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Abstract: The electronic charge density and the expectation of any monoelectronic operator can be reconstructed by a
density-weighted integral of the exchange-correlation hole. This property can be used to test and improve approximate
holes that are not spherically averaged. As an example, we test the Becke–Roussel exhange-hole model in its nonspherical
formulation on small atoms, finding that it accurately reproduces the density in the core region, while missing some of the
features of the valence and core-valence regions. The same test on the local-density approximation shows poor results, as
expected.
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Résumé : On peut reconstruire la densité de charge électronique et la valeur moyenne des opérateurs monoélectroniques
sous forme d’une intégrale du trou d’échange-corrélation pondérée par la densité. Cette propriété peut être utilisée pour
tester et améliorer les trous approximatifs qui ne sont pas moyennés selon les directions dans l’espace. Comme exemple,
opérant sur de petits atomes, on peut tester le modèle d’échange de trou de Becke–Roussel dans sa formulation non sphé-
rique et on trouve qu’elle reproduit d’une façon precise la densité dans la région de coeur même si l’accord est moins bon
dans les régions de valence et de coeur-valence. Tel que prévu, le même test effectué en utilisant l’approximation de den-
sité locale produit des résultats assez médiocres.

Mots-clés : théorie de la structure électronique, théorie de la fonctionnelle de la densité, corrélations électroniques, fonc-
tionnelles d’échange-corrélation, fonctions de corrélation de paires.

Introduction

Density functional theory (DFT)1,2 in its Kohn–Sham
(KS)3 formulation is nowadays a widely used method in
quantum chemistry and solid-state physics, thanks to its
unique combination of low computational cost and reason-
able accuracy.4 In the Kohn–Sham formalism, the total en-
ergy of a many-electron system in the external electron-
nuclei potential, bV ne ¼

X
i
vneðriÞ, is rewritten as a func-

tional of the one-electron density, r(r),

½1� E½r� ¼ Ts½r� þ U½r� þ Exc½r� þ
Z

dr vneðrÞ rðrÞ

In eq. [1], Ts[r] is the kinetic energy of a non-interacting
system of fermions (usually called the KS system) having
the same one-electron density, r, of the physical, interact-
ing system. The Hartree energy, U[r], is the classical repul-

sion energy, U½r� ¼ 1
2

Z
dr

Z
dr0rðrÞrðr0Þjr� r0j�1, and the

exchange-correlation functional, Exc[r], must be approxi-
mated.

Despite its success, to which can be ascribed the descrip-
tion of a variety of systems, from bulk materials to proteins,
KS DFT is still plagued by several unsolved problems. For
example, approximate KS DFT has well known problems in
handling near-degeneracy effects (rearrangement of elec-
trons within partially filled shells) and in the description of
long-range dispersion forces. The quest for better approxi-
mations for the exchange-correlation functional, Exc[r], is
thus a very active research field (for recent reviews see,
e.g., refs. 5–9).

The exchange-correlation (xc) hole has always played a
special role in this quest, as a powerful tool to under-
stand10–18 and build (see, e.g., refs. 19–27) approximations.
In particular, the exact properties of the xc hole have been
extensively used to construct nonempirical Exc[r]. As we
shall review later, to compute the exchange-correlation
energy one only needs knowledge of the system- and spheri-
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cally averaged xc hole. Usually, most of the approximations
try to construct a model for the spherically averaged hole in
each point of space, neglecting those exact properties that do
not affect the final system-averaged result (i.e., the final in-
tegration over all space). In real systems of nonuniform den-
sity, the xc hole can be highly nonspherical (an elegant
discussion based on the shape of localized orbitals was
given in ref. 11), and one can expect that somehow taking
into account this anisotropy would improve the resulting
Exc[r] and other properties that can be calculated from the
xc hole. For example, an interesting recent model for de-
scribing van der Waals interactions is precisely based on
the anisotropy of the exchange hole.28–32

In this paper, we focus on an exact property (the ‘‘charge
density reconstitution’’) of the (nonspherically averaged) xc
hole that is often overlooked (since it does not affect sys-
tem- and spherically averaged models), by testing some ap-
proximate holes on small atoms. After giving the basic
definitions in the next section, we analyze the charge density
reconstitution in the ‘‘charge reconstitution’’ section, discus-
sing its generalization to one-electron properties. In the
‘‘Becke–Roussel exchange hole before spherical average’’
and ‘‘local density approximation’’ sections, we give two ex-
amples of charge density reconstitution for small atoms from
the Becke–Roussel23 exchange hole and the local-density ap-
proximation (LDA) xc hole, respectively.

