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Switching on the electron—electron interaction connects the Kohn—Sham to the physical system.
The correlation energy, the only unknown energy component in this process, is determined at fixed
density, using a technique based on the Lieb Legendre transform definition of the universal density
functional. Results are shown for this adiabatic coupling process for e BeNE™ as well as for

the exponential densitiesy (r)=N(¢3/7)e %" (N=2 or 4; {=1; for N=4 degeneracy is
present andD and>P are analyzed The data are fitted to a rational approximant and appear to be

in good agreement with those given by the less computationally demanding Harris—Jones adiabatic
connection. ©1999 American Institute of Physid$$0021-960609)30806-(

I. INTRODUCTION ponential densities which resemble the atomic densitigs.
. , . generates a family of densities characterized by the param-
In order to get more |'n5|ght into the nature of denS'FyetersN and ¢. For a givenN, we have just one parameter
functionals, the construction of the Kohn—Sham potentialyenerating a series of density functional values, as we have
has received much attention. Little is known about the cony,. ihe uniform electron gaBwhere the single parameter is
ne_ction of the Kohn—Shqm system With _the physicgl systernrsz(3/47m)1/31 The explicit dependence dwis also impor-
This can be done by using the adiabatic connection procgzn; Thys, foN=1 the correlation energy is trivially equal
dure of Harris and Jonégalong which the density is only to zero
kept the same at the full interaction strength and for the ¢4 rginate scaling is known to be closely related to the
honinteracting syste}ngor by keeping the density constant ,giahatic connection(see, e.g., Ref. 5, and references
along the whole path Although the first way is certainly arein e will use the latter in order to generate the first.
simpler to pe;rform, the latter is closely related to the philoso- Besides the purely academic interest in finding the con-
phy of densrgy func'uoénals. _nection between the real and the Kohn—Sham system, the
Ina Previous pap€iwe pr_esented results for the Harmis— o giapatic connection has been used in designing approxima-
Jones adiabatic connection in the He and Be series. Here WR) < 15 the exact density functionalsee, e.g., Ref. 6 on7
will show that these results differ little from those obtained |, ase papers the dependence of the,ener’gylms some
by keeping the density constant as long as the interactiofsqmed form, satisfying certain physical constraints, and
strengthi lies between 0 and 1. Itis, however, of interest 10y 0145 good correlation energies. It is thus of interest to ac-
consider the more strongly correlated systems, too, where t%rately know the real dependence)rHoodet al® made a
electron—electron interaction is enhancad>(1) for which  ¢,an1um Monte Carlo investigation for Si, where the poten-
we will give results in a forthcoming paper. tial keeping the density constant has been taken from the
We will QISO c0n5|der the systgm d_escnbed by an €XPOrocal density approximation. After completion of our work
nential density, which by integration yields the number of o |eamed that D. Joubert has also performed an adiabatic
electronsN: coupling calculation for the He seriés.

N
nN(r)=;e’2’- D 1. METHOD

Please notice, that if the density would be chosen to yield by Pefinitions and properties
integration one, alhy would be transformed into the hydro- Lieb'® defined the universal Legendre transform func-

gen density: The only difference produced by going fromtional F[n] of the electron density as
one ny to another is due to the change in the number of

electrons and not to a change of the shape of the density. F[n]=ma>< E[v]_J n(r)v(r)d3r), 3)
Other densities v
2 o whereE[v] is the ground state energy for the systemNof
nN,g(r):N;e 2 = [n interacting electrons in the external potential

We are interested in systems having fixed ground state

are3 related _to ny by the _scaling relatiOD: nN,g_(r) . densityn at varying interaction strengtk, with Hamiltonian
={°ny(Lr). Since the correlation energy functional is uni-

versal, it is important that it also treats correctly simple ex- A =T+ A\ VetV
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whereT is the operator for the kinetic energy,that for the  sitiesny , for 0O<A<{. (For large{, our values can yield
electron—electron interaction, and* that for the external data for larger, but for <1, E¢~'=E. will not be ob-
local potential. Please notice that fer=1 we describe the tained)

physical interaction, foh =0 the Kohn—Sham noninteract-
ing system and that for othar V* is not known beforehand.
To obtain the universal density functional at a given
FA[n], we have to replac&[v] in Eq. (3) by that for the In practicev” is approximated bg*, ¥* by ¥* yield-
system in which the electron—electron interaction is modifieqng A" and thusE[v*] by E[3]. As we have noticed that

