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Analysis of the linear response function along the adiabatic connection
from the Kohn–Sham to the correlated system

Andreas Savin,a) François Colonna, and Marcel Allavena
Laboratoire de Chimie The´orique (CNRS), Universite´ Pierre et Marie Curie 4, Place Jussieu,
F-75252 Paris, France

~Received 25 June 2001; accepted 1 August 2001!

Careful calculations are performed to obtain the radial density–density response function for the He
and the Be series. This is also done along the adiabatic connection of the density functional theory
~as the system evolves from the real, physical system to the Kohn–Sham one!. In this process the
electron density is kept constant, while the strength of the interaction between electrons changes.
The response functions are analyzed in terms of their eigenvalues and eigenfunctions. The latter
change only little along this process. The absolute value of the eigenvalues is in general reduced by
the interaction: A screening effect is present. For the near-degenerate systems, we notice that the
opposite effect can appear~antiscreening!. © 2001 American Institute of Physics.
@DOI: 10.1063/1.1405011#
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I. INTRODUCTION

The Hohenberg–Kohn theorem1 establishes the mappin
between the external potential of a given system,vext, and
the ground state densityn. As a chemical process implies
change invext it seems natural in this context, as a first ste
to study the relationship between small changes invext,
dvext, and the corresponding changes inn, dn. The connec-
tion between these quantities is given by the linear respo
function x(r ,r 8):

dn~r !5E x~r ,r 8!dvext~r 8 !d3r 8, ~1!

wherex(r ,r 8) is defined perturbationally. We use a compa
notation by introducing the star symbol~!!:

dn5x!dvext.

The aim of this study is to provide more informatio
aboutx by performing reasonably accurate calculations
small systems: the He series and the Be series.

The second important aspect of density functional the
~DFT! is the Kohn–Sham approach:2 The vast majority of
practical calculations are performed by considering the fi
tious system of noninteracting electrons, yielding the sa
density as the ~physical! system of interest. As the
Hohenberg–Kohn theorem is valid for any type of intera
tion between particles, there also is a mapping betweenn and
the potential in the Kohn–Sham system,vKS. It is thus in-
teresting to study the corresponding Kohn–Sham respo
function xKS:

dn5xKS!dvKS.

It is usually assumed that it is possible to reach the Koh
Sham system by switching off the electron–electron inter
tion ~1/r 12→l/r 12; 0<l<1!. This adiabatic connection
plays a central role in DFT, being the bridge between

a!Electronic mail: savin@lct.jussieu.fr
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physical and Kohn–Sham systems; it is the way most
proximations are understood. Although it is not necess
~cf. Refs. 3–6!, it is usually preferred to keep the densi
constant along the adiabatic connection.7–11 In order to
achieve it, the external potential changes continuously fr
vext to vKS:vext→vl ~vl515vext, vl505vKS!. We will also
show in the following some results for the linear respon
function along the adiabatic connectionx(l)5x(r ,r 8;l):

dn5x~l!!dvl .

Usually, approximations are made only for th
exchange-correlation part of the energy, which correspo
to approximating the exchange-correlation potential,vxc :

vKS5vext1vh1vxc ,

wherevh5*(n/r 12)d
3r 2 . Now using the fact that the sam

density change is obtained bydvKS and dvext, and after
introducing the inverse response functions~see, e.g., Ref.
12!, x21, xKS

21,

dvext5x21!dn,

one obtains

xKS
215x211

1

r 12
1 f xc ,

where f xc5dvxc /dn. Thus the problem of findingx or
(x21) is transferred, in the Kohn-Sham approach, to that
finding f xc .

In the simplest approach, the random phase approxi
tion ~RPA!, f xc is set to zero:

xRPA
21 5xKS

212
1

r 12
.

Please note thatxRPA contains a self-interaction error, as fo
any one-electron system,x is equal toxKS and not toxRPA.
This error is also present in the popular local density
proximation, wherevxc(r ) is a function of n(r ), and
7 © 2001 American Institute of Physics
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f xc(r ,r 8)5dvxc(r )/dn(r 8) thus has the formf xc(n(r ))d(r
2r 8). Of course, this is also wrong, as for a one-electr
systemf xc(r ,r 8)521/ur2r 8u.

