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Abstract

Local exchange-correlation functionals are defined for different systems with spherical symmetry, by requiring that they
reproduce the correct exchange-correlation energy and exchange-correlation potential (up to a constant). For comparison, the
results with the uniform electron gas local density approximation and a generalized gradient approximation are also shown.
q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of the present paper is to invert
Gáspár’s approach [1]: instead of obtaining the
potential from the energy expression, we will use
the potential to obtain the energy expression. While
in Gáspár’s approach, generalized by the Hohenberg–
Kohn–Sham [2,3] theory, one assumes the existence
of a good approximation for the exchange-correlation
energy, and generates from a variational treatment a
potential, this paper will follow the opposite way:
Using the information given by a local potential we
construct a local approximation for the exchange-
correlation energy. The motivation for such an
approach is the analysis of approximate functionals.
Our functionals will be, by construction, ‘exact’ for a
given system, in the sense that the variational prin-
ciple yields the correct exchange-correlation potential
and thus the correct density. For this density, the
energy obtained will also be the exact one. Of course,

as the local form yields only an approximation to the
exact functionals, the functionals are not transferable.
They can be used, however, for comparisons with
different approximate functionals, generated using
other criteria.

2. Method

The only approximation in density functional
calculations is the exchange-correlation energy func-
tional, often written as:

Exc�n� �
Z

d3r exc�n��r� �1�

In the local density approximation (LDA)exc�n��r�
becomesexc�n�r��; usually obtained from uniform
electron gas calculations. In order to assess the quality
of approximate functionals, exact values ofexc�n��r�
are desirable. Unfortunately, there is no unique defin-
ition of exc�n��r�: For example, any functionf0 which
satisfies

R
d3r f0 � 0 can be added toexc�n��r� to yield

the sameExc. Thus, supplementary requisites are
needed in order to fixexc�n��r�: Examples can be
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found, e.g. in Refs. [4–7]. In the present paper we will
study spherically symmetric monotonically decaying
densities, and define a local approximation for each of
them. This approach has some similitude with that of
Gill and Pople [4] who consider a specific gradient
approximation and that of Tozer [8], who considers
hydrogenic densities.

Our argument goes as follows: we first notice that
the Kohn–Sham potential is a position dependent
quantity appearing in DFT. It can be routinely deter-
mined (see e.g. Ref. [9] and references therein) and
when the external potential is known, the exchange-
correlation potential is immediately determined. The
exchange-correlation potential is also the functional
derivative ofExc with respect ton:

vxc�r� � 2Exc

2n�r� : �2�

We will now assumethat for a given system we can
write Exc in a local form:

Elocal
xc �n� �

Z
d3r exc�n�r��

which yields

vlocal
xc �r� � dexc

dn
: �3�

We require thatvlocal
xc �r� equals the exact exchange-

correlation potentialvxc�r�: Consider now:

7exc � dexc

dn
7n� vxc�r�7n: �4�

To integrate this equation, we will consider spheric-
ally symmetric systems, where we have:

exc�r�2 exc�r ! ∞� � 2
Z∞

r

dn�r 0�
dr 0

vxc�r 0� dr 0: �5�

We will chooseexc�r ! ∞� � 0; as using a finite
exc�r ! ∞� produces a divergent exchange-correl-
ation energy via

R∞
0 4pr2exc�r� dr.

Notice that the Kohn–Sham potential is only deter-
mined up to a constant. Adding a constant to a given
potential will not modify the density produced by it.
The fact that the density determines the external
potential up to a constant has been already pointed
out by Hohenberg and Kohn [2] and physically signif-
icant changes have been analyzed by Perdew et al.
[10]. More recently, Tozer and Handy [11] have

greatly stressed the importance of adding a constant
when constructing approximate density functionals.