B. Technical details

by \: computingE} from Egs.(6) and(10)
FMNn]=max7n;v], 4 s -
v Eﬁz(E*['ﬁ”]—J' ni*)— EFO[%FO]—J n’ﬁ”zo)
where TA=0|\y |G A=0
MWL Ved W) (13
TNnv]= Ex[v]—f nv (5) is quite stable with respect to modifications of the potential,

T A we will present the correlation energy computed according to
andEM v ]=ming(W|T+\Veet V|¥) with V=3N jo(r;). If  that formula. Other possibilities to calculaig are as fol-
a maximizing potentiab® exists, then according to Hohen- lows:
berg and Kohrt! it is the one which has as the ground state (1) From Eq.(10a

density: ~ . in A ~ A a
d B = (WMTHAVed UM — (WA O T+ AV P70,
F)‘[n]IEA[UA]—J' no*, (6) (2) From Eq.(9)
F [N = (WM T+ AV ), (7) By = (TMT+VA+ AV T)
where ¥ is the wave function minimizingH*) (i.e., (T — (TN T+ VA4 AV T =0y,

+AVe9) and yielding the densityr. For example, for _ SN -
=0, v~ will be the Kohn—Sham potential; for=1, v 1 The difference betweerk; , Ec, and Ec, disappears, of

will be that corresponding to the physical system having thesourse, in an exact calculati¢when®*=n), as can be eas-
ground state densityn. The Harris—Jones adiabatic ily seen from
connectioh corresponds to approximating

Egzﬁga—f'ﬁk(ﬁ%—n)—f'ﬁﬁo(ﬁﬁo—n)

oM~ (1=N)o MO0+ nor L (8)
We can define the correlation energy for interaction = ~n ~A=0 ~\=0
strength\ by =Ee,= | @ =00 (n=AT. (14
EA = (WM AN W) — (WA=0| M =0y 9) E[v] is obtained by using the programmoLPrO.* For
_ o . He,Né* and Nn=2¢=1 full configuration interaction(ClI)
or equivalently, when the density is kept fixed, by was used. For Be and Rie single and double excitations

N EAf T EA=0F T N A=0 with respect to a wave function obtained from a multicon-
Ec=Fn]=F* T n] =AW Ved ¥275) (10 figuration self-consistent field calculation in the space of the
— (WM T4 AV d UMY — (WA= T4 AV A =0). first two s and _the first set qf)_orbitals were considered. The
(109 caseny-a,—1 IS more complicated. It turns out that the or-
) ] dering of the Kohn—Sham eigenstates is similar to that of the
ForA=1, Egs.(9) and (104 yield the usual density func- particle enclosed in a sphere of zero poterifiak(1s)
tional definition of the correlation energy. _ <e(2p)<e(2s) (see also Ref. 16 This corresponds to an
We are also interested in obtaining the correlation enerppen-shell ground state. The spherical densjfy 4,—; can
gies of a family of exponential densitieg, ;, EqQ.(2). These  pe optained via an ensemldld. Ref. 17. [As we use Eq(4)
can be related to the correlation energies of the systems wifje ¢o not have any problem treating ensemble densities to
interaction strength = 1/ yielding the densityy of Eq. (1) gptain the universal density functioriiTwo electrons in the

H 2,13
by usind p shell generate the statéB, D, and'S. As the program
Edlny, 1= ngg/g[nN]_ (12) MOLPRO does not4exp|icitly treat spherical symmetry, a slight
' _ ~difference (<10 " hartrees) betweeD states may appear in
An even more general form, also obtained from the previoushe Cl calculations with single and double excitations from
scaling relationship is the reference configurations in spite of the fact that the or-
bitals used are respecting the spherical symmetry.
Eelnw, =B “Iny]. (12 pecting ne °p ymmerry

Uncontracted even tempered Gaussian basis sets, fup to
Thus, the results obtained for, ,—;=ny for O<sA<1 can functions, were used in the calculations. For each angular
be used to get the correlation energies for systems with demuantum numbeiM exponentsy, were produced by the rule



2830 J. Chem. Phys., Vol. 110, No. 6, 8 February 1999 F. Colonna and A. Savin

TABLE |. Even tempered Gaussian basis set exponents obtained frotd3gM is the number of Gaussians,
a, the center, and the ratio of two consecutive exponents.

