
1 3

Theor Chem Acc (2016) 135:256
DOI 10.1007/s00214-016-2007-5

REGULAR ARTICLE

Smooth models for the Coulomb potential

Cristina E. González‑Espinoza1 · Paul W. Ayers1  · Jacek Karwowski2 · 
Andreas Savin3 

Received: 22 June 2016 / Accepted: 30 September 2016 / Published online: 31 October 2016 
© Springer-Verlag Berlin Heidelberg 2016

1  Philosophy

How feasible is it to find a model for the Coulomb interac-
tion that is easier to evaluate but still reproduces key prop-
erties of the physical interaction? A logical starting point 
is a system with no interaction, as in Kohn–Sham density 
functional theory (DFT) [1]. The Kohn–Sham (KS) approx-
imation starts from a non-interacting system, described as 
the sum of the individual electrons’ contributions to the 
energy:

In order to ameliorate the effect of omitting the Cou-
lomb repulsion between the electrons, an extra term, the 
exchange-correlation functional Exc[ρ], is introduced into 
the energy expression. For a given external potential v(r)

where Ts[ρ] is the kinetic energy functional of the non-
interacting system, J[ρ] is the classical repulsion and 
Exc[ρ] is the exchange-correlation functional, which must 
be approximated [2]. The Euler–Lagrange equation asso-
ciated with the stationary condition of Ev[ρ] can be trans-
formed into a self-consistent set of equations:

(1)Ĥs =
N
∑

i

(

−1

2
∇2
i + vs(ri)

)

.

(2)Ev[ρ] = Ts[ρ] + J[ρ] + Exc[ρ] +
∫

v(r)ρ(r)dr,

(3)

(

−1

2
∇2 + v(r)+

∫

ρ(r′)

|r − r′|dr
′ + vxc(r)− ǫj

)

φj(r) = 0

ρ(r) =
N
∑

j=1

∣

∣φj(r)
∣

∣

2

vxc(r) =
δExc[ρ(r)]

δρ(r)
.

Abstract Smooth model potentials with parameters 
selected to reproduce the spectrum of one-electron atoms 
are used to approximate the singular Coulomb potential. 
Even when the potentials do not mimic the Coulomb sin-
gularity, much of the spectrum is reproduced within the 
chemical accuracy. For the hydrogen atom, the smooth 
approximations to the Coulomb potential are more accurate 
for higher angular momentum states. The transferability of 
the model potentials from an attractive interaction (hydro-
gen atom) to a repulsive one (Harmonium and the uniform 
electron gas) is discussed.
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In principle, the KS solutions are exact when Exc is 
exact, and the KS orbitals yield the exact density of the 
system with N electrons in the external potential v(r). The 
accuracy of KS density functional approximations (DFA) 
depends on the approximation one uses for Exc. The sim-
plest approximation is the local density approximation 
(LDA) [3–5]. In LDA, it is assumed that the exchange-cor-
relation functional is local,

where the exchange-correlation energy density ǫxc(ρ(r)) at 
r is taken from the uniform electron gas with density ρ(r).

To accurately recover the effect of omitting the interac-
tion between the electrons, one constructs an adiabatic con-
nection that links the KS non-interacting system with the 
physical interacting system. Traditionally, this adiabatic 
connection is written as a function of the strength of the 
interaction, using a simple multiplicative factor � [6–9]:

Computational studies of the adiabatic connection have 
been performed for few-electron atomic systems and pro-
vide significant insight into the structure of the exact 
exchange-correlation density functional [10–16]. An alter-
native to the traditional adiabatic connection is to write the 
Coulomb interaction as the sum of a short-range piece and 
a long-range piece. The long-range piece of the potential 
is usually chosen to be smooth (or at least non-singular), 
so that it is relatively easy to approximate solutions to the 
Schrödinger equations when only the long-range piece is 
included.