The connection betweendvext anddvKS is given by

dvKS5e21!dvext,

where e21 is the inverse dielectric function, which can b
written as

e215xKS
21!x. ~2!

Physically,e21 reflects the effect of the interaction be
tween electrons, and one might expect that this produc
screening ofdvext and thus a reduction ofx with respect to
xKS (e21,1). One of the objectives of this work is to chec
whether this is true in the systems considered.

With x~l! one has to deal with functions of six variable
As we are interested indv in atoms, we develop these func
tions in terms of spherical harmonics,

x~r ,r 8;l!5(
l ,m

(
l 8,m8

x~r ,l ,m;r 8,l 8,m8;l!

3Ylm~V!Yl 8m8~V8!.

As we consider only spherical densitiesdn(r )5dn(r ),
and furthermore only spherical potentialsdv(r )5dv(r ).
Thus,

dn~r !5E x~r ,l 50,m50;r 8,l 850,m850!

3dvext~r 8!r 82dr8.

To simplify notation, we will drop in what followsl 5 l 8
5m5m850, and write

x r~r ,r 8;l!5
1

4p
x~r ,l 50,m50;r 8,l 850,m850;l!.

~3!

In order to manipulate the information we will consider t
eigenvector decomposition, see, e.g., Ref. 13:

x r~r ,r 8;gl !5(
i

k i~l!c i~r ;l!c i~r 8;l!,

where thec i are orthonormal:

4pE r 2c i~r ;l!c j~r ;l!dr5d i j .

One advantage of this decomposition is that we can get
best approximation tox r ~in a least-squares sense! by cutting
off the above-mentioned expansion by selection of the te
corresponding to the most important eigenvalues. Notice
a change of the potential by a constant does not modify
density, implying*x50; this in turn means that

4pE r 2c i~r !dr50

so that thec i(r ) necessarily have nodes.
Downloaded 04 Dec 2001 to 134.157.90.89. Redistribution subject to A
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II. METHOD

The response functions are derived from perturbat
theory, by using

dn~r !52^C~0!ur̂~r !uC~1!&,

whereC (0) is the unperturbed ground state wave functio
C (1) the first-order correction to it, due to the perturbin
potential dv(r 8), and r̂(r ) the density operator. To obtai
x r(r ,r 8) we use Eqs.~1! and ~3!:

dn~r !5dn~r !5E x r~r , r̃ !dv~ r̃ !4p r̃ 2dr̃. ~4!

Thus, x r(r ,r 8) is dn(r ) obtained with dv( r̃ )5d( r̃
2r 8)/4p r̃ 2. In some cases, such as the hydrogen atom,C (1)

and thusx r can be obtained analytically. In many cases, li
the noninteracting systems, it is common to use the su
over-states formula to obtainC (1) and thusx r . With many
programs, it is also convenient to use a small finite pertu
ing potential and analyze the resulting density.

For the noninteracting closed-shell system, it is easy
use the expression ofxKS in terms of Kohn–Sham orbitals
w i , and eigenvaluese i ~in a finite basis!:

xKS~r ,r 8!54(
i

occ

(
a

unocc
w i~r !wa~r !w i~r 8!wa~r 8!

e i2ea
. ~5!

For interacting systems we generatex r(l) in the basis of
thec i(r ;l50). To obtain it, we made a configuration inte
action calculation after changing the external potential
dvk(r )51023ck(r ,l50), and decompose the resultin
density changes onto the same basisck(r ,l50); from

x r~r ,r 8;l!5(
i j

x i j ~l!c i~r ;l50!c j~r 8;l50!,

~6!

dnk~r ;l!5(
i

dni
k~l!c i~r ;l50!,

we obtain that the change indni
k(l)5*r 2dnk(r ;l)c i(r ;l

50)dr induced bydvk will be, to linear order, 1023x ik(l).
Some technical details are given in Appendices A and B.