S p d f

Functions

System M ac S ac S M ac 6 M a. S
He 21 2.1 40.0 7 2.1 3.0 5 2.1 3.0 3 21 3.0
Ne?* 21 21 2030.0 7 2.1 100.0 5 2.1 100.0 3 2.1 100.0
NN=2,¢=1 21 21 10.0 7 21 0.75 5 2.1 0.75 3 2.1 0.75
Be 21 2.1 4.0 9 21 1.0 5 2.1 1.0 3 2.1 1.0
Ne®* 21 21 130.0 9 21 15.0 5 2.1 15.0 3 21 15.0
NN=4, ¢=1 21 21 10.0 14 1.8 0.35 5 2.3 1.025 3 2.4 1.025

an=a 2N M-V2  n=1 M. (15) Pzt

The central exponenta, and the ratioé can be found in
Table I.
We will consider here a class of potentialgs easily

generated by existing computer codes, where in order to tre
pseudopotentials replacing the atomic cores, the following

form is used:

vpd 1) =2, Cirpiexp(—yir2)+$. (16)
1
r is the distance from the nucleys, are integers larger than
—2, v, is positive,C is given by the asymptotic conditions
[cf. Egs.(Al) and(A4) in the Appendiy; the parameter€; ,
Pi, v are obtained by maximizing™[n,v,d [cf. Eq. (5)]
with respect tov,s: For a given number of terms, we try
several powerp;, and maximize by using th&MPLEX pro-
cedure from Numerical Recipé$We repeat this procedure
after modifying the values of thg, and the number of terms.

A4=(a— Z ci>2

[with a=¢, cf. Eq.(2), or Z, the nuclear chardes obtained
for v*=° from the asymptotic condition at— 0 [cf. Eq.(A6)
the Appendi}.

As we are interested in calculatiri} , the stationarity
property of F[n] is convenient. The errors in computing
ZMn,v] will be of second order irsv, while A; will be of
first order. This justifies our preference for calculating the
correlation energy according to E(L3). If we want, how-
ever, to meet all the criteria, the minimization is slowly con-
verging: sometimes more than 5000 steps are necessary.

Although we are interested in obtaining only the corre-
lation energy, we would like to point out some of the pos-
sible difficulties encountered if one would like to obtaih,
too. In fact, having numerically stable values for the corre-
lation energies does not mean that we have generated unam-
biguously the corresponding®, too. For example, it has

(Developing the potential in terms of basis functions is com-een showf?*that a shift by a constant over the physically
mon also for obtaining Kohn—Sham potentials, see, e.gsignificant region of space will only negligibly affect the
Refs. 19 and 20, or in the practice of density functional calmeasures of similitude of the density produced. Of course,

culations, see, e.g., Ref. 21.
Although Eq.(4) is the only criterion used to obtai',

such a shift produces a shift in the total energy, too, but does
not essentially affect the wave function obtained and thus the

during our optimization process, we also use as checks thgorrelation energy. Another way to change the potential
following quantities which should be zero for the exact po-wjthout affecting the density is to add a rapidly oscillating

tentials:
At —n
A].: J %dsr

related to the difference between the various definitions
E} [Eq. (19)];
1f (FiM(r) —n(rp))(HM(ra) —n(ry))
AZZ—
2 [ro—r4

the criterion used, e.g., by Zhao and PdEq. (43) of Ref.
22] for obtaining Kohn-Sham potentials;

3 43
d°r,d°r,

A3=E*[5*]+<\Iﬂ|’|’|\w>—J"ﬁ”(r)?‘(r)d%

—f n(r)r-Vor(r))d3

derived from the virial relatiorisee, for instance, Eq9) of
Ref. 17;

perturbing potential. A related problem was pointed out by
Schipperet al:?® Gaussian basis sets yield oscillations in the
potential; they noticed, however, that average values are
stable.

of As we use limited wave function basis sets, we cannot
guarantee that our approximafe is smaller than the exact
one, in spite of our search of a maximiziugs~vx [cf. Egs.
(4), (5), and(16)] our approximateE*[v] might lay above
the exact one. Thus, far*, our limited basis se#[n,v*]
might get larger than the exa&t*[n]. Searching for the
maximizing potential in the limited basis set leads to an even
larger value. In other words, the approxim#ik lies below
or above the exact value, according to the quality of the
model potential or of the basis set used.