Definitions
Although KS DFT was first formulated as a method

‘‘without wavefunction’’, writing an expression for the
xc functional, Exc[r], in terms of wave functions is a
useful step to define the xc hole. This can be done via
the adiabatic connection formalism.10,33–36 In its simplest
version,10,33,34 the electron–electron repulsion operator,bW ee ¼

XN

i¼1

XN

j¼iþ1
1=jri � rjj, in the N-electron hamilto-

nian is multiplied by a real parameter, l, which varies
between 0 and 1. At the same time, the physical external poten-
tial, vne(r), is replaced by another local potential, vl(r),
determined by the condition that the one-electron density,
r(r), does not change with l. If Jl denotes the ground state of
these l-dependent hamiltonians, we have the exact formula10,34

½2� Exc½r� ¼
Z 1

0

hJlj bW eejJlidl� U½r�

This decomposition of Exc[r] is by no means unique: for
example, one can consider different ways of turning on the
electron-electron interaction35,36 or a formula that only in-
volves the expectation of the kinetic energy.37,38 The simple
adiabatic connection that leads to eq. [2] is by far the most
used to build approximations.

Introducing the spin-summed pair density, P2(r, r’), associated with a given N-electron wave function, J,

½3� P2ðr; r0Þ ¼ NðN � 1Þ �
X

s1;...; sN

Z
jJðrs1; r

0s2; r3s3; . . . ; rNsNÞj2dr3; . . . ; drN

we can rewrite eq. [2] as

½4� Exc½r� ¼
1

2

Z
dr

Z
dr0

�P2ðr; r0Þ � rðrÞrðr0Þ
jr� r0j

where

½5� �P2ðr; r0Þ ¼
Z 1

0

dl Pl
2ðr; r0Þ

is the coupling-constant-averaged pair density, and Pl
2 is obtained by putting Jl in eq. [3]. The interaction-averaged xc hole,

hxc(r, r’), is then usually defined as

½6� hxcðr; r0Þ ¼
�P2ðr; r0Þ
rðrÞ � rðr0Þ

so that

½7� Exc½r� ¼
1

2

Z
dr rðrÞ

Z
dr0

hxcðr; r0Þ
jr� r0j

Since the xc hole is simply related to the pair density, all its properties come from exact conditions satisfied by the pair
density itself.39 The xc hole is often divided into exchange (x) and correlation (c),

½8� hxðr; r0Þ ¼
PKS

2 ðr; r0Þ
rðrÞ � rðr0Þ

½9� hcðr; r0Þ ¼ hxcðr; r0Þ � hxðr; r0Þ
where PKS

2 ðr; r0Þ is the pair density of the Kohn–Sham system, obtained by putting the Kohn–Sham Slater determinant (i.e.,
Jl=0) into eq. [3]. Notice that, because of its definition (eq. [6]), the xc hole is not symmetric in its variables,
hxcðr; r0Þ 6¼ hxcðr0; rÞ, but satisfies r(r)hxc(r, r’) = r(r’)hxc(r’, r).

Gori-Giorgi et al. 1445

Published by NRC Research Press



Because the Coulomb interaction, 1/|r – r’|, only depends
on the electron–electron distance, to compute Exc[r] of
eq. [7] we only need the spherical average, hs

xcðr; uÞ, of the
xc hole with respect to the direction of u = r – r’,

½10� hs
xcðr; uÞ ¼

Z
hxcðr; rþ uÞ dUu

4p

so that

½11� Exc½r� ¼
1

2

Z
dr rðrÞ

Z 1
0

du 4pu2 hs
xcðr; uÞ

u

We can go one step further, and realize that to compute
Exc[r] we actually only need the system- and spherically
averaged hole,