We will now use the freedom in choosing this
constant by asking that not only the exchange-correla-
tion potential should be reproduced, but also the
exchange-correlation energy. We re-write Eq. (5) as:

exc�r� � 2
Z∞

r

dn�r 0�
dr 0

�v0
xc�r 0�1 C� dr 0 �6�

wherev0
xc�r� is the potential which goes to 0 asr ! ∞;

and require that:

Elocal
xc �n� �

Z∞

0
4pr2exc�r� dr

� 2
Z

4pr2 dr
Z∞

r

dn�r 0�
dr 0

�v0
xc�r 0�1 C� dr 0

� 2
4p
3

Z∞

0

dn�r�
dr

v0
xc�r�r3 dr 1 CN (7)

equals the exact exchange-correlation energy,Exc [n].
The last equality has been obtained by changing the
order of integration, andN � R

n�r�d3r is the number
of electrons in the system. We will now restrict our
density to be monotonically decaying. By this one-to-
one correspondence betweenr and n we can obtain
exc�n� � exc�n�r��:

3. Results

As a first example let us consider the hydrogenic
atom �N � 1�: The exchange-correlation energy has
to exactly cancel the Hartree energy in this case:

Exc�n� � 2
1
2

ZZ n�r�n�r 0�
ur 2 r 0u

d3r d3r 0 �8�

and the exchange-correlation potential is:

v0
xc�r� � 2

Z n�r 0�
ur 2 r 0u

d3r 0: �9�

By substitutingn(r) by

nz � z3

p
e22zr
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into the last expression we obtain:

Exc�n� � 2
5
16

z �10�

v0
xc�nz; r� � 2

1
r
�1 2 �1 1 rz�e22zr �: �11�

To fix the constant we use Eq. (7)

2
5
16

z � 2
4p
3

Z∞

0

dn�r�
dr

v0
xc�nz; r�r3 dr 1 C �12�

which yields C � 5=24z: The potential is thus the
same as the one of Tozer (Eq. (8) of Ref. [8]). Thus,
with vxc � v0

xc 1 C :

exc�r� � 2
Z∞

r

dn�r 0�
dr 0

vxc�nN;z; r
0�dr 0 �13�

� z4

p

1
2

e24zr 1
5
24

e22zr 2 2E1�2zr�1 2E1�4zr�
� �

�14�
where E1�z� �

R∞
z t21e2t dt is the exponential inte-

gral. As 2zr � 2ln�pn=z3� we can obtainexc�n� for

n [ �0; z3
=p�:

exc�n� � 5z
24

n 1
p

2z2 n2

1
2z4

p
E1 22ln

pn

z3

� �� �
2 E1 2ln

pn

z3

� �� �� �
:

�15�
Commonlyexc�n� � exc�n�=n is used:

exc�n� � 5z
24

1
p

2z2 n

1
2z4

pn
E1 22ln

pn

z3

� �� �
2 E1 2ln

pn

z3

� �� �� �
�16�

In the uniform electron gasexc is proportional to
1=rs � �4pn=3�1=3. We thus show, in Fig. 1,exc�n� as a
function of 1/rs. One surprising feature is the positive
exc for small densities (or small 1=rs� :

lim
n!0

exc�n� � 5
24

z 1 …: �17�
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Fig. 1. Local exchange-correlation energy functionalexc � exc=n; (Eq. (16)) as a function of 1=rs � �4pn=3�1=3 for the hydrogen atom. For
comparison the uniform electron gas (LDA) exchange-correlation energy density is shown as the nearly straight line and the generalized
gradient approximation (PBE) exchange-correlation energy density as a dotted curve.



The value for this limit is exactly the shift we made in
the potential. The positive exchange-correlation
density in the region of low density is not numerically
relevant for obtainingExc, asexc is weighted by the
density when computing the integral. Comparing our
‘exact’ exc with the one obtained in LDA one notices
that except their behavior at small densities, the trans-
fer from the uniform electron gas behaves quite well,
in spite of the fact thatExc has only to correct for the
self-interaction.

The following examples have been obtained
numerically. The necessary Kohn–Sham potentials
and densities are taken from Ref. [12] and web-site
[13]. The systems considered are: the exponential
densitiesnN;z�r� � N�z3

=p� e22zr with N � 2 andz �
1; z � 2; the He atom; the Ne81 ion; the Be atom; the
Ne61 ion. For comparison, results obtained within the
LDA and a generalized gradient approximation (PBE)
[14] are also shown.

For the atomic systems, small irregularities may
appear in the region of large 1=rs�r ! 0�, due to the
use of Gaussian type orbitals (see Ref. [12]).

The exponential densitynN�2; z�1 corresponds to

that given by doubly occupied hydrogen 1s orbital
(cf. Fig. 2). It yields exc�n� with a general similar
behavior to that observed for H.