lll. RESULTS

The correlation energie€} for N=2 (He, Né¥,
NN=2.-1) and forN=4 (Be, Né™, and the two state3pP
and!D of Nn-4c-1) @re shown in Fig. 1. The curves for the
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0

Here are some considerations about the accuracy of our
results. For the Kohn—Sham systeim={0) it turns out that
our values for He and Nié agree within 1 mhartree with the
more accurate values given by Umrigar and Gof{Zeor Be
the comparison is less favorable for the noninteracting ki-
netic energy, and the average energy of the interaction with
the external potential obtained from our density, where the
differences to more accurate quantum Monte Carlo rédults
are of a few mhartree. We find, however, a better agreement
(within 1 mhartre¢ when comparing the electron—electron
interaction, and its components. Por=1 we can compare
our correlation energies with those of Refs. 27 and 28.
Again, for He and N&" we get a good agreemetwithin 1
mhartreg. For Be, however, the error is larged mhartrees
We can also compare our Cl energies with the “exact” ones
of Refs. 29 and 30. For He and Rfeour energies are 1
mhartree above the exact ones, while for Be and*Naur
values are again 3 mhartrees too high. It thus seems that the
significantly lower value for the density functional definition
of the correlation energy—0.189 hartregthan the differ-

ence between the Cl and Hartree—Fock value8.177 har-

%5 02 0.4 0.6 08 1.0 tree will be also present in more accurate calculations. The
(a) A existence of such an increase has been noticed by Huang and
Umrigar! and also appears in the calculations done by non-
uniform scaling transformations in the Be seriés.

Instead of tabulating our results for intermediatewe
give a least-squares fit with a rational approxiniam the
correlation energieEé for 0<A <1 (cf. the ansatz made in
Ref. 34:

g} an® 1
C 14+b\C (17

g -100

-150

-100 |

The parametera andb are given in Table IV. The maximal
errors of the fit are of 10° hartree forN=2, but are larger
by one to two orders of magnitude fod=4. While this
accuracy seems remarkable, we would like to point out that
errors can propagate when scaling the derj$ity. (11)] due

to the factor/?. For example, the error obtained in the fit of
EX~"%ny ;1] will be multiplied by a factor of 100 when
computingEc[ny ;~10]l. In order to get an idea about the
effect of the fit, we can also use our ansatz and sex of
points to fit the correlation energy of the uniform electron
gas with density given bys=1, by using the following re-
lationship:

—-200 |

Vc

=300

-400

) 0.0 0.2 0.4 A 0.6 0.8 1.0 eé(rs) — )\260()\rs)!

FIG. 1. Correlation energies) , Eq.(13), in mhartrega), and their deriva- wheree, is the correlation energg per particle. We thus know

tives, V(\) =JEX/d\, Eq.(19), in mhartreg(b), as a function of the inter- that forA—0 we should have a“In(\) dependencén the

action strengtt. The curves can be attributed to the systems according toUniform electron gas which is not satisfied by our approxi-

the values oE} =1, which decreases in the following ordek;_,,_;, He, mation. For large\, the ansatz is capable of reproducing the

Ne®™; ny_qz-1(°P), Nn—az-1('D), Be, NE™. correct A dependence. This cannot be expected to occur,
however, if we try to reproducel(rs=1), with \ lying
between 0 and 1. In this case we obtair —0.1099, b

two-electron systems are very close, as are those for Be and0.8433 and a maximal error o410 4. We can now use

Nn-4,-1. Strong correlation effects greatly lower the curvethis fit to obtain e, at differentrs. We get: e(r;=0.1)

of Ne®*. We will tabulate here only some of the results, due~—0.101 hartree (instead of —0.121 and e, (r;=10)

to the large amount of data. Further results are available- —0.012 hartredinstead of—0.019.

either on request or on our web-stfeData forh =0 and for The fit can be improved, however, by choosing a more

A=1 are given in Tables Il and Ill, respectively. flexible ansatz:
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TABLE II. Results at\ =0, in hartree Es=Ts+ Vs: Kohn—Sham energyt = (¥~ T|#*=°): noninter-
acting kinetic energy;Vys=(¥*=|V*=%F*=%: interaction with Kohn—Sham potentialE*=°=Eyg
— /=% Lieb density functional for the noninteracting systedw:= 1/2fTi*=°i*=%r,: Coulomb electron—
electron interactions)\/ee=(qf*:1|llr 12\\1’”:5; E,= Ve U: exchange energy#*~° is our approximation to
the Kohn—Sham wave functigiit yields i*=%~n).

