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Correlation energies for some two- and four-electron systems along
the adiabatic connection in density functional theory

François Colonna and Andreas Savin
Laboratoire de Chimie The´orique, CNRS, Universite´ Pierre et Marie Curie 4, Place Jussieu,
F-75252 Paris, France

~Received 10 August 1998; accepted 3 November 1998!

Switching on the electron–electron interaction connects the Kohn–Sham to the physical system.
The correlation energy, the only unknown energy component in this process, is determined at fixed
density, using a technique based on the Lieb Legendre transform definition of the universal density
functional. Results are shown for this adiabatic coupling process for He,Ne81,Be,Ne61 as well as for
the exponential densitiesnN,z(r )5N(z3/p)e22zr (N52 or 4; z>1; for N54 degeneracy is
present and1D and3P are analyzed!. The data are fitted to a rational approximant and appear to be
in good agreement with those given by the less computationally demanding Harris–Jones adiabatic
connection. ©1999 American Institute of Physics.@S0021-9606~99!30806-0#
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I. INTRODUCTION

In order to get more insight into the nature of dens
functionals, the construction of the Kohn–Sham poten
has received much attention. Little is known about the c
nection of the Kohn–Sham system with the physical syst
This can be done by using the adiabatic connection pro
dure of Harris and Jones1 ~along which the density is only
kept the same at the full interaction strength and for
noninteracting system!, or by keeping the density consta
along the whole path.2,3 Although the first way is certainly
simpler to perform, the latter is closely related to the philo
phy of density functionals.

In a previous paper4 we presented results for the Harris
Jones adiabatic connection in the He and Be series. Her
will show that these results differ little from those obtain
by keeping the density constant as long as the interac
strengthl lies between 0 and 1. It is, however, of interest
consider the more strongly correlated systems, too, where
electron–electron interaction is enhanced (l.1) for which
we will give results in a forthcoming paper.

We will also consider the system described by an ex
nential density, which by integration yields the number
electrons,N:

nN~r !5
N

p
e22r . ~1!

Please notice, that if the density would be chosen to yield
integration one, allnN would be transformed into the hydro
gen density: The only difference produced by going fro
one nN to another is due to the change in the number
electrons and not to a change of the shape of the den
Other densities

nN,z~r !5N
z3

p
e22zr ~2!

are related to nN by the scaling relation: nN,z(r )
5z3nN(zr ). Since the correlation energy functional is un
versal, it is important that it also treats correctly simple e
2820021-9606/99/110(6)/2828/8/$15.00
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ponential densities which resemble the atomic densities.nN,z

generates a family of densities characterized by the par
etersN and z. For a givenN, we have just one paramete
generating a series of density functional values, as we h
for the uniform electron gas@where the single parameter
r s5(3/4pn)1/3#. The explicit dependence onN is also impor-
tant. Thus, forN51 the correlation energy is trivially equa
to zero.

Coordinate scaling is known to be closely related to
adiabatic connection~see, e.g., Ref. 5, and referenc
therein!. We will use the latter in order to generate the fir

Besides the purely academic interest in finding the c
nection between the real and the Kohn–Sham system,
adiabatic connection has been used in designing approx
tions to the exact density functionals~see, e.g., Ref. 6 or 7!.
In these papers the dependence of the energy onl has some
assumed form, satisfying certain physical constraints,
yields good correlation energies. It is thus of interest to
curately know the real dependence onl. Hoodet al.8 made a
quantum Monte Carlo investigation for Si, where the pote
tial keeping the density constant has been taken from
local density approximation. After completion of our wor
we learned that D. Joubert has also performed an adiab
coupling calculation for the He series.9

II. METHOD

A. Definitions and properties

Lieb10 defined the universal Legendre transform fun
tional F@n# of the electron densityn as

F@n#5max
v

S E@v#2E n~r !v~r !d3r D , ~3!

whereE@v# is the ground state energy for the system ofN
5*n interacting electrons in the external potentialv.