½12� hhs
xcðuÞi ¼

Z
dr rðrÞhs

xcðr; uÞ

½13� Exc½r� ¼
1

2

Z 1
0

du 4pu2 hhs
xcðuÞi
u

The most common practice when constructing approxima-
tions in DFT is somehow in between eqs. [10] and [12]:
most models prefer to build hs

xcðr; uÞ (e.g., refs. 23, 26, 40–
44), but with the idea in mind that only hhs

xcðuÞi matters for
the exchange-correlation energy, so that exact properties of
hs

xcðr; uÞ that do not affect hhs
xcðuÞi can be neglected. One

of the reasons to follow this practice is that an approxima-
tion defined locally is believed to be automatically size con-
sistent, even if this might not be true in the case of systems
with a degenerate ground state.45,46

As we integrate information out, passing from hxc(r, r’) to
hs

xcðr; uÞ and then to hhs
xcðuÞi, there are exact properties that

do not hold anymore (i.e., they can either be hidden in a
very complicated way in the integrated quantities, or may
just not be important anymore). For instance, the symmetry
property, r(r)hxc(r, r’) = r(r’)hxc(r’, r), does not translate
into a simple condition for the spherically averaged hole,
hs

xcðr; u ¼ jr0 � rjÞ, so that, in general, even for the exact
hole we have rðrÞhs

xcðr; jr0 � rjÞ 6¼ rðr0Þhs
xcðr0; jr� r0jÞ.

When targeting only the spherically and system-averaged
hole, hhsxcðuÞi, the original symmetry in r, r’ does not play a
role anyhow: even if we start from a model hole that does
not respect it, the integration over all space cancels the con-
tribution from its antisymmetric part.

Besides the possibility of constructing Exc[r], the xc
holes, hxc(r, r’) and hs

xcðr; uÞ, are interesting quantities per
se: they contain chemical information, they can be used to
estimate the expectation of two-electron properties, and they
define a gauge for the exchange-correlation energy density,
exc(r),

½14� excðrÞ ¼
1

2

Z 1
0

du 4pu2 hs
xcðr; uÞ

u

½15� Exc½r� ¼
Z

dr rðrÞ excðrÞ

The exchange-correlation energy density, exc(r), is often
used as a starting point to refine approximations.

Charge reconstitution
From the definition of the exchange-correlation hole

(eq. [6]) and of the one-electron density,

rðrÞ ¼ 1

N � 1

Z
dr0P2ðr; r0Þ

one obtains the two sum rules

½16�
Z

dr0 hxcðr;r0Þ ¼ �1

½17�
Z

dr rðrÞ hxcðr;r0Þ ¼ �rðr0Þ

Equation [16] is the usual xc hole sum rule, satisfied by
almost all models. It leads to a corresponding sum rule for
the spherically averaged hole,

½18�
Z 1

0

4pu2 hs
xcðr;uÞ du ¼ �1

The second sum rule, eq. [17], is a simple consequence of
the symmetry property, rðrÞhxcðr;r0Þ ¼ rðr0Þhxcðr0;rÞ, and
shows that the electronic charge density can be recon-
structed by a density-weighted integral of the exchange-cor-
relation hole (charge reconstitution). Like the symmetry
property from which it is derived, this second sum rule does
not translate into a simple condition for the spherically aver-
aged hole, because its information is partially averaged out
in the integration over the direction of u = r’ – r in
eq. [10]. Since most of the approximate holes only try to
model hs

xcðr; uÞ, eq. [17] is often neglected in the literature.
Notice that if we consider exchange and correlation sepa-
rately, we obtain

½19�
Z

dr rðrÞ hxðr;r0Þ ¼ �rðr0Þ

½20�
Z

dr rðrÞ hcðr;r0Þ ¼ 0

We can define, for any monoelectronic local operator,bO ¼X
i
oðriÞ, an associated exchange-correlation hole pro-

jected property

½21� oxcðrÞ ¼ �
Z

dr0 oðr0Þ hxcðr;r0Þ

By the virtue of eq. [17], the exchange-correlation hole
projected property, oxc(r), weighted by the charge density,
r(r), leads to the same value as the expectation value of the
operator, Ô,

½22� hJjbOjJi ¼ Z dr rðrÞ oðrÞ ¼
Z

dr rðrÞ oxcðrÞ

Another way to look at it is that, for any local monoelec-
tronic operator, Ô, there exist an associated ‘‘exchange-cor-
relation-hole weighted’’ operator, bOxc ¼

X
i
oxcðriÞ, with

oxc(r), given by eq. [21], with the same ground-state expect-
ation value.
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For instance, o(r) can be a multipole moment function. In
the case of the monopole, i.e., o(r) = 1, one obtains the total
number of electrons. For the first order moment, o(r) = ra,
where a denotes a cartesian component, x, y, or z, one has