System Exs Ts Vks Fr=0 u Vee E,
He —1.807 2.867 —4.674 2.867 2.049 1.024 -1.024
Neb* —-87.816 93.863 —181.678 93.862  12.055 6.028 —6.028
Nn=2, (=1 —1.000 1.000 —2.000 1.000 1.250 0.625 —0.625
Be —-9.136 14.588  —23.724 14.588 7.217 4544 —2.673
Neb* —-95562  110.154 —205.717  110.155  21.742  14.142 -7.600
Ny=g, =1 °P —4.060 3.478 —7.539 3.478 5.000 3.426 -1.573
NN=g, =1 'D? —4.060 3.478 —7.539 3.478 5.000 3481 -1.519

2The values given were obtained using &feeigenfunction.

an2 by the second-order expressi@a~ar?. For decreasing,
E§'~ —_— (18 E. is more and more dominated by the linear behavior given
1+cyN+bx by the asymptota — o describing the hypercorrelated case.

Applying this to the uniform electron gas with=1, we get:  In the He series, we have the same qualitative behavior as for
a=—0.2051b=0.2240,c=2.1912, with a maximal error of N, . The a coefficients are nearly the same for al=2
2X 10 °. With this new fit, the errors for¢=0.1 andrg systems studied hefef. Table 1V). The coefficientb is 5.6
=10 are much smallet~1 mhartre, as we get fore, times smaller for N& than for He which is in accordance
—0.120, and—-0.020, respectively. with estimates we can get from the behavior of the density

As the errors are larger for the fit of the correlation en-near the nucleugthe ratio of the nuclear charges isdnd in
ergies in the Be series, we re-did the fits for these systemibe tail region(the ratio of the square roots of the ionization
using the more refined ansatz, H48). For Be we geta potentials is 7.%). The behavior in the Be series is, how-
=-0.1284,b=0.2779, andc=0.1055 reducing the maxi- ever, significantly different. We see that for Nethe coef-
mal error by an order of magnitude tox2.0"°, and for ficientais different from that of Be, and thatis smaller for
Ne®* by a factor of 4 to 10* (a=—0.3204,b=0.3895,c  the latter. The largé coefficients indicate a significant dif-
=0.3052). This fit does not improve the asymptatic:c  ference between the second-order and exact correlation en-
value, as can be seen from the comparison ofadbrvalues  ergies, which is usually attributed to near degeneracy.
with the “exact” lim,_.E)/\ given by Seidl et al*® TheE} curve for theny_, -, 3P state lies above that of
(—0.4754,—2.7675, for He and N¥&, respectively. As we  thelD state. As ah =0 the two states are degenerate, and at
used for the fits values fok lying between 0 and 1, we first-order perturbation theory, th# state is below théD
expect the limith\—0 to be better described. This can be state(Hund'’s rule, we expect that after a certal\y correla-
confirmed by comparing our values affor N=2 (cf. Table tion will start to dominate, and the energy of th® state
IV) with —0.0467, the “exact” value reported by Ivanov will lie below that of the®P state. Using Eq(11) this means
and Levy®3" for the exponential density. that for large{ the ground state i3P, while for small{ it is

Applying the scaling relationship, Eq12), to the fit, the'D state. In the latter case, a change of the nature of the
[Eg. (17)], we see that for the densityy ., a will be inde-  ground state occurs along the adiabatic coupling process.
pendent ofZ, while b=b({)=b({=1)/{. This means that From the variational principle and the Hellmann—
for large, the correlation energy at=1 is essentially given Feynman theorem one obtains that the first two derivatives of

TABLE Ill. Results at\ =1, in hartreeE,= configuration interaction energy:= (¥*=1|T|¥*=1): interacting
kinetic energyV=(¥*=1|V|T*=1): interacting external potential energy* ~*=E,— /n5*~L: Lieb density
functional of the interacting systemE,=Hartree—Fock energyVee=(¥*=%1/r ,|¥*=0); E,=F*~?
—FA0—(TA=0)y JTN=0): FA=0 and (F1=0) v JT*=0) are given in Table II.