We now check some limits of the procedures just d
scribed. A first one is given by the finite size of the basis s
One possibility to check it, is to compare the eigenvalu
k i(l50), for a given basis set, with those obtained from
larger basis set, or those obtained on a dense numerical
by using the exact response function of the hydrogen a
~cf. Appendix C!. We show in Fig. 1 the decimal logarithm
of the first 35 eigenvaluesk i(l50) of xKS of the H atom:
from calculations on a grid with 256 points and on tw
Gaussian basis sets. Of course, an increase of the size o
basis set produces a larger domain of validity of thek i ’s.
Figure 1 shows a significant loss of quality of the smal
eigenvalues~notice the logarithmic scale of the plot!. It is
clear that only a limited number of nodes can be represen
with finite basis sets. It is thus not surprising that not
eigenvalues are pertinent. Notice also thatx r has a number
of eigenvalues larger than the number of basis functions
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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fact, the problem of not describing the small eigenvalue
related to that of linear dependencies in the products of b
functions~see e.g., Refs. 14–16!.

The second problem is the finite perturbation appro
which was used to obtainx(lÞ0). For x(l50) the exact
dni

k are equal to zero foriÞk. Due to the finite perturbation
thesedni

k are, however, of the order of (dvk)
2. For example,

for the hydrogen atom, usingdv1(r )51023c1(r ), the dn1
1

are of the order of 1024 while thedni
1( iÞ1) are of the order

of 1028 or smaller.

III. RESULTS

Typical plots ofr 2x(r ,r 8)r 82 are shown in Fig. 2, taking
as examples the hydrogen, helium, and beryllium atoms.
plot for the H atom shows that there are essentially two
gions in the atom~the inner sphere, and the outer shell!: A
repulsive potential changedv in one of the regions produce
a displacement of the radial density from it to the other
gion. Of course, the opposite effect appears for an attrac
dv. The plot for the He atom is similar~cf. Fig. 2!. For the
Be atom, however, a duplication appears, which we attrib
to the shell structure. Such plots can be made for alll. As the
figures look similar, we show onlyl50.

We will continue now with the analysis of the eigenva
ues, k i(l), and eigenfunctions,c i(l), of the x r(l). The
eigenvalues are given forl50 andl51 in Tables I and II.
Ordering the eigenfunctions with increasing eigenvalues~the

FIG. 1. Decimal logarithm of the 35 first eigenvalues of the hydrogen a
response function. The results obtained on a dense numerical grid are s
as dots, while calculations with 31 and 21 Gaussians functions are shown as
triangles and squares, respectively.
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eigenvalues are negative, see, e.g., Ref. 17! we observe that
in the Be series the first four eigenfunctions are localized
the core region, while the fifth is localized in the valen
region~cf. Fig. 3 for Be atl50!. It turns out that the eigen
functions change only little withl; we notice a significant
change in the eigenvalues, especially for the first one in e
shell. We show in Figs. 4 and 5 the ratiok i(l)/k i(l50) for
the helium and the beryllium atoms. We can also decomp

wn

TABLE I. First seven eigenvalues of the response function in the He se
For each system,k i(l50), k i(l51), and their ratio ẽ i

215k i(l
51)/k i(l50) are shown~first, second, and third lines, respectively!.

i 51 i 52 i 53 i 54 i 55 i 56 i 57

20.51 20.09 20.04 20.02 20.01 20.01 20.01
He 20.40 20.08 20.04 20.02 20.01 20.01 20.01

0.79 0.97 1.00 1.00 1.00 1.00 1.00

20.74 20.13 20.06 20.04 20.02 20.02 20.01
Li1 20.65 20.13 20.06 20.04 20.02 20.02 20.01

0.87 0.98 1.00 1.00 1.00 1.00 1.00

20.99 20.18 20.08 20.05 20.03 20.02 20.01
Be12 20.89 20.18 20.08 20.05 20.03 20.02 20.01