We are interested in systems having fixed ground s
densityn at varying interaction strengthl, with Hamiltonian

Ĥl5T̂1lV̂ee1V̂l,
8 © 1999 American Institute of Physics
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whereT̂ is the operator for the kinetic energy,V̂eethat for the
electron–electron interaction, andV̂l that for the external
local potential. Please notice that forl51 we describe the
physical interaction, forl50 the Kohn–Sham noninterac
ing system and that for otherl, V̂l is not known beforehand
To obtain the universal density functional at a givenl,
Fl@n#, we have to replaceE@v# in Eq. ~3! by that for the
system in which the electron–electron interaction is modifi
by l:

Fl@n#5max
v

F l@n;v#, ~4!

where

F l@n;v#5El@v#2E nv ~5!

andEl@v#5minC^CuT̂1lV̂ee1V̂uC& with V̂5( i 51
N v(r i). If

a maximizing potentialvl exists, then according to Hohen
berg and Kohn,11 it is the one which hasn as the ground state
density:

Fl@n#5El@vl#2E nvl, ~6!

Fl@n#5^CluT̂1lV̂eeuCl&, ~7!

where Cl is the wave function minimizinĝ Ĥl& ~i.e., ^T̂
1lV̂ee&) and yielding the densityn. For example, forl
50, vl50 will be the Kohn–Sham potential; forl51, vl51

will be that corresponding to the physical system having
ground state densityn. The Harris–Jones adiabat
connection1 corresponds to approximating

vl'~12l!vl501lvl51. ~8!

We can define the correlation energy for interacti
strengthl by

Ec
l5^CluĤluCl&2^Cl50uĤluCl50& ~9!

or equivalently, when the density is kept fixed, by

Ec
l5Fl@n#2Fl50@n#2l^Cl50uV̂eeuCl50& ~10!

5^CluT̂1lV̂eeuCl&2^Cl50uT̂1lV̂eeuCl50&.
~10a!

For l51, Eqs.~9! and ~10a! yield the usual density func
tional definition of the correlation energy.

We are also interested in obtaining the correlation en
gies of a family of exponential densitiesnN,z , Eq. ~2!. These
can be related to the correlation energies of the systems
interaction strengthl51/z yielding the densitynN of Eq. ~1!
by using12,13

Ec@nN,z#5z2Ec
1/z@nN#. ~11!

An even more general form, also obtained from the previ
scaling relationship is

Ec
l@nN,z#5z2Ec

l/z@nN#. ~12!

Thus, the results obtained fornN,z515nN for 0<l<1 can
be used to get the correlation energies for systems with d
d

e

r-

ith

s

n-

sities nN,z for 0<l<z. ~For largez, our values can yield
data for largerl, but for z,1, Ec

l515Ec will not be ob-
tained.!

B. Technical details

In practicevl is approximated byṽl, Cl by C̃l yield-
ing ñl and thusE@vl# by Ẽ@ ṽl#. As we have noticed tha
computingEc

l from Eqs.~6! and ~10!

Ẽv
l5S Ẽl@ ṽl#2E nṽl D2S Ẽl50@ ṽl50#2E nṽl50D

2l^C̃n
l50uV̂eeuC̃n

l50& ~13!

is quite stable with respect to modifications of the potent
we will present the correlation energy computed according
that formula. Other possibilities to calculateEc

l are as fol-
lows:

~1! From Eq.~10a!

Ẽca

l 5^C̃luT̂1lV̂eeuC̃l&2^C̃l50uT̂1lV̂eeuC̃l50&.

~2! From Eq.~9!

Ẽcb

l 5^C̃luT̂1 V̂̃l1lV̂eeuC̃l&

2^C̃l50uT̂1 V̂̃l1lV̂eeuC̃l50&.

The difference betweenẼc
l , Ẽca

l and Ẽcb

l disappears, of

course, in an exact calculation~whenñl5n), as can be eas
ily seen from

Ẽc
l5Ẽca

l 2E ṽl~ ñl2n!2E ṽl50~ ñl502n!

5Ẽcb

l 2E ~ ṽl2 ṽl50!~n2ñl50!. ~14!