So far we have reviewed traditional strategies that add 
density functional corrections to an “easy” system to 
approximate the real system. Can we use the real system to 
construct the model? For example, is it possible to select 
an interaction potential, different from the Coulomb one, 
that nonetheless reproduces a certain target property of the 
system? For example, one might wish to select an inter-
action potential that preserves the energy spectrum of an 
atom. This strategy is not new. Valance and Bergeron [17] 
show how to construct analytically solvable pseudopoten-
tials and model potentials, in the framework of supersym-
metric quantum mechanics, that reproduce experimental 
spectra. Starting from a one-electron one-dimensional 
Hamiltonian H1 associated with the potential V1, they 
found a supersymmetric partner H2, characterized by a 
second potential V2, with almost the same spectrum as H1 . 
H2 is missing the ground state of H1. A similar approach 
has been used by Lepage [18] in the field of elementary 
particle physics, where the Hamiltonian is constructed 

(4)Exc[ρ(r)] =
∫

ǫxc(ρ(r))dr,

(5)Ĥ� =
N
∑

i=0

−∇2
i

2
+ v�(ri)+

1

2

∑

j �=i

�

rij
.

to reproduce low-energy features of a particular physical 
system.

In the next section, we define an expression for the 
model potential. We then explain two different model 
potentials that accurately reproduce the lowest energy 
eigenvalues of the hydrogen atom. In Sect. 4, we use the 
same models for the Coulomb potential to replace the Cou-
lomb repulsion between the electrons in two-electron Har-
monium. Finally, the exchange energy of the uniform elec-
tron gas that results from one of the models is compared to 
the standard approximation.

2  Ansatz

Analogous to the inverse problem of finding the Kohn–
Sham potential from a given density, where oscillatory 
potentials and/or shifted potentials can reproduce the exact 
density numerically [19], finding the potential given the 
spectrum is not trivial because the solution is not unique. 
Therefore, we restrict the analytical form of the potential 
by imposing some constraints. We would like to eliminate 
the singularity of the Coulomb potential because solving 
the Schrödinger equation for a singular operator is compu-
tationally demanding. We also wish to preserve the long-
range asymptotic form of the potential, so that the long-
range electrostatics is correct. An interaction potential that 
satisfies these constraints is:

We prove in this article that despite the simplicity of this 
erfgau [20] type of potential, it is flexible enough for our 
purposes.

3  H atom

3.1  Construction of Vµ(r)

To determine the parameters in the model potential, we 
consider what happens when we replace the Coulomb 
interaction between the nucleus and the electron in the 
hydrogen atom by the model potential Vµ(r) (6). Thus, we 
replace the Hamiltonian of the hydrogen atom

by a modified Hamiltonian

with Vµ(r) defined in such a way that

(6)
1

r
→ Vµ(r) = c exp

(

−α2r2
)

+ erf(µr)

r
.

(7)Ĥ0(r) = −1

2
∇2 − 1

r

(8)Ĥµ(r) = −1

2
∇2 − Vµ(r)
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As we know, in the case of the long-range term

Thus, condition (9) is fulfilled if [c exp(−α2r2)] → 0 
when µ → ∞. Besides, we would like the spectrum of Ĥµ 
to be as close as possible to the spectrum of Ĥ0. This can be 
achieved by properly choosing c = c(µ) and α = α(µ).

Consider Ĥ0 as the unperturbed operator, and

as a perturbation. First, we notice that for the bound states 
of the hydrogen atom

and

where l is the angular momentum quantum number, a nec-
essary condition for the spectra of Ĥµ and Ĥ0 to coincide 
is that these two expectation values have the same asymp-
totic form. (See “Appendix 1” for more details about the 
µ-dependence of the wavefunction.) The simplest choice, 
adopted in this paper, is to take α as a linear function of µ. 
This implies that c also has to be linear in µ. Thus, we can 
set

where γ and κ are µ-independent parameters.
According to Eqs. (11), (12) and (13), the asymptotic 

expansion of the expectation value of wµ may be written as

We select γ and κ so that the two leading terms in expan-
sion (14) vanish. The lowest order terms ( j = 2 and j = 3)  
correspond to l = 0 states. For angular momenta l > 0 the 
leading terms in Eq. (14) are O(µ−4) or smaller. Then, the 
choice of c(µ) and α(µ) is dictated by the requirement that 
the eigenvalues of the S states are as correct as possible for 
µ → ∞ . The explicit form of expansion (14) for l = 0 states 
reads (see “Appendix 2”)

Solving equations d2 = d3 = 0 for γ and κ, we obtain:

(9)lim
µ→∞

Ĥµ = Ĥ0, i.e. lim
µ→∞

Vµ = 1

r
.

erf(µ r)

r
∼

µ→∞
1

r
.