½23� ma ¼ �
Z

drrðrÞ
Z

dr0hxcðr;r0Þr0a

where ma denotes a cartesian component of the electronic
dipole moment. The corresponding characteristic exchange-
correlation weighted function, Da(r),

½24� DaðrÞ ¼ �
Z

dr0hxcðr;r0Þr0a

provides the coordinates of the xc hole barycenter (center of
charge) belonging to the point r.30 Thus, eq. [23] tells us
that the total electronic dipole moment can be obtained as
the weighted sum of the xc hole barycenters. This result
can be regarded as a generalization of the Wannier-center
decomposition of the polarization,47 widely used in the so-
lid-state physics community: the Wannier-center, which is a
Dirac-like distribution placed in the barycenters of the loca-
lized orbitals, is replaced by a fuzzy distribution of xc hole
barycenters.48 Similar analysis can be carried out for higher-
order multipole moments. Notice that if we consider ex-
change and correlation separately, we see that eqs. [19]–
[20] imply that eqs. [21]–[22] hold as well for the exchange
hole alone.

Becke and Johnson28,31 have constructed a heuristic model
to take into account van der Waals interactions between two
subsystems using the square, d2

xðrÞ ¼ dxðrÞ � dxðrÞ, of the di-
pole moment of the exchange hole plus its reference elec-
tron on each subsystem,

½25� dxðrÞ ¼ �
Z

dr0hxðr;r0Þr0 � r ¼ DðrÞ � r

where here the subscript x stands for exchange hole.
Because of the charge density reconstitution sum rule of

eq. [17], the exact dx(r) has zero expectation,30

½26�
Z
rðrÞ dxðrÞ dr ¼ 0

A density functional approximation for d2
xðrÞ has been

constructed by Becke and Johnson29 using the Becke–Rous-
sel (BR)23 exchange-hole model. As briefly reviewed in the
next section, the BR exchange-hole model is based on the
spherical average of an anisotropic hole. Thus, even if its fi-
nal outcome is a spherically averaged hole, it is based on the
idea that the real hole is nonspherical, and for this reason it
can be used to estimate the exchange-hole dipole moment.
In this context, it is interesting to check how well the BR
model before spherical average satisfies eq. [19]. This is the
object of the next section.

The Becke–Roussel exchange hole before
spherical average

The BR exchange-hole model23 is inspired by the exact
exchange hole of the hydrogen atom: it places a normalized

exponential at a distance b(r) from the position r of the s-
spin reference electron (the total exchange hole considered
in the previous sections is the sum over the two s-spin
holes, hx = hx,: + hx,;),

½27� hBR
x;sðr;r0Þ ¼ �

a3ðrÞ
8p

e�aðrÞjr0�rþbðrÞj

The dipole moment of this hole plus its reference elec-
tron, evaluated with eq. [25], is simply b(r).

The final form of the BR model is obtained by taking the
spherically averaged with respect to the direction of u = r’ –
r of eq. [27]. This way, the BR spherically averaged hole
only depends on the magnitude b(r) of b(r). The two param-
eters a(r) and b(r) are fixed by imposing the exact on-top (r
? r’ or u ? 0) depth and curvature,

½28� hx;sðr; uÞ ¼ �rs þ
u2

6
2ts �

jrrsj2
2
�r2rs

� �
þ Oðu4Þ

where rs(r) is the density of spin-s electrons and
ts ¼

X
i
jrfi;sj2 (fi,s are the Kohn–Sham orbitals). The

model, thus, provides the magnitude of b(r) but not its di-
rection, since it is not needed either in the spherically aver-
aged hole or in the Becke–Johnson dispersion model,29

which only uses b2(r).
In an atom, however, with the BR ingredients, the only

possible choice is having b(r) pointing towards the nucleus.
In this case we can thus test without ambiguity how well the
BR hole model before spherical average satisfies eq. [19]. In
a spherical atom, the charge density reconstitution of
eq. [19] from the BR hole would read

½29�
Z

dr rðrÞ a3ðrÞ
8p

e�aðrÞjðbðrÞ=r�1Þrþr0j ¼ rðr0Þ

where we now have to check how well this equality is actu-
ally satisfied. In the left-hand side of eq. [29], the integra-
tion over the angular part of r is analytical, so that we are
left with a one-dimensional integral, which is evaluated nu-
merically on a grid.