E@v# is obtained by using the programMOLPRO.14 For
He,Ne81 and nN52,z51 full configuration interaction~CI!
was used. For Be and Ne61 single and double excitation
with respect to a wave function obtained from a multico
figuration self-consistent field calculation in the space of
first two s and the first set ofp orbitals were considered. Th
casenN54,z51 is more complicated. It turns out that the o
dering of the Kohn–Sham eigenstates is similar to that of
particle enclosed in a sphere of zero potential:15 e(1s)
,e(2p),e(2s) ~see also Ref. 16!. This corresponds to an
open-shell ground state. The spherical densitynN54,z51 can
be obtained via an ensemble~cf. Ref. 17!. @As we use Eq.~4!
we do not have any problem treating ensemble densitie
obtain the universal density functional.# Two electrons in the
p shell generate the states3P, 1D, and1S. As the program
MOLPRO does not explicitly treat spherical symmetry, a slig
difference (,1024 hartrees) betweenD states may appear in
the CI calculations with single and double excitations fro
the reference configurations in spite of the fact that the
bitals used are respecting the spherical symmetry.

Uncontracted even tempered Gaussian basis sets, upf
functions, were used in the calculations. For each ang
quantum number,M exponentsan were produced by the rule
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TABLE I. Even tempered Gaussian basis set exponents obtained from Eq.~15!. M is the number of Gaussians
ac the center, andd the ratio of two consecutive exponents.

s p d f

Functions
System M ac d M ac d M ac d M ac d

He 21 2.1 40.0 7 2.1 3.0 5 2.1 3.0 3 2.1 3.0
Ne81 21 2.1 2030.0 7 2.1 100.0 5 2.1 100.0 3 2.1 100.0
nN52, z51 21 2.1 10.0 7 2.1 0.75 5 2.1 0.75 3 2.1 0.75
Be 21 2.1 4.0 9 2.1 1.0 5 2.1 1.0 3 2.1 1.0
Ne61 21 2.1 130.0 9 2.1 15.0 5 2.1 15.0 3 2.1 15.0
nN54, z51 21 2.1 10.0 14 1.8 0.35 5 2.3 1.025 3 2.4 1.02
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~2n2M21!/2, n51,...,M . ~15!

The central exponentsac and the ratiod can be found in
Table I.

We will consider here a class of potentialsvps easily
generated by existing computer codes, where in order to t
pseudopotentials replacing the atomic cores, the follow
form is used:

vps~r !5(
i

Ci r
pi exp~2g i r

2!1
C

r
. ~16!

r is the distance from the nucleus,pi are integers larger tha
22, g i is positive,C is given by the asymptotic condition
@cf. Eqs.~A1! and~A4! in the Appendix#; the parametersCi ,
pi , g i are obtained by maximizingF l@n,vps# @cf. Eq. ~5!#
with respect tovps: For a given number of terms, we tr
several powerspi , and maximize by using theSIMPLEX pro-
cedure from Numerical Recipes.18 We repeat this procedur
after modifying the values of thepi and the number of terms
~Developing the potential in terms of basis functions is co
mon also for obtaining Kohn–Sham potentials, see, e
Refs. 19 and 20, or in the practice of density functional c
culations, see, e.g., Ref. 21.!

Although Eq.~4! is the only criterion used to obtainṽl,
during our optimization process, we also use as checks
following quantities which should be zero for the exact p
tentials:

D15E ~ ñl2n!

r
d3r

related to the difference between the various definitions
Ẽc

l @Eq. ~14!#;

D25
1

2 E ~ ñl~r1!2n~r1!!~ ñl~r2!2n~r2!!

ur22r1u
d3r1d3r2

the criterion used, e.g., by Zhao and Parr@Eq. ~43! of Ref.
22# for obtaining Kohn-Sham potentials;

D35Ẽl@ ṽl#1^CluT̂uCl&2E ñl~r !ṽl~r !d3r

2E n~r !r–“ ṽl~r !)d3r

derived from the virial relation@see, for instance, Eq.~9! of
Ref. 17#;
at
g

-
.,

l-

he
-

f

D45S a2 (
i

pi521

Ci D 2

@with a5z, cf. Eq. ~2!, or Z, the nuclear charge# is obtained
for vl50 from the asymptotic condition atr→0 @cf. Eq.~A6!
in the Appendix#.