(10)wµ = Ĥµ − Ĥ0

(11)�ψi|erfc(µ r)/r|ψi� ∼
µ→∞ µ−(2l+2),

(12)
〈

ψi|c exp
(

−α2r2
)

|ψi

〉

∼
α→∞ c α−(2l+3),

(13)c = γ µ, α = κ µ,

(14)
�ψi|wµ|ψi� =

∑

j=2l+2

dj(γ , κ)µ
−j, µ >> 1.

(15)

〈

ψi|wµ|ψi

〉

=
(

1−
√
πγ

κ3

)

µ−2 +
(

− 8

3
√
π

+ 4γ

κ4

)

× µ−3 + O

(

µ−4

)

.

In addition to the asymptotic behavior, for practical calcula-
tions we need the optimal parameters c and α at finite values 
of µ. Taking the linear forms

with the parameter γ and κ from the previous step we can use 
c0 and α0 to further optimize the spectrum. The condition for 
the elimination of µ−2 term remains the same as before. The 
equations d3 = 0 and d4 = 0 are given in “Appendix 2.” The 
behavior of the spectrum of the model potential versus c0 and 
α0 is shown in Fig. 1, where for fixed µ = 1.0 energies of 
1s, 2s and 2p states are displayed. As one can see, there is a 
range for which pairs of (c0,α0) give reasonably small errors 
of the energy values. The dependence of the relative error on 
n and l is discussed in Sect. 3.2.2.

To select the best linear forms of c and α we constructed 
a grid on the intervals c = [−0.5, 0.0] and α = [1.0, 3.0] , 
and then, we computed the error in the eigenvalues of 
the 1s, 2s, 2p, 3s, 3p and 3d states for µ = [0.5, 2.0]. We 
defined the best choice for the parameters as the minimax 
choice: the c,α that minimized the maximum absolute devi-
ation between the eigenvalues with the model potential and 
the exact result from the Coulomb interaction,

As seen in Fig. 2, the best values of (c,α) can be mod-
eled by a linear function,

Note that the resulting fit is very similar to one the lin-
ear forms obtained from perturbation theory {c0 = 0.943, 
γ = 1.904µ} and {α0 = 0.247, κ = 1.5µ} [see Eq. (52) of 
“Appendix 2”]. With this fitted form, the interaction does 
not vanish when µ = 0; therefore, the spectrum cannot be 

(16)c = 27

8
√
π
µ = 1.904µ, α = 3

2
µ = 1.500µ.

(17)c = γ µ+ c0, α = κ µ+ α0

(18)δ = min
c(µ),α(µ)

{

max
n,l

|ECoulomb − Emodel|
}

.

(19)
c = 0.923+ 1.568µ

α = 0.241+ 1.405µ.

Fig. 1  Accuracy of the model potential spectrum with respect to the 
parameters c0 and α0. Energy errors (in %), for µ = 1
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exact for small values of µ, in contrast to the asymptotic 
form (16), in which both c and α are proportional to µ.

The optimum parameters for a hydrogen-like atom with 
the nuclear charge Z may be obtained from the ones deter-
mined for the case of Z = 1 by a simple scaling procedure. 
Equation (6) becomes

and

where ρρρ = Z rrr and

3.2  Results

3.2.1  Potentials

The model potentials we consider in this paper [erf(µr)/r, 
asymptotic Eq. (16), and fitted Eq. (19)] corresponding to 
µ = 1 are compared with the Coulomb potential and with 
a modified long-range potential, erf(3r)/r, in Fig. 3. One 
might suspect that adding an optimized Gaussian term to 
erf(µr)/r would give a potential that mimics the effect of 
increasing µ in the long-range term. This is not the case 
for the potentials we consider in this paper. At first glance, 
the potential erf(3r)/r (dashed line) seems similar to the 
asymptotic and to the fitted potentials. But the erf(3r)/r 
potential is always weaker than the Coulomb potential, 
while the latter potentials, though in some intervals of r 
are also weaker, in other intervals are stronger than the 
Coulomb potential. This may explain why the asymptotic 
and fitted potentials reproduce the spectrum much bet-
ter than the modified long-range potential: The effects of 
too strong and too weak regions of the model potentials 

(20)
Z

r
→ VZ

µ(r) = Z

[

cZ exp
(

−α2
Zr

2
)

+ erf(µZr)

r

]

(21)ĤZ
µ(rrr) = −1

2
∇2 − VZ

µ(r) = Z2 Ĥµ(ρρρ),

(22)cZ = Z c, αZ = Z α, µZ = Z µ.

cancel each other, leaving the eigenvalues relatively 
unchanged.