0.90 0.99 1.00 1.00 1.00 1.00 1.00

21.23 20.23 20.11 20.06 20.04 20.03 20.02
B13 21.14 20.23 20.10 20.06 20.04 20.03 20.02

0.92 0.99 1.00 1.00 1.00 1.00 1.00

21.48 20.28 20.13 20.07 20.05 20.03 20.02
C14 21.39 20.28 20.13 20.07 20.05 20.03 20.02

0.94 0.99 1.00 1.00 1.00 1.00 1.00

21.72 20.33 20.15 20.09 20.06 20.04 20.03
N15 21.63 20.32 20.15 20.09 20.06 20.04 20.03

0.95 0.99 1.00 1.00 1.00 1.00 1.00

21.97 20.37 20.17 20.10 20.06 20.05 20.03
O16 21.88 20.37 20.17 20.10 20.06 20.05 20.03

0.95 0.99 1.00 1.00 1.00 1.00 1.00

22.22 20.42 20.19 20.11 20.07 20.05 20.04
F17 22.13 20.42 20.19 20.11 20.07 20.05 20.04

0.96 0.99 1.00 1.00 1.00 1.00 1.00

22.46 20.47 20.22 20.12 20.08 20.06 20.04
Ne18 22.37 20.47 20.21 20.12 20.08 20.06 20.04

0.96 0.99 1.00 1.00 1.00 1.00 1.00
sized;
FIG. 2. Isocontour plot ofr 2r 82x r(r ,r 8;l50) for the H, He, and Be atoms, from left to right, respectively. The zero contour has been empha
x r(r ,r 85r ;l50),0.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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x r(l) on the basis of the eigenfunctions ofx r(l50),
c i(l50), as in Eq.~6!. Within our accuracy,x i j is a nearly
diagonal matrix, as can be seen in Fig. 6. This in turn me
that e21 @Eq. ~2!# will also be nearly diagonal in this basis

e21~r ,r 8;l!5(
i j

e i j
21~l!c i~r ;l50!c j~r 8;l50!

'(
i

ẽ i
21~l!c i~r ;l50!c j~r 8;l50!,

whereẽ i
21(l)5k i(l)/k i(l50). For example, for the beryl

TABLE II. First seven eigenvalues of the response function in the Be se
For each system,k i(l50), k i(l51), and their ratio ẽ i

215k i(l
51)/k i(l50) are shown~first, second, and third lines, respectively!.

i 51 i 52 i 53 i 54 i 55 i 56 i 57

21.01 20.18 20.08 20.05 20.04 20.03 20.02
Be 20.90 20.18 20.08 20.05 20.04 20.03 20.02

0.90 0.98 1.00 1.00 0.88 1.00 1.00

21.26 20.23 20.11 20.06 20.05 20.04 20.03
B11 21.16 20.23 20.11 20.06 20.05 20.04 20.03

0.92 0.99 1.00 1.00 0.95 1.00 1.00

21.52 20.28 20.13 20.07 20.06 20.05 20.03
C12 21.42 20.28 20.13 20.07 20.06 20.05 20.03

0.93 0.99 1.00 1.00 0.98 1.00 1.00

21.78 20.33 20.15 20.09 20.07 20.06 20.04
N13 21.68 20.33 20.15 20.09 20.07 20.06 20.04

0.95 0.99 1.00 1.00 1.01 1.00 1.00

22.03 20.38 20.17 20.10 20.08 20.07 20.05
O14 21.94 20.38 20.17 20.10 20.09 20.07 20.05

0.96 1.00 1.00 1.00 1.04 1.00 1.01

22.29 20.43 20.20 20.11 20.09 20.07 20.05
F15 22.21 20.43 20.20 20.11 20.10 20.08 20.05

0.96 1.00 1.00 1.00 1.07 1.00 1.01

22.55 20.48 20.22 20.13 20.11 20.08 20.06
Ne16 22.47 20.48 20.22 20.13 20.12 20.08 20.06