As we are interested in calculatingEc
l , the stationarity

property of F@n# is convenient. The errors in computin
F l@n,v# will be of second order indv, while D1 will be of
first order. This justifies our preference for calculating t
correlation energy according to Eq.~13!. If we want, how-
ever, to meet all the criteria, the minimization is slowly co
verging: sometimes more than 5000 steps are necessary

Although we are interested in obtaining only the corr
lation energy, we would like to point out some of the po
sible difficulties encountered if one would like to obtainvl,
too. In fact, having numerically stable values for the cor
lation energies does not mean that we have generated u
biguously the correspondingvl, too. For example, it has
been shown23,24 that a shift by a constant over the physica
significant region of space will only negligibly affect th
measures of similitude of the density produced. Of cour
such a shift produces a shift in the total energy, too, but d
not essentially affect the wave function obtained and thus
correlation energy. Another way to change the poten
without affecting the density is to add a rapidly oscillatin
perturbing potential. A related problem was pointed out
Schipperet al.:25 Gaussian basis sets yield oscillations in t
potential; they noticed, however, that average values
stable.

As we use limited wave function basis sets, we can
guarantee that our approximateFl is smaller than the exac
one, in spite of our search of a maximizingvps'vl @cf. Eqs.
~4!, ~5!, and ~16!# our approximateEl@v# might lay above
the exact one. Thus, forvl, our limited basis setF l@n,vl#
might get larger than the exactFl@n#. Searching for the
maximizing potential in the limited basis set leads to an ev
larger value. In other words, the approximateFl lies below
or above the exact value, according to the quality of
model potential or of the basis set used.

III. RESULTS

The correlation energiesEc
l for N52 ~He, Ne81,

nN52,z51) and for N54 ~Be, Ne61, and the two states3P
and1D of nN54,z51) are shown in Fig. 1. The curves for th
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two-electron systems are very close, as are those for Be
nN54,z51 . Strong correlation effects greatly lower the cur
of Ne61. We will tabulate here only some of the results, d
to the large amount of data. Further results are availa
either on request or on our web-site.26 Data forl50 and for
l51 are given in Tables II and III, respectively.

FIG. 1. Correlation energiesEc
l , Eq. ~13!, in mhartree~a!, and their deriva-

tives,Vc(l)5]Ec
l/]l, Eq. ~19!, in mhartree~b!, as a function of the inter-

action strengthl. The curves can be attributed to the systems accordin
the values ofEc

l51, which decreases in the following order:nN52,z51 , He,
Ne81; nN54,z51(3P), nN54,z51(1D), Be, Ne61.
nd

le

Here are some considerations about the accuracy of
results. For the Kohn–Sham system (l50) it turns out that
our values for He and Ne81 agree within 1 mhartree with the
more accurate values given by Umrigar and Gonze.27 For Be
the comparison is less favorable for the noninteracting
netic energy, and the average energy of the interaction w
the external potential obtained from our density, where
differences to more accurate quantum Monte Carlo resu28

are of a few mhartree. We find, however, a better agreem
~within 1 mhartree! when comparing the electron–electro
interaction, and its components. Forl51 we can compare
our correlation energies with those of Refs. 27 and
Again, for He and Ne81 we get a good agreement~within 1
mhartree!. For Be, however, the error is larger~3 mhartrees!.
We can also compare our CI energies with the ‘‘exact’’ on
of Refs. 29 and 30. For He and Ne81 our energies are 1
mhartree above the exact ones, while for Be and Ne61 our
values are again 3 mhartrees too high. It thus seems tha
significantly lower value for the density functional definitio
of the correlation energy~20.189 hartree! than the differ-
ence between the CI and Hartree–Fock values~20.177 har-
tree! will be also present in more accurate calculations. T
existence of such an increase has been noticed by Huang
Umrigar31 and also appears in the calculations done by n
uniform scaling transformations in the Be series.32

Instead of tabulating our results for intermediatel, we
give a least-squares fit with a rational approximant33 to the
correlation energiesEc

l for 0,l,1 ~cf. the ansatz made in
Ref. 34!:

Ec
l'

al2

11bl
. ~17!