3.2.2  Eigenvalues

The percentage errors in the eigenvalues of hydrogen with 
long-range, asymptotic and fitted potentials are presented 

Fig. 2  Linear regressions for the two parameters c(µ) and α(µ) of the simple fit in Eq. (19). Here, the dots are the optimal values of the param-
eters according to Eq. (18), the lines are the least squares linear regressions, and r2 are their corresponding coefficients of determination

Fig. 3  Comparison between the Coulomb potential (solid line) and 
the model potentials: long-range (squares), asymptotic (diamonds), 
fitted (stars) and modified long-range potential (dashed line)
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in Fig. 4. As the quantum number increases, the amplitude 
of the eigenfunctions near the nucleus decreases, the long-
range part of the potential dominates and the eigenvalues 
approach the exact ones. A clear improvement is found in 
the asymptotic and fitted potentials compared with the tra-
ditional long-range potential. As expected, the fitted poten-
tial produced the smallest errors. However, for µ > 1.5, the 
difference between the asymptotic and the fitted models is 
rather small; see Fig. 5.

The advantage of adding a Gaussian term is clear when 
we compare against a modified long-range potential, such 
as erf(3µr)/r, Fig. 6. The Gaussian term lets us “get away 

with” a much smaller value of µ and seems to work better 
for s-type orbitals than the erf-based potential.

As expected from the asymptotic analysis, better results 
are obtained for higher angular momentum because the 
centrifugal barrier, l(l + 1)/2r2, pushes the electron 
away from the nucleus, into a region where the difference 
between the model potential and the Coulomb potential is 
negligible (see Figs. 7, 8). On the other hand, when µ is 
close to zero, the eigenvalues from the model potential are 
very poor, because the short-range Gaussian term cannot 
bind an electron when the angular momentum is too high. 
When we look at the wavefuntion, for example, the 1s and 

Fig. 4  Percentage errors in the eigenvalues of hydrogen. From top to 
bottom: a long-range erf(µr)/r, b asymptotic [Eq. (16)], and c fitted 
[Eq. (19)] potentials

Fig. 5  Close-up of the percentage error of the eigenvalues of hydro-
gen. As in Fig. 4, the curves are, from top to bottom: a long-range 
erf(µr)/r, b asymptotic [Eq. (16)], and c fitted [Eq. (19)] potentials
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2s orbitals (Fig. 9), we see that even though the eigenvalues 
are very similar, the eigenfunctions can be quite different.

How important is this difference? Is the perturbation still 
small if spectrum is nearly reproduced? Moreover, can we 
use the same approach for other types of interactions, e.g., 

a repulsive potential? There are several ways to assess the 
transferability of our model potentials. Below we use the 
same replacement for the electron–electron repulsion in two 
model systems, Harmonium and the uniform electron gas.

4  Harmonium

To explore whether the model potentials can be used to 
describe repulsive interactions, we consider a system of 
two interacting electrons confined in a harmonic oscillator 
potential, called Harmonium [21, 22]. The Hamiltonian of 
Harmonium is:

where the superscript h stands for harmonium. This Hamil-
tonian is separable if one rewrites it in terms of the center 
of mass and the relative coordinates

In the new coordinates

where

and the Schrödinger equation separates into two equations:

and

where n, l, m and ν, �,µ are quantum numbers, and the total 
energy is equal to Eν�;nl = ην� + ǫnl.

