 100 100  1.00

repulsive potential changsv in one of the regions produces

a displacement of the radial density from it to the other re-

gion. Of course, the opposite effect appears for an attractive

év. The plot for the He atom is simildcf. Fig. 2. For the  eigenvalues are negative, see, e.g., Ref.vl& observe that

Be atom, however, a duplication appears, which we attributén the Be series the first four eigenfunctions are localized in

to the shell structure. Such plots can be made fox.alls the  the core region, while the fifth is localized in the valence

figures look similar, we show only=0. region(cf. Fig. 3 for Be at\ =0). It turns out that the eigen-
We will continue now with the analysis of the eigenval- functions change only little with\; we notice a significant

ues, k;(\), and eigenfunctionsy;(\), of the x,(\). The change in the eigenvalues, especially for the first one in each

eigenvalues are given far=0 and\A=1 in Tables | and Il.  shell. We show in Figs. 4 and 5 the ratg(\)/;(\=0) for

Ordering the eigenfunctions with increasing eigenvalies  the helium and the beryllium atoms. We can also decompose

0 0
0 05 1 15 2 25 3 0 05 1 15 2 25 3

T T T

FIG. 2. Isocontour plot of?r'2y,(r,r’;A=0) for the H, He, and Be atoms, from left to right, respectively. The zero contour has been emphasized,;
x:(r,r'=r;Ax=0)<0.
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TABLE IlI. First seven eigenvalues of the response function in the Be series.
For each system,x(A=0), xi(A=1), and their ratio& *=x;(\ 1.05 y T T
=1)/k;(A=0) are showr(first, second, and third lines, respectively

i=1  i=2 i=3 i=4 i=5 i=6 i=7
-101 -018 -008 -0.05 -0.04 -0.03 -0.02 0.95
Be -0.90 -0.18 -0.08 -0.05 -0.04 -0.03 -0.02
090 098 1.00 1.00 088 100  1.00 0.9
-126 -023 -011 -006 -0.05 -0.04 —0.03 0.85
B*! -1.16 -0.23 -0.11 -0.06 —-0.05 -0.04 -—0.03 )
092 099 1.00 1.00 095 1.00  1.00 08
-152 -028 -0.13 -007 -0.06 -0.05 —0.03
c*2  —142 -028 -013 -0.07 -0.06 -0.05 -0.03 075 . - . s
093 099 1.00 1.00 098 1.00  1.00 0 0.2 0.4 0.6 0.8 1

-1.78 -033 -0.15 -0.09 -0.07 -0.06 -0.04
N*3 -168 -0.33 -0.15 -0.09 -0.07 -0.06 -—0.04
0.95 0.99 1.00 1.00 1.01 1.00 1.00 FIG. 4. Dependence of the first few eigenvalues of the inverse dielectric
function, approximated by the ratio of the eigenvalues )p\‘:?i’l
=k;(\)/ki{(A=0) on the adiabatic coupling constaxt The lowest curve
corresponds to=1; for the He atom.

—-203 -038 -0.17 -0.10 -0.08 -0.07 -0.05
o -194 -038 -0.17 -0.10 -0.09 -0.07 -0.05
0.96 1.00 1.00 1.00 1.04 1.00 1.01

—-229 -043 -0.20 -0.11 -0.09 -0.07 -0.05

F*® —221 -043 -020 -0.11 -0.10 -0.08 -0.5 . _ .
096 100 100 100 107 100 101 lium atom, we have foi=5 (the most important valence

eigenstate &; *(A=1)=0.884 within 0.5% ofe.(A=1)
-255 -048 -0.22 -0.13 -0.11 -0.08 -0.06 -0.888
Net® —247 -048 -022 -0.13 -0.12 -0.08 -0.06 ) )