In Figs. 1–3, we show our results for the He, Be, and Ne
atoms, respectively, using highly accurate input ingredients
to avoid any bias (using almost ‘‘exact’’ input quantities al-
lows us to focus on the results of the model, without intro-
ducing any other source of error). For the He atom we have
used the density coming from the variational wave function
of ref. 49, while for Be and Ne we have used the density
and the Kohn–Sham orbitals from the accurate Kohn–Sham
potentials of refs. 50 and 51. We see that eq. [29] is almost
satisfied for the He atom, and for the core region of Be and
Ne, which are dominated by 1s-type orbitals qualitatively
similar to eq. [27]. The valence region of Be, instead, is
poorly reproduced, with the BR hole yielding results of sim-
ilar quality to the LDA (see the next section). Some of the
features of the core-valence region of the Ne atom are also
missed by the BR hole.

Local density approximation
The local density approximation (LDA) to the exchange-

correlation hole consists in taking the xc hole of a uniform
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electron gas with density r(r) from around the reference
electron at position r ,

½30� hLDA
xc ðr;r0Þ ¼ rðrÞgUEG

xc ðjr0 � rj; rðrÞÞ

where gUEG
xc ðu; rÞ is the exchange-correlation pair-distribu-

tion function (see, e.g., ref. 52). Being that the uniform elec-
tron gas is an isotropic system, the LDA xc hole is
spherical, and it has been shown to be a surprisingly good
approximation for the short-range part (small u = |r’ – r|) of
the spherically averaged xc hole of systems of nonuniform
density.13–15

As explained in the charge reconstitution section, the sum
rule of eq. [17] does not translate into a simple condition on
the spherically averaged hole. Thus, if we want to consider
LDA as a good approximation for the spherically averaged
hole, there is no space for checking eq. [17]. However, since
the LDA hole is intrinsically spherical, we can also consider
eq. [30] as an approximation for the nonspherically averaged
hole. In this case, the charge density reconstitution of
eq. [17] for spherical atoms reduces to the condition

½31� rðr0Þ ¼ 2p

Z 1
0

dr r2 r2ðrÞ�Z 1

�1

dy gUEG
xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0y

p
; rðrÞ

� �
where again the point is to check whether this equality is
actually satisfied. Notice also that other widely used models
such as PBE40,41 and TPSS42 only approximate the spheri-
cally averaged hole, so that we cannot carry out similar tests
for those models.

Using the same densities of the previous section, we have
numerically evaluated the right-hand side of eq. [31] for He,
Be, and Ne. We have considered the case of the exchange-
only hole and of the exchange-correlation hole at full cou-
pling strength (i.e., with Pl¼1

2 in eq. [6] instead of the cou-
pling-constant averaged �P2), using the parametrization of
gUEG

xc ðu; rÞ of ref. 52. We see from Figs. 1–3 that, as ex-

pected, LDA does not satisfy eq. [31], which should actually
be fulfilled at the exchange-only level, meaning that adding
the correlation part should not change the result. Notice that
the curve corresponding to the coupling-constant-averaged
xc hole will always lie between the exchange-only result
and the full-coupling strength xc result.

This failure of LDA to fulfill eq. [17] should not be con-
sidered as a flaw of the model, if we regard LDA as an ap-
proximation to the spherically averaged hole, hs

xcðr; uÞ. As
said, the exact spherically averaged hole, hs

xcðr; u ¼ jr0 � rjÞ,
in fact, is not supposed to satisfy eq. [17] (only the non-
spherically averaged hole does). So, if LDA is a reasonable
approximation (even if only at short range) for the spheri-
cally averaged hole, it should not fulfill eq. [17]. This point
is somehow philosophical, since the LDA hole model is ex-
actly the same for the nonspherically averaged hxc(r, r’) and
the spherically averaged hxc(r, u).

Fig. 1. Charge density reconstitution from approximate holes for
the He atom. We tested the Becke–Roussel (BR) exchange hole
before spherical average, and the LDA exchange and exchange-
correlation hole at full coupling strength.

Fig. 2. Charge density reconstitution from approximate holes for
the Be atom. We tested the Becke–Roussel (BR) exchange hole be-
fore spherical average, and the LDA exchange and exchange-corre-
lation hole at full coupling strength.