The parametersa andb are given in Table IV. The maxima
errors of the fit are of 1026 hartree forN52, but are larger
by one to two orders of magnitude forN54. While this
accuracy seems remarkable, we would like to point out t
errors can propagate when scaling the density@Eq. ~11!# due
to the factorz2. For example, the error obtained in the fit
Ec

l51/10@nN,z51# will be multiplied by a factor of 100 when
computingEc@nN,z510#. In order to get an idea about th
effect of the fit, we can also use our ansatz and set ol
points to fit the correlation energy of the uniform electr
gas with density given byr s51, by using the following re-
lationship:

ec
l~r s!5l2ec~lr s!,

whereec is the correlation energy per particle. We thus kno
that for l→0 we should have al2 ln(l) dependence~in the
uniform electron gas!, which is not satisfied by our approxi
mation. For largel, the ansatz is capable of reproducing t
correct l dependence. This cannot be expected to oc
however, if we try to reproduceec

l(r s51), with l lying
between 0 and 1. In this case we obtaina520.1099, b
50.8433 and a maximal error of 431024. We can now use
this fit to obtain ec at different r s . We get: ec(r s50.1)
'20.101 hartree ~instead of 20.121! and ec(r s510)
'20.012 hartree~instead of20.019!.

The fit can be improved, however, by choosing a mo
flexible ansatz:

o
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TABLE II. Results atl50, in hartree.EKS5Ts1VKS : Kohn–Sham energy;Ts5^C̃l50uT̂uC̃l50&: noninter-

acting kinetic energy;VKS5^C̃l50uV̂l50uC̃l50&: interaction with Kohn–Sham potential;Fl505EKS

2*nṽl50: Lieb density functional for the noninteracting system;U51/2* ñl50ñl50/r 12 : Coulomb electron–

electron interactions,Vee5^C̃l51u1/r 12uC̃l51&; Ex5Vee2U: exchange energy.C̃l50 is our approximation to
the Kohn–Sham wave function~it yields ñl50'n).

System EKS Ts VKS Fl50 U Vee Ex

He 21.807 2.867 24.674 2.867 2.049 1.024 21.024
Ne81 287.816 93.863 2181.678 93.862 12.055 6.028 26.028
nN52, z51 21.000 1.000 22.000 1.000 1.250 0.625 20.625
Be 29.136 14.588 223.724 14.588 7.217 4.544 22.673
Ne61 295.562 110.154 2205.717 110.155 21.742 14.142 27.600
nN54, z51

3P 24.060 3.478 27.539 3.478 5.000 3.426 21.573
nN54, z51

1Da 24.060 3.478 27.539 3.478 5.000 3.481 21.519

aThe values given were obtained using theŜ2 eigenfunction.
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. ~18!

Applying this to the uniform electron gas withr s51, we get:
a520.2051,b50.2240,c52.1912, with a maximal error o
231025. With this new fit, the errors forr s50.1 andr s

510 are much smaller~'1 mhartree!, as we get forec

20.120, and20.020, respectively.
As the errors are larger for the fit of the correlation e

ergies in the Be series, we re-did the fits for these syst
using the more refined ansatz, Eq.~18!. For Be we geta
520.1284,b50.2779, andc50.1055 reducing the maxi
mal error by an order of magnitude to 231025, and for
Ne61 by a factor of 4 to 1024 (a520.3204,b50.3895,c
50.3052). This fit does not improve the asymptoticl→`
value, as can be seen from the comparison of oura/b values
with the ‘‘exact’’ liml→`Ec

l/l given by Seidl et al.35

~20.4754,22.7675, for He and Ne81, respectively!. As we
used for the fits values forl lying between 0 and 1, we
expect the limitl→0 to be better described. This can b
confirmed by comparing our values ofa for N52 ~cf. Table
IV ! with 20.0467, the ‘‘exact’’ value reported by Ivano
and Levy36,37 for the exponential density.