097 100 100 100 109 100 101 We now turn to the question of screening. We will speak

about “screening” wherg, *< 1, and about “antiscreening”
whens '>1. Someé, * were already shown in Figs. 4 and
5. We see that in theses cases screening is present. We now
_ . . show in Fig. 7 the plot o (\) for Ne®*. It turns out that
xr(\) on the basis of the eigenfunctions a(A=0), & 1 sjgnificantly increases with. Thus, for the valence shell
¢i(A=0), as in Eq(6). Within our accuracyy;; is anearly  of Ne5* antiscreening appears. This change appears $6r N
diagonal matrix, as can be seen in Fig. 6. This in turn meang, the Be series, as can be seen in Fig. 8, WFegré()\
thate™* [Eq. (2)] will also be nearly diagonal in this basis: =1) is shown as a function of nuclear charge of the &n,
. . We could not detect, however, antiscreening effects at RPA
e Hrr N =2 € (N (r;A=0)g;(r';x=0) level. We thus attribute antiscreening to the increase in
N i(N)/xi(\=0) produced byf,..
Y ) In order to understand the antiscreening in the Be series,
“Z & (N ¢i(rA=0)¢(r";x=0), remember that two configuratiort®s and®,,, correspond-
ing to 1s?2s? and 1s°2p?) are both important. We should
whereg, *(\)=x;(\)/k;(\=0). For example, for the beryl-

1.02 T T T .
0.5 T v T T T T T ) ]
041 FA 1
098 - i
03| .
0.96 F 1
0.2t f H i
i | 094 1
0.92 ]
] 09 3
02 1 1 0.88 ' : . ‘
03 ) ) \ ) , \ ) 0 0.2 0.4 0.6 0.8 1
00 10 20 30 40 50 60 70 80 A
r FIG. 5. Dependence of the first few eigenvalues of the inverse dielectric
function, approximated by the ratio of the eigenvalues ;pY:Nei’l
FIG. 3. First and fifth eigenvectors gfs for the Be atomr2y,(r;x=0) =ki(N)/ki{(A=0) on the adiabatic coupling constaxnt From the lowest
(continuous ling andr?ys(r;A=0) (dotted ling. curve to the uppermost curve, we have5,1,2,3,4 for the Be atom.

Downloaded 04 Dec 2001 to 134.157.90.89. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 115, No. 15, 15 October 2001 Adiabatic connection 6831

FIG. 6. Plots of they};~* matrix ele-
ments on the basis of the eigenvectors
of x*=0 for He, Be, and N& (left-
hand side, middle, and right-hand
side.

thus consider, as a first approximation to the eigenstatss sir? a(<q>p|,3(r)|q>v>_<qpv|;,(r)|q>p>)_

also Ref. 1 : I
3 ®, contains monoexcitations from®g; or @

VY =cosa ds—sina ®,, (®¢p(r)|®@,) and(P,|p(r)|P,) cannot both be nonzero,
and we thus do not have terms likédp(r)|®,)
X(®,|p(r)|®p)). Thus whena=0 only terms of the type
To zeroth order, the response function is Eqg. (9) are left. This corresponds to the noninteracting case
()~ (O s () ~ ¢ 17 <17 (0) for the system considered. Whenis nonzero these terms,
_ (W [p() W7 W W7 |p(r) [ We™) Eq.(9), become smaller than far=0, reducing the response
AEqy (screening has occurred\otice, however, that an opposite
01 ~ 0 Nin 0 effect is also preseritf. Eq. (8)]: A contribution toy arises,
S (O ()W) (W |p(r")| g )>, (77 which was not present at=0. We attribute to this term,
i>1 AEq related to near degeneracy, the appearance of antiscreening.
The increase of antiscreening with the nuclear chatgs
Oessentially related to the change of the energy denominator
rﬁEOl with Z.