In the case of Harmonium, we can use the same approxi-
mation for the Coulomb potential as we did for the hydro-
gen atom, but now, instead of the attractive Coulomb 
interaction we have the repulsive one. Thus, the modified 
Hamiltonian for the relative motion of two electrons reads

Due to the spherical symmetry, it is convenient to express 
the solutions of Eqs. (28) and (29) in spherical coordinates. 
In particular, if we set

(23)

Ĥ
h(r1, r2) = −1

2
∇2
1 + ω2

r
2
1

2
− 1

2
∇2
2 + ω2

r
2
2

2
+ 1

|r1 − r2|
,

(24)R = 1

2
(r1 + r2), r = r1 − r2.

(25)Ĥh(r1, r2) = Ĥh
r
(r)+ Ĥh

R
(R),

(26)Ĥh
r
(r) = −∇2

r
+ ω2 r2

4
+ 1

r
,

(27)Ĥh
R
(R) = −1

4
∇2
R
+ ω2 R2

(28)Ĥh
r
(r)Φnlm(r) = ǫnl Φnlm(r)

(29)Ĥh
R
(R) ξν�µ(R) = ην� ξν�µ(R),

(30)Ĥh
r;µ(r) = −∇2

r
+ ω2 r2

4
+ Vµ(r).

Fig. 6  Comparison of the percent error in the first three eigenvalues 
of the hydrogen atom between the asymptotic potential, (thick lines) 
and erf(3µ)/r (dashed lines)

Fig. 7  Comparison between the radial potentials −1/r and −erf(r)/r 
in the hydrogen atom, when l = 0 (diamonds and squares, respec-
tively) and l = 1 (triangles and stars)

Fig. 8  Effect of the centrifugal term on the radial potential in the 
µ → 0 limit for the fitted erfgau interaction [Eq. (19)]
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where Ylm(r̂) are spherical harmonics, then in the case of 
Eq. (28) with the modified Hamiltonian (30) we have

4.1  How Harmonium is computed

In order to assess the model potentials for Harmonium, we 
solved Eq. (32) numerically. To this end, we discretized 
this equation on a grid of N equidistant points for r ∈ [0, a] 

(31)Φnlm(r) =
1

r
φnl(r) Ylm(r̂),

(32)

[

− d2

dr2
+ l(l + 1)

r2
+ ω2 r2

4
+ Vµ(r)

]

φnl(r) = ǫnl φnl(r).

with the boundary conditions φnl(0) = φnl(a) = 0 and the 
approximation

where h = a/N. The discretized equation may be written as

where rj = j h, j = 0, 1, . . . ,N and

d2

dr2
φnl(r) ≈

1

h2
[φnl(r − h)− 2φnl(r)+ φnl(r + h)],

N
∑

j=0

(

Aij − ǫnl δij
)

φnl(rj) = 0,

Aij =
(

2

h2
+ l(l + 1)

r2j

+
ω2 r2j

4
+ Vµ(rj)

)

δij −
δi,j+1 + δi,j−1

h2

Fig. 9  Orbital densi-
ties |ψ1s(r)|2 (top) and 
|ψ2s(r)|2 (bottom) derived 
from the model Hamilto-
nian of hydrogen, Eq. (8) 
with c = 0.923+ 1.568µ

, α = 0.241+ 1.405µ, using 
different values of µ
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It has been solved using standard LAPACK subroutines. 
In the calculations, we set N = 10,000 and a = 10/ω. In 
order to discard errors due to the numerical procedure, we 
computed and compared the eigenvalues of two states for 
which we know the analytic solution:

and

For l = 0, the percentage errors in the eigenvalues obtained 
with the numerical integration are 5.76× 10−6% and 
6.52× 10−6% , respectively.

4.2  Results

In Fig. 10, the eigenvalues of Harmonium with n = 1 and 
l = 0 are shown for the long-range, asymptotic and fitted 
potentials. Similar to the hydrogen atom, a deterioration 
at small µ is observed, but now the asymptotic potential 
is slightly better than the fit to the hydrogenic spectrum, 
and both are much better than the uncorrected erf(µr)/r 
potential. As the harmonic confinement weakens (ω → 0), 
the average distance between electrons increases, and the 
models become more accurate because of their correct 1 / r 
asymptotics. For strongly confined electrons (ω >> 1), 
however, the Gaussian correction factors that were adapted 
to the hydrogenic spectrum do not seem appropriate for 
modeling the short-range 1 / r interaction. In Table 1, we 
collected the smallest value of µ such that the error is 
always <1%, for the different values of ω. It is clear that 
as the range of the average distance between the electrons 
decreases (ω → ∞), we also need to scale the range sepa-
ration parameter (µ → 0).