System Eq T \Y Fr=t Eur Vee E.
He —2.903 2.903 —6.753 3.850 —2.862 0.946 —0.042
Ne* —93.906 93.906 —193.751 99.845 —93.861 5.939 —0.045
NN=2, =1 —1.668 1.030 —3.256 1.588 —1.631 0.557 —0.037
Be —14.664 14.659  —33.703 19.039 —14.573 4380 —0.093
Neb* —110.288  110.286 —234.396  124.109 -—110.111 13.822 -0.189
Nn=g, ;=1 °P —7.869 3540 —14.696 6.827 —7.794 3.287 -0.077
Nnzg, ;=1 'D? —7.959 3550 —14.828 6.869 -7.871 3.319 —0.090

2The values given were obtained using Sfeeigenfunction.
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TABLE IV. Fitting parameters andb, in atomic units, for the approximate TABLE V. Fitting parameters andb, in atomic units, to the local density
form, Eq.(17), for E}, Eq.(9), for the fixed density and the Harris—Jones (LDA) and to the generalized gradient approximati@GA) correlation

adiabatic connection @A=<1). energies (&A<1).
n fixed Harris—Jones LDA GGA
System a b a b System a b a b

He —0.0475 0.1414 —0.0475 0.1405 He —0.2100 0.8752 —0.0461 0.1003
NeP* —0.0460 0.0253  —0.0460 0.0253 Neb* —0.3031 0.5007  —0.0479 0.0000
NN=2 ¢=1 —0.0457 0.2270 —0.0457 0.2275 NN=2,¢=1 —0.1898 1.0801 —0.0506 0.2183
Be -0.1231 0.3269 —0.1235 0.3319 Be —0.4130 0.8411 —0.1045 0.2143
Ne5* —0.2852 0.5108  —0.2857 0.5138 Neb* —0.5326 0.5957  —-0.1111 0.0751
NN=4, ¢=1 3p —0.0945 0.2205 —0.0946 0.2218 Nn=4,7=1 D —0.4012 0.9887 —-0.1376 0.2548
NN=4,7=1 D -0.1114 0.2335 —0.1126 0.2483

respect to Be instead of increasing. Due to the accuracy of
E& with respect to\ are nonpositivéct. Eq.(65) in Ref. 39.  the Harris—Jones approximation, we do not further pursue
It is sometimes assumed that the third derivative is positivéere the comparison of accurate with approximate density
(see, e.g., Ref.)7 If the fit of Eq. (17) were exact, this correlation energy functionals, but refer for more details to
property would hold in all the cases studied. our previous publicatio.

We analyzed the Harris—Jones adiabatic coupligg. Very often, in order to get approximations to density
(8)] in a previous papet.it turns out that theE} obtained  functionals, the integrand in the coupling constant formula,
within this procedure is remarkably clogfor the systems &Eé/a)\, Eq. (19), is used. As it can be obtained by taking
studied to those obtained by keeping the density fixed forthe derivatives with respect toin Egs.(17) or (18) and the
0<A<1. This behavior might be understood by remembernumerical accuracy dt} seems better, we prefer the values

ing that the constant-density and Harris—JoBgsoincide at  obtained by fitingE}. For completeness, the values ob-
A=0 and\=1. At these points, as the density obtained intained by fitting the parametessandb so that

Harris—Jones equals the exact one, arfd%s X
d ax B an(2+bn)

A dn B 20
JE; :<‘I’}‘|\A/e4‘1”‘>_<‘I’)\:O|\,\/e4‘1’)‘:0>, d\ (1+b\) (1+ b)\)z (20)
. (19) follows our computed values of
IE} A ) i comp huesof

= (U Ved Wiy — (O Ve 1220 Vo= (WM Ved T) (T 70| Ved T170), (21)

which are given in Table VI.

+f (N =1 =070,
IV. CONCLUSIONS
the first derivatives are the same. Finally, we know that the

Harris—Jones correlation energy can never be higher than the W& Presented changes in the correlation energy pro-
one obtained by keeping the density constant, a uced by multiplying the electron—electron interaction by a

.?“[n,vﬁu]$F"[n], cf. Eq.(3).4 Using the type of it given factor N (between 0 and )1 at fixed density for
in Eq. (17) we obtain the parameters given in Table IV. He,Né",Be,Né" as well as for the exponential densities
Taking into account that*~" is in general known and of the ™.¢» [EQ. (2), N=2 or N=4, {=1]. Although apparently

progress made in the last several years in computiid, similar to atomic densities, the,-,, correlation energy be-

Eq. (8) seems to be a useful alternative to obtain approximal@ves differently from the Be-series systems, while the

tions tou*. Nn=2, resemble the He series. The data could be fitted rea-

In order to see the effect of assuming thelependence

in the local density(LDA) and the generalized gradient TABLE VI. Fitting parameters andb, in atomic units, for the approximate

. . 0 )\ . .
(GGA) approximations? we calculatece; in these approxi-  form, Eq.(20), for the derivative of the correlation energy with respect to
mations by using the following relationshtp® Eq. (19), for the fixed density and the Harris—Jones adiabatic connection

(0=\=<1).
Ec=NEdnupl.