V¥ =sina ®+cosa @,,.

xO(r,r")

whereAE,,; are the energy denominators, aWd® the un-
perturbed eigenfunctions. The first term on the right-han
side reflects the effect of near degeneracy, while the seco
is general. Asbg and @, differ by two orbitals, anc(r) is
a one-electron operatof|p(r)|P,)=0 and the first term  IV. CONCLUSION AND PERSPECTIVES

on the right-hand side of Eq7) has a numerator: In this paper we showed the static linear density—density

cos a sir? a({(@,|p(r)| D) —(D¢p(r)|Ds)) response function of Kohn—Sham systems having the densi-
. . ties of the He atom, the Be atom, and their isoelectronic ions,
X(<¢P|p(r )|¢P>_<(D5|p(r )| Ps). (8) up to Z=10. Furthermore, we studied the change of the re-
The second term has contributions of the type sponse functions with, a constant multiplying the electron—

- - electron interaction operator, while keeping the density con-

c0s' a((Pdp(N| D) —(D,[H(N|Ds)), ©  stant. It turned out that the eigenstates of the response

where®,#®g or @, or functions do not significantly change wity while their ei-
genvalues do. There is a significant difference between the
He and the Be series, in the change of the eigenvalues with

1.1 T T T T
1.08 1 1.1 T T T - T *
1.06 -
1.05 - T
1.04
]
1
1.02 -
1 095 | - ;
0.98 r
09 r ]
0 96 i iyl i 1
0 0.2 0.4 0.6 0.8 1 T
- A 0.85 A \ ) . .
4 5 6 7 8 9 10
FIG. 7. Dependence of the first few eigenvalues of the inverse dielectric Z

function, approximated by the ratio of the eigenvalues 7% !

=k;(\)/kj(A=0) on the adiabatic coupling constaxt The lowest curve  FIG. 8. Z-dependent antiscreening effect of the fifth component of the in-
corresponds to= 1. From the lowest curve to the uppermost curve, we haveverse dielectric function, approximated by the ratio of the eigenvalues of
i=1,2,3,4,5 for the N& ion. X &5t =rks(\=1)/xks(A=0) for the Be series.
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TABLE IIl. Central exponentsy, [Eq. (Al)] of the even tempered Gaussian APPENDIX B: CALCULATION OF THE RESPONSE

basis sets. FUNCTION yxs FROM THE EIGENVECTORS OF THE

System S odf OVERLAP MATRIX PRODUCTS OF PRIMITIVE
GAUSSIANS

Eﬁ gg_’g ?g Given a set of Gaussian primitive functiogg(r), let
Be* 350.0 15.0 Tm=0p(r)gq(r), wherep runs over the primitives appearing
B%* 475.0 23.0 in the occupied orbitals ang runs over those appearing in
CZ: 663.0 34.0 the virtual orbitals;m is a composite index. To avoid prob-
ge+ lggg'.g gg"g lems due to linear dependencies betweensthe we choose
7+ 1612.0 825 to develop theyks function on the eigenvectorg,(r) of the
Ne?* 2030.0 100.0 overlap matrix of themr,, S p=(m,| ),
Be 4.0 1.0 S™pa(r)=Azma(r),
B* 4.6 3.3 .
cz 10.0 5.0 where thed ; are the eigenvalues. The, are sorted and only
N3+ 75 8.0 those eigenvectors corresponding 20,109 are used in
o 12.0 11.0 the following. The orthogonal; are developed on ther
P 100.0 9.0 functions with
Ne 130.0 15.0

Na= %‘4 Aa,mﬂm(r)-

, i o In the # basis, using Eq(5), the matrix representation of
\. While electron—electron interaction in general screens thg(KS(r r'), x7, is given by

effect of the perturbing potential, we observe the opposité
effect for higherZ in the Be series. This effect is connected 7 _ ) I\ 43 43
with the contribution coming from the variation of the XKS'ab_f fXKS(r’r J7al) () drdr
exchange-correlation potential with the densify,, and occ vir
gives a further indication about the difficulty to properly de- :2 2
scribe it(see, e.g., Ref. 19 i
It can be hoped that a better knowledgeyodill finally
help one to construct better approximation$ to and to the
exchange-correlation functionals, in a similar way as knowl-
edge of exact Kohn—Sham potentials are uséek, e.g.,

17alio s
Gi_EJ'

where the overlap integral$j7a are given by

|i7j7a:f @i(1)@;(r) ma(r)dr.