0.97 1.00 1.00 1.00 1.09 1.00 1.01

FIG. 3. First and fifth eigenvectors ofxKS for the Be atom:r 2c1(r ;l50)
~continuous line! and r 2c5(r ;l50) ~dotted line!.
Downloaded 04 Dec 2001 to 134.157.90.89. Redistribution subject to A
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lium atom, we have fori 55 ~the most important valence
eigenstate! ẽ5

21(l51)50.884 within 0.5% ofe55
21(l51)

50.888.
We now turn to the question of screening. We will spe

about ‘‘screening’’ whenẽ i
21,1, and about ‘‘antiscreening’

when ẽ i
21.1. Someẽ i

21 were already shown in Figs. 4 an
5. We see that in theses cases screening is present. We
show in Fig. 7 the plot ofẽ21(l) for Ne61. It turns out that
ẽ5

21 significantly increases withl. Thus, for the valence she
of Ne61 antiscreening appears. This change appears for31

in the Be series, as can be seen in Fig. 8, whereẽ5
21(l

51) is shown as a function of nuclear charge of the ion,Z.
We could not detect, however, antiscreening effects at R
level. We thus attribute antiscreening to the increase
k i(l)/k i(l50) produced byf xc .

In order to understand the antiscreening in the Be ser
remember that two configurations~Fs andFp , correspond-
ing to 1s22s2 and 1s22p2! are both important. We should

s.

FIG. 4. Dependence of the first few eigenvalues of the inverse dielec
function, approximated by the ratio of the eigenvalues ofxl: ẽ i

21

5k i(l)/k i(l50) on the adiabatic coupling constantl. The lowest curve
corresponds toi 51; for the He atom.

FIG. 5. Dependence of the first few eigenvalues of the inverse dielec
function, approximated by the ratio of the eigenvalues ofxl: ẽ i

21

5k i(l)/k i(l50) on the adiabatic coupling constantl. From the lowest
curve to the uppermost curve, we havei 55,1,2,3,4 for the Be atom.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 6. Plots of thex i j
l51 matrix ele-

ments on the basis of the eigenvecto
of xl50 for He, Be, and Ne61 ~left-
hand side, middle, and right-han
side!.
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thus consider, as a first approximation to the eigenstates~see
also Ref. 18!:

C0
~0!5cosa Fs2sina Fp ,

C1
~0!5sina Fs1cosa Fp .

To zeroth order, the response function is

x~0!~r ,r 8!5
^C0

~0!ur̂~r !uC1
~0!&^C1

~0!ur̂~r 8!uC0
~0!&

DE01

1(
i .1

^C0
~0!ur̂~r !uC i

~0!&^C i
~0!ur̂~r 8!uC0

~0!&
DE0i

, ~7!

whereDE0i are the energy denominators, andC i
(0) the un-

perturbed eigenfunctions. The first term on the right-ha
side reflects the effect of near degeneracy, while the sec
is general. AsFs andFp differ by two orbitals, andr̂(r ) is
a one-electron operator,^Fsur̂(r )uFp&50 and the first term
on the right-hand side of Eq.~7! has a numerator:

cos2 a sin2 a~^Fpur̂~r !uFp&2^Fsur̂~r !uFs&!

3~^Fpur̂~r 8!uFp&2^Fsur̂~r 8!uFs&!. ~8!

The second term has contributions of the type

cos2 a~^Fsur̂~r !uFv&2^Fvur̂~r !uFs&!, ~9!

whereFvÞFs or Fp , or

FIG. 7. Dependence of the first few eigenvalues of the inverse diele
function, approximated by the ratio of the eigenvalues ofxl: ẽ i

21

5k i(l)/k i(l50) on the adiabatic coupling constantl. The lowest curve
corresponds toi 51. From the lowest curve to the uppermost curve, we h
i 51,2,3,4,5 for the Ne61 ion.
Downloaded 04 Dec 2001 to 134.157.90.89. Redistribution subject to A
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nd

sin2 a~^Fpur̂~r !uFv&2^Fvur̂~r !uFp&!.