. . . . n fixed Harris—Jones
We then fitted the results by using the rational approximant,
Eqg. (17). The errors are quite large when fitting the LDA System a b a b
values (of the order of 0.00% the GGA errors are of the ¢ 00475 01413 —00476  0.1420
same order of magnitude as those of the accuehteThe Ne* —0.0459 0.0232  —0.0459 0.0236
resulting coefficients andb are given in Table V. While the  nn-2¢-1 —0.0456 0.2266  —0.0457 0.2270

GGAs are in general close to the coefficients of the accurate B¢ —01221 03154  -01226  0.3203
o+ ~0.2813 04878 —0.2824  0.4920

flt, the LDA vglues are alwgys Iar'ger. The exgeptlon appears a1 P 00947 02218  —0.0950 0.2263
in the Be series. Tha coefficient is too small in N& by a Mg o1 1D 01115 02332  -01120 02388
factor of 2.6, and thd coefficient decreases strongly with
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sonably well to a simple rational approximdifiq. (17) and 0
Table IV]. One can notice the agreement with data obtained
when making the Harris—Jones adiabatic conneditbnEq.
(8)] is very good.

It is our hope that our results can be used:

(1) as benchmarks for studying the behavior of density func-
tionals,

(2) for obtaining better density functionals, as we now have
provided numerically the. dependency of the correla-
tion energy(the other parts of the energy have a triwial
dependency

(3) for alternative approximations to the exact correlation
energy(in a way similar to the case of the uniform elec-
tron gas by using the results for the exponential density
for differentN and ¢.

rvV (a.u.)

0 2 4 6 8 10

Finally we would like to point out that the procedure @)

used in this paper, based upon the Lieb definition of the
universal density functional, although computationally de-FIG. 2. The potentialémultiplied byr) for the exponential densitiesy,,_,
mandmg, can be eas||y used by anyone possessmgban (N= 2 the dashed curvéy=4: the three solid curvgésThe horizontal line

initio code treating pseudopotentials and calculating correlgdt"v"°=— 1. corresponding to the Kohn—Sham potentialfor 2, is ot
tion energles shown. ForN=4, the curverv*=° is above the two nearly superimposed

curves ofro*=! (*D and®P).
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where vy, is the Hartree potential, and,. the exchange—

correlation potential. It is known thdsee, e.g., Ref. 41
APPENDIX: ASYMPTOTIC PROPERTIES USED FOR

CONSTRUCTING THE POTENTIAL V*
Uh(r)HT (r_)oc)!

As we try to obtainv™ via Eq. (4), without knowing its

form, it is helpful to have some information about its prop- 1
erties, e.g., its behavior at largeAsymptotically, for a Cou- Uy(F)— — T (r—).
lomb external potential-Z/r, the Kohn—Sham potential be-
haves liké! Therefore:
—Z+N-1 {+N-1
UAZO*)—r (r—o0). (A1) UnNé(r)_’_f (r—o).

We can repeat the arguments used to derive this equation fd¥€ can extend this approach to obtain the asymptotic behav-
the exponential densityy ;. Asymptotically, the radial part ior for any\. As the exchange—correlation potential is domi-
of the highest occupied Kohn—Sham orbital will be propor-nated by its exchange part, and the latter changes as linearly
tional to \ny , i.e., toe”¢'. Introducing it into the radial With A, as does the Hartree potential, we obtain:

Kohn—Sham equation:
1(d* 249 I(1+1) _
(—5 - U (D= €1 ¢i=0,
Nt Let us now consider the case-0. For atoms, we know that
(A2) the Hartree and the exchange—correlation potentials will go
one gets to a constant? asr—0. Thus, in this limit, the only diver-

4
vp (D= =T A= (=), (A5)

arz roor r?
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