In order to investigate the interplay between the strength 
of confinement and the parameters of the model potential, 
let us scale the variable in Eq. (28) with Hamiltonian (30) 
to reduce the confinement parameter to ω = 1. After the 
substitution ρ = √

ω r. We get

where

(33)

φ1 ∼ r
l+1(1 + ω r)e−ω r

2/4
, ω = 1

2(l + 1)
,

E1 = ω

(

l + 5

2

)

(34)

φ2 ∼ r
l+1

[

1 + r(1+ ω r)

2(l + 1)

]

e
−ω r

2/4
, ω = 1

2(4l + 5)
,

E2 = ω

(

l + 7

2

)

.

(35)

[

−∇2
ρ + ρ2

4
+ 1√

ω

(

erf(µ̃ρ)

ρ
+ c̃ e

−α̃2ρ2
)]

φnl(ρ) = ǫ̃nlφnl(ρ),

Thus, to compensate for changing ω we have to properly 
scale parameters and multiply the potential by 

√
ω . In 

Fig. 11, we can see that by appropriately scaling the param-
eters of the model potential we get, for all values of ω, 
exactly the same energies.

To show that the same method can be used for excited 
states, we computed the excitation energy from the ground 
state to the first excited l = 0 state, using the long-range, 
erf(3µr)/r, asymptotic and fitted potentials (see Fig. 12). 
There is some cancelation of errors (i.e., the energy spacing 
is better than the absolute energy), but the results are still 

(36)c̃ = c/
√
ω, α̃ = α/

√
ω, µ̃ = µ/

√
ω, ǫ̃nl = ǫnl/ω.

Fig. 10  Errors (in %) of the Harmonium eigenvalues as function 
of µ, for different ω. From top to bottom: a long-range erf(µr)/r, b 
asymptotic (Eq. 16), and c fitted (Eq. 19) potentials
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poor for small values of µ, confirming that the parameters 
in the model potential should be ω-dependent. We should 
note, however, that the erfgau potential with fixed param-
eters is still much better than the raw erf(µr)/r potential.

5  Uniform electron gas

We now examine the effect of using a modified potential 
on the energy of the uniform electron gas. Consider the 
Hartree–Fock energy of the N-particle spin-unpolarized 
uniform electron gas confined in the volume Ω with den-
sity ρ = N/Ω, in the limit where N and Ω go to infinity at 
constant ρ. The one-electron reduced density matrix has the 
well-known form [23]

which is not affected when we replace the Coulomb inter-
action, both attractive and repulsive, with the modified 
interaction (Eq. 6), because it depends only on the Fermi 
wave number kF = (3π2ρ)1/3. Furthermore, the compensa-
tion of the electrostatic terms is maintained (i.e., the elec-
trostatic contribution sums up to zero, just as in the stand-
ard case). However, the exchange energy is modified to

Using 
∫

ρ dr = N and transforming the variables of inte-
gration, one obtains

Replacing Vµ with the erfgau form of interest to us, Eq. (6), 
we can then separate the integral into two terms, the Gauss-
ian function term and the error function term

(37)γ (r, r′) = 3ρ
sin(x)− x cos(x)

x3
, with x = kF

∣

∣r − r
′∣
∣,

(38)Ex = −1

2

∫ ∫

dr dr′ γ
(

r, r′
)2
Vµ

(∣

∣r − r
′∣
∣

)

.

(39)Ex = − 6

π2
N

∫ ∞

0

x
2

(

sin(x)− x cos(x)

x3

)2

Vµ

(

x

kF

)

dx.

(40)

∫ ∞

0

x2
(

sin(x)− x cos(x)

x3

)2

Vµ

(

x

kF

)

dx

=
∫ ∞

0

x2
(

sin(x)− x cos(x)

x3

)2

c e
−α2

(

x
kF

)2

dx

+
∫ ∞

0

x2
(

sin(x)− x cos(x)

x3

)2 erf
(

µ x
kF

)

x
kF

dx.

Both integrals can be easily evaluated using standard 
tools for numerical computations such as Mathematica 
[24].