Fv contains monoexcitations from Fs or Fp ;
(^Fsur̂(r )uFv& and ^Fpur̂(r )uFv& cannot both be nonzero
and we thus do not have terms likêFsur̂(r )uFv&
3^Fvur̂(r )uFp&!. Thus whena50 only terms of the type
Eq. ~9! are left. This corresponds to the noninteracting ca
for the system considered. Whena is nonzero these terms
Eq. ~9!, become smaller than fora50, reducing the respons
~screening has occurred!. Notice, however, that an opposit
effect is also present@cf. Eq. ~8!#: A contribution tox arises,
which was not present ata50. We attribute to this term
related to near degeneracy, the appearance of antiscree
The increase of antiscreening with the nuclear chargeZ is
essentially related to the change of the energy denomin
DE01 with Z.

IV. CONCLUSION AND PERSPECTIVES

In this paper we showed the static linear density–den
response function of Kohn–Sham systems having the de
ties of the He atom, the Be atom, and their isoelectronic io
up to Z510. Furthermore, we studied the change of the
sponse functions withl, a constant multiplying the electron
electron interaction operator, while keeping the density c
stant. It turned out that the eigenstates of the respo
functions do not significantly change withl, while their ei-
genvalues do. There is a significant difference between
He and the Be series, in the change of the eigenvalues

ic

e
FIG. 8. Z-dependent antiscreening effect of the fifth component of the
verse dielectric function, approximated by the ratio of the eigenvalues
xl: ẽ5

215k5(l51)/k5(l50) for the Be series.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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l. While electron–electron interaction in general screens
effect of the perturbing potential, we observe the oppo
effect for higherZ in the Be series. This effect is connecte
with the contribution coming from the variation of th
exchange-correlation potential with the density,f xc , and
gives a further indication about the difficulty to properly d
scribe it ~see, e.g., Ref. 19!.

It can be hoped that a better knowledge ofx will finally
help one to construct better approximations tof xc , and to the
exchange-correlation functionals, in a similar way as kno
edge of exact Kohn–Sham potentials are useful~see, e.g.,
Ref. 20!.
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APPENDIX A: BASIS SETS

Uncontracted even tempered Gaussian basis sets, upf
functions, were used in the calculations. For each ang
quantum number,M exponentsan were produced by the rule

an5acd
~2n2M21!/2, n51,...,M . ~A1!

d52.1 for all systems.M has been chosen to be 21 for all th
s functions, 7 for thep functions of the helium series, 9 fo
thep functions of the beryllium series, and 5 and 3 for thed
and f functions, respectively. The central exponentsac are
given in Table III. For H~Fig. 1! 21 ~with d52.1! and 31
~with d51.7! s-type functions, centered atac510 were
used.

TABLE III. Central exponentsac @Eq. ~A1!# of the even tempered Gaussia
basis sets.

System s pdf

He 40.0 3.0
Li1 85.5 7.5
Be21 350.0 15.0
B31 475.0 23.0
C41 663.0 34.0
N51 990.0 48.0
O61 1200.0 65.0
F71 1612.0 82.5
Ne81 2030.0 100.0

Be 4.0 1.0
B1 4.6 3.3
C21 10.0 5.0
N31 7.5 8.0
O41 12.0 11.0
F51 100.0 9.0
Ne61 130.0 15.0
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APPENDIX B: CALCULATION OF THE RESPONSE
FUNCTION xKS FROM THE EIGENVECTORS OF THE
OVERLAP MATRIX PRODUCTS OF PRIMITIVE
GAUSSIANS

Given a set of Gaussian primitive functionsgp(r ), let
pm5gp(r )gq(r ), wherep runs over the primitives appearin
in the occupied orbitals andq runs over those appearing i
the virtual orbitals;m is a composite index. To avoid prob
lems due to linear dependencies between thepm , we choose
to develop thexKS function on the eigenvectorsha(r ) of the
overlap matrix of thepm , Sa,b

p 5^paupb&,

Spha~r !5Daha~r !,

where theDa are the eigenvalues. TheDa are sorted and only
those eigenvectors corresponding to (Da.10212) are used in
the following. The orthogonalh are developed on thep
functions with

ha5(
m

Aa,mpm~r !.