Ref. 20. Diagonalization ofy” in the #, basis produces the or-
thonormal eigenvectoiG, ; and the eigenvalues . They, in
turn, give the development of thé;(r) on the primitive
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As for highi, the numerical values of the; may lose sig-
nificance (becoming 1018 or lower or even positive only
the first few largest in absolute value:(0°) are kept(19
for He series and 18 for Be serjes

APPENDIX C: EXACT RESPONSE FUNCTION yxr OF
APPENDIX A: BASIS SETS THE HYDROGEN ATOM

Uncontracted even tempered Gaussian basis sets,fup to  In order to facilitate the reading of the present paper we
functions, were used in the calculations. For each angulagive in the following a derivation ok, (r,r") for the hydro-
gquantum numbeiyl exponentsy, were produced by the rule gen atom, although it is given, at least implicitly, in the lit-

M- erature(see, e.g., Ref. 21

ap=acd MY n=1,.M. (A1) In the case of noninteracting spherically symmetric sys-
5=2.1 for all systemsM has been chosen to be 21 for all the tems it is customary to replace the radial functié(s) by
s functions, 7 for thep functions of the helium series, 9 for u(r)=rR(r), in order to write the Schdinger equation as
the p functions of the beryllium series, and 5 and 3 for the that of a particle in one dimension:
andf functions, respectively. The central exponeatsare 1d2 1(1+1)

given in Table Ill. For H(Fig. 1) 21 (with §=2.1) and 31 —§F+7+v(r) u(r)y=Eu(r),
(with 6=1.7) stype functions, centered at.=10 were ' r
used. wherel is the angular momentum quantum number.
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When the potentiab (r) is decomposed into two parts, This integral can be obtained analytically, e.g., with
v(N)=vO(r)+v®(r), and the solution for(O)(r) is sup-  MATHEMATICA .2* It is:

posed to be knowu(® andE®), the first-order equation is o
e— r

. 1 ! !
written ?S f(r,r’)zﬂ -2 +4re” 2 —4e 2 Ei(2r.)
1d® 1(1+1)
5 gzt gz +0(0)—E® U+ [y —E@]u© ,
0 +4e*2"Inr+Fmin[1,e2(“")] +C, (C2

This will be solved by using a method proposed by Dalgarnavhere Eik)=—[”_e~'/tdt, andr_ is min(,r’). The con-
and Lewi$? and Young and Marcf® A substitution intro-  stantC is determined by the requirement of orthogonality
duces the functiorf(r):uM=fu©®. Let us takel=0 and between¥(® andW¥®):

drop the subscript Multiplying the equation by-2u(® one

obtains f (RO(r))2f(r)r2dr=0,
d df
on2 2t _ 0)y2
ar (u'®) ar =2V —ED)(u®)2, yielding
If u® is nodeless, a first integration yields a¥)(r — ) o2
-0: C=W[—2+4r'2+r’(—14+8y+|n256)+4r’Inr’],
df 2 (C3

—=——g 7 | [PE-EDuF))>3dT,
dr (u'9(r))? fr wherey is Euler’s constanty~0.577 215664 9). The first-
order density change and thug,(r.,r’)) is 2(R®

which can be integrated once more to - )
(r))=(f/4), using Eqs(C2) and(C3) one gets

2 0
f(r):—J drwf dT[U(l)(T)—E(l)] e 2(r<+rs)
(Ur)= Jr X(re,ro)= 72r 1 [—(r<+r>)+r>e2r<
<!>
X (uOF))%+cC. (Cy
] ) +ror{=7+4y+2(r-+r-)
A change in the potential equal tg[ (r —r')]/4mr?,
produces a change in the density having a term lineay in —2Ei(2ro)+In16+21In(r-r.)}].
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