In Fig. 13, we show the exchange energy per particle 
ǫx = Ex/N, as function of µ and the density parameter 
rs = (3/4π ρ)3, using the asymptotic potential (Eq. 16). We 
observe that the model works well for large µ rs, but it does 
not seem possible to correct the interaction at short range. 
Here, it is important to notice the similarity with Harmo-
nium. As ω controls the distance between the electrons, rs 
describes the electron density distribution. A small value of 
ω translates to short interparticle distances, making the gas 
“denser,” and as consequence, difficult to describe with the 

Fig. 11  Errors (in %) of the Harmonium eigenvalues as function of √
ωµ, for different ω using the scaled asymptotic [Eq. (16)] potential

Fig. 12  Errors (in %) of the excitation energy to the first excited 
l = 0 state of Harmonium, as function of µ, for ω = 1. Long-range 
erf(µr)/r (diamonds), erf(3µr)/r (squares), asymptotic [Eq. (16)] 
(triangles) and fitted [Eq. (19)] (stars) potentials

Table 1  Smallest value of the 
range parameter µ needed to 
obtain a percentage error <1% 
with the model potentials for 
Harmonium, for a given value 
of ω

ω 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Asymptotic 0.2 0.25 0.35 0.4 0.45 0.5 0.5 0.55 0.6 0.6

Fitted 0.4 0.25 0.4 0.5 0.55 0.6 0.65 0.65 0.65 0.65
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smooth potentials. This indicates that the optimal value of 
µ, just as in Harmonium, depends on the range of the inter-
action, rs, so µ should be system-dependent.

6  Summary

Is it possible to replace the Coulomb potential with another 
potential that is computationally more convenient and, if 
so, how should the approximate potential be constructed? 
In this work, we examine whether adding a Gaussian func-
tion improves the performance of the traditional erf(µr)/r 
potential used in range-separated DFT. As the measure of 
the correctness of the model potential, we have chosen the 
difference between the spectra of the hydrogen atom calcu-
lated using the Coulomb potential and the modified one. It 
appears that for a reasonable range of parameters defining 

the new potential not only can the spectrum of the hydro-
gen atom be accurately reproduced, but using the same 
potential to replace the repulsive Coulomb potential in the 
Harmonium atom gives a significant improvement over the 
uncorrected erf(µr)/r potential.

The remaining question is whether one could somehow 
correct the residual error in the new potential. One way 
to do this would be to, as in range-separated DFT, use a 
correction functional for the neglected short-range contri-
butions to the exchange-correlation energy. However, this 
biases one’s treatment toward the ground-state energy and 
electron density: A different (and certainly much harder 
to construct) functional would be needed to correct other 
properties (e.g., excited-state properties) of the system. 
There is another way, however: The results of a few calcu-
lations at sufficiently large values of µ can be extrapolated 
to the physical µ → ∞ limit. This approach is applicable 
to any property, not just those that are readily accessible 
from KS DFT. Furthermore, replacing the electron–elec-
tron repulsion potential with a smooth function has major 
computational advantages, as it allows one to use smaller 
basis sets, with fewer polarization functions.

There are also cases where it may be favorable to replace 
the Coulombic electron–nucleus interaction with a model 
potential like those considered in this paper. For example, 
these smoothed Coulomb potentials could be used, instead 
of pseudopotentials, for diffusion quantum Monte Carlo 
and plane-wave DFT calculations. In those cases, the pro-
cedure would be the same: The system would be solved 
for several choices of the smoothed electron–nucleus inter-
action, and the results then extrapolated to the physical 
µ → ∞ limit.
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Appendix 1: Hydrogenic atoms: µ dependence 
and integrals’ scaling.

The leading term in the hydrogenic radial function is

therefore

(41)Rnl(r)
2 ∼ Z3(Zr)2le−2Zr/n,

(42)Rnl(r)
2r2dr ∼ ρ2l+2e−2ρ/ndρ

Fig. 13  Error (in %) in ǫx(rs,µ), for the uniform electron gas using 
the model asymptotic potential (Eq. 16)
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where ρ = Zr. Now, let

then

where x = µρ/Z and

For f (µ r/Z) = erf(µ r)/Zr, f (x) = (µ/Z)erf(x)/x and 
the power of the asymptotic term is (2l + 2).