In the h basis, using Eq.~5!, the matrix representation o
xKS(r ,r 8), xh, is given by

xKS,ab
h 5E E xKS~r ,r 8!ha~r !hb~r 8!d3rd3r 8

5(
i

occ

(
j

vir
4

e i2e j
I i ja

h I i jb
h ,

where the overlap integralsI i ja
h are given by

I i ja
h 5E w i~r !w j~r !ha~r !d3r .

Diagonalization ofxh in the ha basis produces the or
thonormal eigenvectorsCa,i and the eigenvaluesk i . They, in
turn, give the development of thec i(r ) on the primitive
Gaussian pairspm(r ):

c i~r !5(
a

Ci ,aha~r !5(
a

Ci ,a(
m

Aa,mpm~r !.

As for high i, the numerical values of thel i may lose sig-
nificance~becoming 10216 or lower or even positive!, only
the first few largest in absolute value (,1026) are kept~19
for He series and 18 for Be series!.

APPENDIX C: EXACT RESPONSE FUNCTION xR OF
THE HYDROGEN ATOM

In order to facilitate the reading of the present paper
give in the following a derivation ofx r(r ,r 8) for the hydro-
gen atom, although it is given, at least implicitly, in the li
erature~see, e.g., Ref. 21!.

In the case of noninteracting spherically symmetric s
tems it is customary to replace the radial functionsR(r ) by
u(r )5rR(r ), in order to write the Schro¨dinger equation as
that of a particle in one dimension:

F2
1

2

d2

dr2 1
l ~ l 11!

2r 2 1v~r !Gu~r !5Eu~r !,

wherel is the angular momentum quantum number.
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When the potentialv(r ) is decomposed into two parts
v(r )5v (0)(r )1v (1)(r ), and the solution forv (0)(r ) is sup-
posed to be known~u(0) andE(0)!, the first-order equation is
written as

F2
1

2

d2

dr2 1
l ~ l 11!

2r 2 1v~0!2E~0!Gu~1!1@v ~1!2E~1!#u~0!

50.

This will be solved by using a method proposed by Dalga
and Lewis22 and Young and March.23 A substitution intro-
duces the functionf (r ):u(1)5 f u(0). Let us takel 50 and
drop the subscriptl. Multiplying the equation by22u(0) one
obtains

d

dr F (u~0!)2
d f

dr G52~v ~1!2E~1!!~u~0!!2.

If u(0) is nodeless, a first integration yields asu(0)(r→`)
→0:

d f

dr
52

2

~u~0!~r !!2 E
r

`

@v ~1!~ r̃ !2E~1!#~u~0!~ r̃ !!2dr̃,

which can be integrated once more to

f ~r !52E dr
2

~u~0!~r !!2 E
r

`

dr̃@v ~1!~ r̃ !2E~1!#

3~u~0!~ r̃ !!21C. ~C1!

A change in the potential equal toh@d(r 2r 8)#/4pr 2,
produces a change in the density having a term linear ih
equal tohx(r ,r 8), cf. Eq.~4!, whereh is infinitesimal.x r is
obtained by constructing the first-order change in the den
due tov (1)(r )5@d( r̃ 2r 8)#/4pr 2. For this potential,E(1) is
given by

E~1!5E S R~0!~r !
1

A4p
D 2

d~ r̃ 2r 0!

4p r̃ 2 4p r̃ 2dr̃,

5
1

4p
~R~0!~r 0!!2

whereR(0)(r )52e2r , the radial function of the H atom. In
serting this result into Eq.~C1! one gets

f ~r ;v ~1!~r !5d~ r̃ 2r 8!/4p r̃ 2![ f ~r ;r 8!.

Thus

f ~r ,r 8!52E dr
2

~rR~0!~r !!2 E
r

`

dr̃S d~ r̃ 2r 8!