Fig. 3. Charge density reconstitution from approximate holes for
the Ne atom. We tested the Becke–Roussel (BR) exchange hole
before spherical average, and the LDA exchange and exchange-
correlation hole at full coupling strength.
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Conclusions and perspectives

We have discussed a sum rule concerning the (nonspheri-
cally averaged) exchange-correlation hole, in which different
monoelectronic local operators can be used. Even if, eventu-
ally, only the system- and spherically averaged hole is
needed to obtain the exchange-correlation energy, a given
model for the spherically averaged hole (which is interesting
by itself to compute different properties and to define en-
ergy densities) could be improved by taking into account, in
some approximate way, the sum rule of eq. [17]. If the
whole eq. [17] may be too hard to impose, a selection of lo-
cal operators o(r) in eq. [22] might be simpler to handle. For
example, the Becke–Roussel23 hole could be improved by
adding some parameters that are adjusted to fulfill, at least
approximately, eq. [22] for the case of the dipole moment.
This may give a more accurate estimate of the exchange-
hole dipole moment needed in the Becke–Johnson model29

for dispersion forces.
Another important point to consider is the following.

When dealing with open systems or with systems with
strong nondynamical correlation, a better local model for
the exchange hole can be obtained by relaxing18,27 the sum
rule of eq. [16], and thus also, by symmetry, the sum rule
of eq. [17] considered here. Again, taking this symmetry
into account in some approximate way before the spherical
average could also improve a given model for nondynamical
correlation.
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(30) Ángyán, J. G. J. Chem. Phys. 2007, 127 (2), 024108. doi:10.
1063/1.2749512. PMID:17640120.

(31) Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2007, 127 (15),
154108. doi:10.1063/1.2795701. PMID:17949133.

(32) Ayers, P. W. J. Math. Chem. 2009, 46 (1), 86–96. doi:10.
1007/s10910-008-9451-y.

(33) Harris, J.; Jones, R. J. Phys. F 1974, 4 (8), 1170–1186.
doi:10.1088/0305-4608/4/8/013.

(34) Langreth, D. C.; Perdew, J. P. Solid State Commun. 1975, 17
(11), 1425–1429. doi:10.1016/0038-1098(75)90618-3.

(35) Yang, W. J. Chem. Phys. 1998, 109 (23), 10107–10110.
doi:10.1063/1.477701.

(36) Savin, A.; Colonna, F.; Pollet, R. Int. J. Quantum Chem.
2003, 93 (3), 166–190. doi:10.1002/qua.10551.

(37) Savin, A. Phys. Rev. A 1995, 52 (3), R1805–R1807. doi:10.
1103/PhysRevA.52.R1805.

(38) Levy, M.; Görling, A. Phys. Rev. A 1995, 52 (3), R1808–
R1810. doi:10.1103/PhysRevA.52.R1808.

(39) Ayers, P. W. J. Math. Chem. 2009; in press.
(40) Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54

(23), 16533–16539. doi:10.1103/PhysRevB.54.16533.
(41) Ernzerhof, M.; Perdew, J. P. J. Chem. Phys. 1998, 109 (9),

3313–3320. doi:10.1063/1.476928.
(42) Constantin, L. A.; Perdew, J. P.; Tao, J. Phys. Rev. B 2006,

73 (20), 205104. doi:10.1103/PhysRevB.73.205104.
(43) Bahmann, H.; Ernzerhof, M. J. Chem. Phys. 2008, 128 (23),

234104. doi:10.1063/1.2937447. PMID:18570488.
(44) Henderson, T. M.; Janesko, B. G.; Scuseria, G. E. J. Chem.

Phys. 2008, 128 (19), 194105. doi:10.1063/1.2921797.
PMID:18500854.

Gori-Giorgi et al. 1449

Published by NRC Research Press



(45) Gori-Giorgi, P.; Savin, A. J. Phys.: Conf. Ser. 2008, 117,
012017. doi:10.1088/1742-6596/117/1/012017.

(46) Savin, A. Chem. Phys. 2009, 356 (1–3), 91–97. doi:10.1016/
j.chemphys.2008.10.023.

(47) Marzari, N.; Vanderbilt, D. Phys. Rev. B 1997, 56 (20),
12847–12865. doi:10.1103/PhysRevB.56.12847.
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