Appendix 2: Model Hamiltonian from first‑order 
perturbation theory

We define the model Hamiltonian as

where the parameters c and α should be chosen so that the 
eigenvalues of this operator are as close as possible to the 
ones of the physical operator,

The difference between the two operators

is treated as a perturbation. We want the perturbation to van-
ish as µ → ∞. Moreover, we would like to keep a single 
parameter, µ, and make c and α functions of µ. As we men-
tioned in Sect. 3.1, one way to produce �ψi|wµ|ψi� = 0 is 
to choose α increasing with µ. When we expand the expec-
tation value of wµ for large values of α and µ we obtain, 
for l = 0 states, the integrals of the hydrogenic functions 
ψn0 = {4e−r , (2− r)e−r/2, 4

729
(27− 18r + 2r2)e−r/3} 

are

where

(43)I(µ) =
∫ ∞

0

f (µr)Rnl(r)
2r2dr

(44)

I(µ) ∼
∫ ∞

0

f
(µρ

Z

)

ρ2l+2e−2ρ/ndρ

=
(

Z

µ

)2l+3 ∫ ∞

0

f (x)x2l+2e−2Zx/µndx

=
(

Z

µ

)2l+3 ∞
∑

i=0

ai

(

Z

µ

)i

,

(45)ai =
(−1)i

i!

(

2

n

)i ∫ ∞

0

f (x)x2l+i+2dx.

(46)Ĥµ = −1

2
∇2 −

[

c exp
(

−α2r2
)

+ erf(µ r)

r

]

,

(47)Ĥ0 = −1

2
∇2 − 1

r
.

(48)wµ = Ĥµ − Ĥ0 =
erfc(µ r)

r
− c exp

(

−α2r2
)

(49)
〈

ψn0|wµ|ψn0

〉

= n−3[A(α, c)+ B(µ)]+ O
(

µ−5
)

,

comes from �ψn0|c exp(−α2r2)|ψn0� and

from �ψn0|erfc(µr)/r|ψn0�. Note that we used arbitrary 
multiplicative factors (4, 1 and 4

729
 respectively) to simplify 

the expressions. We can use this trick because we want to 
equate all expressions to 0.

In order to eliminate terms of order µ−2, we set √
π c α−3 = µ−2. This means that c = γ µ, α = κ µ and 

γ = κ3/
√
π . Substituting these values into the expansion 

(49) corresponding to n = 1, we see that the coefficient of 
µ−3 vanishes if γ = (2 κ4)/(3

√
π). From the last two equa-

tions, we get

for which the energy of the S states is correct up to µ−4. 
To eliminate the error for µ−4, we would need to consider 
corrections from second-order perturbation theory. For 
l = 1, the expansion of the expectation value of wµ starts 
with terms proportional to µ−4 and, in general, for an arbi-
trary l, the leading term of the expansion is proportional to 
µ−(2l+2).

Now, let us consider the expansion of the expecta-
tion values of wµ for the linear forms α = κµ+ α0 and 
c = γµ+ c0 with the parameter γ and κ from the previ-
ous step. The condition for the elimination of the µ−2 term 
remains the same as above. The coefficient of µ−3 is equal 
to

and is the same for all l = 0 states. The coefficient of µ−4 
for l = 0 states is n-dependent. For n = 1 it is equal to

Solving equations d3 = d4 = 0 for c0 and α0, we obtain:

This gives two possible solutions: {c0 = 0.94364,

α0 = 0.24778} and {c0 = 1.92115,α0 = 0.50446}. When 
we use either of these sets of parameters and expand the 
first-order correction to fourth order in 1/µ, we have:

A(α, c) = −c
√
π

α3
+ 4c

α4

B(µ) = 1

µ2
− 8

3
√
πµ3

+ 3

2µ4
,

γ = 27

8
√
π
, κ = 3

2

(50)d3 = −8 c0
√
π

27
+ 2 α0

(51)d4 =
1

6
+ 64 c0

81
− 64α0

9
√
π

+ 16

27

√
π c0 α0 −

8α2
0

3

(52)c0 =
27α0

4
√
π
, α0 =

8±
√
64− 18π

12
√
π

.
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Thus, the error of the first-order correction to the eigenval-
ues is proportional to µ−4.
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