By doubly occupying the He1 1s orbital �N �
2; z � 2�; one obtains a similar curve fore xc as for
z � 1: there is a significant domain where the ‘exact’
and approximate curves are close (cf. Figs. 2 and 3).

It is certainly no surprise that curves for He and
Ne81 show a similar behavior as those for the expo-
nential densities withN � 2 (cf. Figs. 2, 4 and 5). The
behavior for Be and the isoelectronic Ne61 (N � 4,
Figs. 6 and 7) show, however a jump around the 1s–2s
shell frontier (more pronounced for Ne61). The uniform
electron gas or PBE have a similar slope, but are not able
to follow the jump. Interestingly, the gradient correction
detects the jump, but is not strong enough.

Due to the recent interest in the value ofvxc�r !
∞�; [11,10] we show in Table 1 together with our
constantsC, the values of�I 2 A�=2 (I: the ionization
energy,A: the electron affinity), which is the jump in
the exactvxc for an infinitesimal increase inN [10].

One might think that the type of approximation
proposed could give also a reasonable approximation
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Fig. 2. Local exchange-correlation energy densityexc; as a function of 1=rs for exponential densitiesnN�2; z�1. For comparison the uniform
electron gas (LDA) exchange-correlation energy density and the generalized gradient approximation (PBE) are shown.
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Fig. 4. Local exchange-correlation energy densityexc; as a function of 1=rs for Helium atom. For comparison the uniform electron gas (LDA)
exchange-correlation energy density and the generalized gradient approximation (PBE) are shown.

Fig. 3. Local exchange-correlation energy densityexc; as a function of 1=rs for exponential densitiesnN�2; z�2. For comparison the uniform
electron gas (LDA) exchange-correlation energy density and the generalized gradient approximation (PBE) are shown.
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Fig. 6. Local exchange-correlation energy densityexc; as a function of 1=rs for Beryllium atom. For comparison the uniform electron gas (LDA)
exchange-correlation energy density and the generalized gradient approximation (PBE) are shown.

Fig. 5. Local exchange-correlation energy densityexc; as a function of 1=rs for Ne81 ion. For comparison the uniform electron gas (LDA)
exchange-correlation energy density and the generalized gradient approximation (PBE) are shown.



for

Eh � 1
2

Z n�r1�n�r2�
ur1 2 r2u

d3r1 d3r2: �18�

Following the same steps as for hydrogen, we get
the expression:

eh � 2
5z
24

2
p

2z2 n

2
2z4

pn
E1 22ln

pn

z3

� �� �
2 E1 2ln

pn

z3

� �� �� �
:

�19�
It thus turns out thateh is clearly more sensitive toN
than toz (cf. Fig. 8). LDA was working reasonably
well, however both fornN�1;z�1 andnN�2;z�1 (cf. Figs.
1 and 2). Thus, it seems easier to produce approximate
functionals forExc than forEh.

4. Conclusions

We have constructed local approximations to the
exchange-correlation functional for H, He, Ne81,

Be, Ne61 as well as for exponential densities.
For each of these systems, they are exact in the
sense that:

• they give, via Eq. (7), the exact exchange-correl-
ation energy,

• their functional derivatives give (up to a constant)
the exact exchange-correlation potential (cf. Eq.
(6)); thus the exact density can be produced via
the Kohn–Sham equations.

These functionals are not transferable from one
system to another, but can be compared among them-
selves and with common approximations.
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Table 1
Asymptotic value of the exchange-correlation potential,C from Eq.
(7), and difference between the ionization energy,I, and the electron
affinity, A (taken from Ref. [15] and web-site [16])

System C �I 2 A�=2

H 0.2083 0.2353
He1 0.4167 0.5501
He 0.3049 0.4498
Be 0.1891 0.1713

Fig. 7. Local exchange-correlation energy densityexc; as a function of 1=rs for Ne61 ion. For comparison the uniform electron gas (LDA)
exchange-correlation energy density and the generalized gradient approximation (PBE) are shown.



Both the uniform electron gas and the PBE
reproduce grossly the trends of the one- and two-elec-
tron systems. For Be and Ne61, however, there is a
jump in our functional which seems hard to recover by
the common functionals.
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Fig. 8. Local Hartree energy densityeh; as a function of 1=rs for four exponential densitiesnN;z; for N � 1, N � 2 andz � 1, z � 2.