Applying the scaling relationship, Eq.~12!, to the fit,
@Eq. ~17!#, we see that for the densitynN,z , a will be inde-
pendent ofz, while b5b(z)5b(z51)/z. This means that
for largez, the correlation energy atl51 is essentially given
-
s

by the second-order expressionEc'al2. For decreasingz,
Ec is more and more dominated by the linear behavior giv
by the asymptotel→` describing the hypercorrelated cas
In the He series, we have the same qualitative behavior a
nN,z . The a coefficients are nearly the same for allN52
systems studied here~cf. Table IV!. The coefficientb is 5.6
times smaller for Ne81 than for He which is in accordanc
with estimates we can get from the behavior of the den
near the nucleus~the ratio of the nuclear charges is 5! and in
the tail region~the ratio of the square roots of the ionizatio
potentials is 7.038!. The behavior in the Be series is, how
ever, significantly different. We see that for Ne61 the coef-
ficient a is different from that of Be, and thatb is smaller for
the latter. The largeb coefficients indicate a significant dif
ference between the second-order and exact correlation
ergies, which is usually attributed to near degeneracy.

TheEc
l curve for thenN54,z51

3P state lies above that o
the1D state. As atl50 the two states are degenerate, and
first-order perturbation theory, the3P state is below the1D
state~Hund’s rule!, we expect that after a certainl, correla-
tion will start to dominate, and the energy of the1D state
will lie below that of the3P state. Using Eq.~11! this means
that for largez the ground state is3P, while for smallz it is
the 1D state. In the latter case, a change of the nature of
ground state occurs along the adiabatic coupling process

From the variational principle and the Hellmann
Feynman theorem one obtains that the first two derivative
TABLE III. Results atl51, in hartree.ECI5configuration interaction energy;T5^C̃l51uT̂uC̃l51&: interacting

kinetic energy;V5^C̃l51uV̂uC̃l51&: interacting external potential energy;Fl515ECI2*nṽl51: Lieb density

functional of the interacting system;EHF5Hartree–Fock energy;Vee5^C̃l50u1/r 12uC̃l50&; Ec5Fl51

2Fl502^C̃l50uVeeuC̃l50&; Fl50 and ^C̃l50uVeeuC̃l50& are given in Table II.

System ECI T V Fl51 EHF Vee Ec

He 22.903 2.903 26.753 3.850 22.862 0.946 20.042
Ne81 293.906 93.906 2193.751 99.845 293.861 5.939 20.045
nN52, z51 21.668 1.030 23.256 1.588 21.631 0.557 20.037
Be 214.664 14.659 233.703 19.039 214.573 4.380 20.093
Ne61 2110.288 110.286 2234.396 124.109 2110.111 13.822 20.189
nN54, z51

3P 27.869 3.540 214.696 6.827 27.794 3.287 20.077
nN54, z51

1Da 27.959 3.550 214.828 6.869 27.871 3.319 20.090

aThe values given were obtained using theŜ2 eigenfunction.
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Ec
l with respect tol are nonpositive@cf. Eq.~65! in Ref. 39#.

It is sometimes assumed that the third derivative is posi
~see, e.g., Ref. 7!. If the fit of Eq. ~17! were exact, this
property would hold in all the cases studied.

We analyzed the Harris–Jones adiabatic coupling@Eq.
~8!# in a previous paper.4 It turns out that theEc

l obtained
within this procedure is remarkably close~for the systems
studied! to those obtained by keeping the density fixed
0,l,1. This behavior might be understood by rememb
ing that the constant-density and Harris–JonesEc

l coincide at
l50 andl51. At these points, as the density obtained
Harris–Jones equals the exact one, and as4,39

]Ec
l

]l
5^CluV̂eeuCl&2^Cl50uV̂eeuCl50&,

~19!
]Ec,HJ

l

]l
5^CHJ

l uV̂eeuCHJ
l &2^Cl50uV̂eeuCl50&

1E ~nHJ
l 2n!~vl512vl50!,

the first derivatives are the same. Finally, we know that
Harris–Jones correlation energy can never be higher than
one obtained by keeping the density constant,
F l@n,vHJ

l #<Fl@n#, cf. Eq. ~3!.4 Using the type of fit given
in Eq. ~17! we obtain the parameters given in Table I
Taking into account thatvl51 is in general known and of the
progress made in the last several years in computingvl50,
Eq. ~8! seems to be a useful alternative to obtain approxim
tions tovl.