4p r̃ 2

2
~R~0!~r !!2

4p D ~ r̃ R~0!~ r̃ !!21C,

f ~r ,r 8!5
1

4p
~R~0!~r !!2S 2E dr

2

~rR~0!~r !!2 u~r 82r !

1E dr
2

~rR~0!~r !!2 E
r

`

dr̃~ r̃ 2R~0!~ r̃ !!2D 1C.
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This integral can be obtained analytically, e.g., w
MATHEMATICA .24 It is:

f ~r ,r 8!5
1

4p
F22

e22r 8

r
14re22r 824e22r 8Ei~2r ,!

14e22r 8 ln r 1
2

r
min@1,e2~r 2r 8!#G1C, ~C2!

where Ei(x)52*2z
` e2t/t dt, and r , is min(r,r8). The con-

stant C is determined by the requirement of orthogonal
betweenC (0) andC (1):

E ~R~0!~r !!2f ~r !r 2dr50,

yielding

C5
e22r 8

4pr 8
@2214r 821r 8~21418g1 ln 256!14r 8 ln r 8#,

~C3!

whereg is Euler’s constant (g'0.577 215 664 9). The first
order density change and thusx r(r ,r 8)) is 2(R(0)

(r ))2( f /4p), using Eqs.~C2! and ~C3! one gets

x~r , ,r .!5
e22~r ,1r .!

p2r ,r .
@2~r ,1r .!1r .e2r ,

1r ,r .$2714g12~r ,1r .!

22 Ei~2r ,!1 ln 1612 ln~r ,r .!%#.

1F. Hohenberg and W. Kohn, Phys. Rev. B136, 864 ~1964!.
2W. Kohn and L. Sham, Phys. Rev. A140, 1133~1965!.
3J. Harris and R. Jones, J. Phys. F: Met. Phys.4, 1170~1974!.
4R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, R. J. Needs, a
W. M. C. Foulkes, Phys. Rev. Lett.78, 3350~1997!.

5R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, and R. J. Nee
Phys. Rev. B57, 8972~1998!.

6A. Savin, F. Colonna, and J.-M. Teuler, inElectronic Density Functional
Theory: Recent Progress and New Directions, edited by M. Das, G.
Vignale, and J. Dobson~Plenum, New York, 1998!.

7D. Langreth and J. Perdew, Solid State Commun.17, 1425~1975!.
8O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B13, 4274~1976!.
9D. P. Joubert and G. P. Srivastava, J. Chem. Phys.109, 5212~1998!.

10F. Colonna and A. Savin, J. Chem. Phys.110, 2828~1999!.
11D. Frydel, W. M. Terilla, and K. Burke, J. Chem. Phys.112, 5292~2000!.
12E. K. U. Gross and W. Kohn, Phys. Rev. Lett.55, 2850~1985!.
13D. Mearns and W. Kohn, Phys. Rev. A35, 4796~1987!.
14S. Hamel, M. E. Casida, and D. R. Salahub, J. Chem. Phys.~submitted!.
15W. H. E. Schwarz and B. Mu¨ller, Chem. Phys. Lett.166, 621 ~1990!.
16D. E. Hoch and J. E. Harriman, J. Chem. Phys.102, 9590~1995!.
17E. Zaremba, J. Phys.: Condens. Matter2, 2479~1990!.
18O. V. Gritsenko, S. J. A. van Gisbergen, A. Gorling, and E. J. Baerend

Chem. Phys.113, 8478~2000!.
19S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baere

J. G. Snijders, B. Champagne, and B. Kirtman, Phys. Rev. Lett.83, 694
~1999!.

20R. G. Parr and W. Yang, Annu. Rev. Phys. Chem.46, 701 ~1995!.
21H. F. Hameka, J. Chem. Phys.47, 2728~1967!.
22A. Dalgarno and J. T. Lewis, Proc. R. Soc. London, Ser. A109, 70 ~1955!.
23W. H. Young and N. H. March, Phys. Rev.109, 1854~1958!.
24S. Wolfram,The Mathematica Book~Wolfram Media/Cambridge Univer-

sity Press, Cambridge, 1996!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