In order to see the effect of assuming thel dependence
in the local density~LDA ! and the generalized gradien
~GGA! approximations,40 we calculatedec

l in these approxi-
mations by using the following relationship:12,13

Ec
l5l2Ec@n1/l#.

We then fitted the results by using the rational approxima
Eq. ~17!. The errors are quite large when fitting the LD
values ~of the order of 0.001!; the GGA errors are of the
same order of magnitude as those of the accurateec

l . The
resulting coefficientsa andb are given in Table V. While the
GGAs are in general close to the coefficients of the accu
fit, the LDA values are always larger. The exception appe
in the Be series. Thea coefficient is too small in Ne61 by a
factor of 2.6, and theb coefficient decreases strongly wit

TABLE IV. Fitting parametersa andb, in atomic units, for the approximate
form, Eq. ~17!, for Ec

l , Eq. ~9!, for the fixed density and the Harris–Jone
adiabatic connection (0<l<1).

System

n fixed Harris–Jones

a b a b

He 20.0475 0.1414 20.0475 0.1405
Ne81 20.0460 0.0253 20.0460 0.0253
nN52, z51 20.0457 0.2270 20.0457 0.2275
Be 20.1231 0.3269 20.1235 0.3319
Ne61 20.2852 0.5108 20.2857 0.5138
nN54, z51

3P 20.0945 0.2205 20.0946 0.2218
nN54, z51

1D 20.1114 0.2335 20.1126 0.2483
e

r
-

e
he
s

-

t,

te
rs

respect to Be instead of increasing. Due to the accurac
the Harris–Jones approximation, we do not further pur
here the comparison of accurate with approximate den
correlation energy functionals, but refer for more details
our previous publication.4

Very often, in order to get approximations to dens
functionals, the integrand in the coupling constant formu
]Ec

l/]l, Eq. ~19!, is used. As it can be obtained by takin
the derivatives with respect tol in Eqs.~17! or ~18! and the
numerical accuracy ofEc

l seems better, we prefer the valu
obtained by fittingEc

l . For completeness, the values o
tained by fitting the parametersa andb so that

d

dl

al2

~11bl!
5

al~21bl!

~11bl!2 ~20!

follows our computed values of

Vc
l5^C̃luV̂eeuC̃l&2^C̃l50uV̂eeuC̃l50&, ~21!

which are given in Table VI.

IV. CONCLUSIONS

We presented changes in the correlation energy p
duced by multiplying the electron–electron interaction by
factor l ~between 0 and 1! at fixed density for
He,Ne81,Be,Ne61 as well as for the exponential densitie
nN,z , @Eq. ~2!, N52 or N54, z>1#. Although apparently
similar to atomic densities, thenN54,z correlation energy be-
haves differently from the Be-series systems, while
nN52,z resemble the He series. The data could be fitted r

TABLE V. Fitting parametersa andb, in atomic units, to the local density
~LDA ! and to the generalized gradient approximation~GGA! correlation
energies (0<l<1).

System

LDA GGA

a b a b

He 20.2100 0.8752 20.0461 0.1003
Ne81 20.3031 0.5007 20.0479 0.0000
nN52, z51 20.1898 1.0801 20.0506 0.2183
Be 20.4130 0.8411 20.1045 0.2143
Ne61 20.5326 0.5957 20.1111 0.0751
nN54, z51

1D 20.4012 0.9887 20.1376 0.2548

TABLE VI. Fitting parametersa andb, in atomic units, for the approximate
form, Eq.~20!, for the derivative of the correlation energy with respect tol,
Eq. ~19!, for the fixed density and the Harris–Jones adiabatic connec
(0<l<1).

System

n fixed Harris–Jones

a b a b

He 20.0475 0.1413 20.0476 0.1420
Ne81 20.0459 0.0232 20.0459 0.0236
nN52, z51 20.0456 0.2266 20.0457 0.2270
Be 20.1221 0.3154 20.1226 0.3203
Ne61 20.2813 0.4878 20.2824 0.4920
nN54, z51

3P 20.0947 0.2218 20.0950 0.2263
nN54, z51

1D 20.1115 0.2332 20.1120 0.2388
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sonably well to a simple rational approximant@Eq. ~17! and
Table IV#. One can notice the agreement with data obtain
when making the Harris–Jones adiabatic connection@cf. Eq.
~8!# is very good.

It is our hope that our results can be used:

~1! as benchmarks for studying the behavior of density fu
tionals,

~2! for obtaining better density functionals, as we now ha
provided numerically thel dependency of the correla
tion energy~the other parts of the energy have a triviall
dependency!;

~3! for alternative approximations to the exact correlati
energy~in a way similar to the case of the uniform ele
tron gas! by using the results for the exponential dens
for different N andz.

Finally we would like to point out that the procedu
used in this paper, based upon the Lieb definition of
universal density functional, although computationally d
manding, can be easily used by anyone possessing aab
initio code treating pseudopotentials and calculating corr
tion energies.
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APPENDIX: ASYMPTOTIC PROPERTIES USED FOR
CONSTRUCTING THE POTENTIAL Vl

As we try to obtainvl via Eq. ~4!, without knowing its
form, it is helpful to have some information about its pro
erties, e.g., its behavior at larger. Asymptotically, for a Cou-
lomb external potential2Z/r , the Kohn–Sham potential be
haves like41

vl50→
2Z1N21

r
~r→`!. ~A1!

We can repeat the arguments used to derive this equatio
the exponential densitynN,z . Asymptotically, the radial par
of the highest occupied Kohn–Sham orbital will be prop
tional to AnN,z , i.e., to e2zr . Introducing it into the radial
Kohn–Sham equation:

H 2
1

2 S ]2

]r 2 1
2

r

]

]r
2

l ~ l 11!

r 2 D1vnN,z

l50~r !2e i J w i50,

~A2!

one gets
d

-

e

e
-

a-

ed
.

,
d

e

for

-

2
z2

2
1

z

r
1

l ~ l 11!

2r 2 1vnN,z

l50~r !2e i50, ~A3!

which implies that, up to a constant, for larger:

vnN,z

l50~r !→2
z

r
~r→`!. ~A4!

In order to determine the behavior ofvl51(r ) for an expo-
nential densitynN,z at larger, one can use the relationshi
betweenvl51(r ) andvnN,z

l50(r ),

vnN,z

l50~r !5vnN,z

l51~r !1vh~r !1vxc~r !,

where vh is the Hartree potential, andvxc the exchange–
correlation potential. It is known that~see, e.g., Ref. 41!

vh~r !→
N

r
~r→`!,

vxc~r !→2
1

r
~r→`!.

Therefore:

vnN,z

l51~r !→2
z1N21

r
~r→`!.

We can extend this approach to obtain the asymptotic beh
ior for anyl. As the exchange–correlation potential is dom
nated by its exchange part, and the latter changes as line
with l, as does the Hartree potential, we obtain:

vnN,z

l ~r !→2
z

r
2l

N21

r
~r→`!. ~A5!

Let us now consider the caser→0. For atoms, we know tha
the Hartree and the exchange–correlation potentials will
to a constant,42 as r→0. Thus, in this limit, the only diver-

FIG. 2. The potentials~multiplied by r! for the exponential densitiesnN;z51

(N52: the dashed curve,N54: the three solid curves!. The horizontal line
at rvl50521, corresponding to the Kohn–Sham potential forN52, is not
shown. ForN54, the curvervl50 is above the two nearly superimpose
curves ofrvl51 (1D and3P).
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gence invl50 is coming from the external potential. For th
exponential density, both fornN52,z andnN54,z only the 1s
orbital contributes to the density at the origin, and thusf1s is
proportional to exp(2zr). From Eq.~A2! one gets

vl50~r !→2
a

r
~r→0! ~A6!

up to an arbitrary constant;a can be either equal toZ ~atoms!
or z ~exponential density!.

As the potentials for the exponential densities are n
we present them, after multiplication withr, for l50 and
l51 in Fig. 2.
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