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Abstract. The electronic structure calculations based upon energy density functionals are
highly successful and widely used both in solid state physics and quantum chemistry. Moreover,
the Hohenberg-Kohn theorems and the Kohn-Sham method provide them with a firm basis.
However, several basic issues are not solved, and hamper the progress to achieve high accuracy.
In this paper we focus on the conceptual problem of size consistency, basing our analysis on the
non-intensive character of the (spin) electronic density in the presence of degeneracy. We also
briefly discuss some of the issues concerning fractional electron numbers from the same point
of view, analyzing the behavior of the exact functionals for the He and the Hooke’s atom series
when the number of electrons fluctuates between one and two.

1. Introduction

Density functional theory (see, e.g., [1]) (DFT) is by now the most popular method for electronic
structure calculations in condensed matter physics and quantum chemistry, because of its unique
combination of low computational cost and reasonable accuracy for many molecules and solids.
However, despite its large success in scientific areas ranging from material science to biology,
several basic issues in DFT are still unsolved, and hamper futher developments towards high
accuracy. Besides, some of these issues are often ovelooked or simply ignored. We believe that
raising them is a necessary step towards further improvement of DFT performances. To this
purpose, in this paper we concentrate on a critical issue in this regard, namely the problem of
size consistency in DFT in the presence of degeneracy.

The Hohenberg-Kohn theorems [2] and the Kohn-Sham method [3] provide a firm basis for
DFT calculations, in which the ground state energy and density of a many-electron system is
obtained by using energy density functionals that can be rigorously defined. Unfortunately, the
exact definition does not give a prescription that can be followed in practice. Approximations
are needed for the exchange-correlation energy Exc[n] as a functional of the electronic density
n(r), together with the corresponding exchange-correlation part of the Kohn-Sham potential,
i.e., the functional derivative of Exc[n] with respect to n(r). It is worth stressing that none of
the available approximate Exc[n] satisfies two basic requirements:

• to provide reasonable error estimates;

• to allow systematic improvement, meaning that one knows how to reduce the errors by
means of a well defined procedure.
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Moreover, size consistency in DFT, which is often taken for granted (at least for systems
composed of closed-shell fragments) can still be an issue, as discussed in the following sections.
This paper is organized as follows. Section 2 discusses the general form of many approximate
energy density functionals, focusing on the size consistency problem in the Hohenberg-Kohn
framework. A similar analysis within the Kohn-Sham theory is then carried out in Sec. 3.
Systems with fractional electron number are discussed from the same point of view in Sec. 4.
The last Sec. 5 is devoted to concluding remarks.

2. Size consistency and density functional theory

The Hohenberg-Kohn theorems [2] state that the energy of a many-electron system is a
variational functional of the density, E[n], given by the sum of a universal part, F [n], and a

linear functional determined by the external potential V̂ne =
∑

i vne(ri) acting on the electrons,

E[n] = F [n] +

∫

dr vne(r)n(r). (1)

Although the great success of DFT comes essentially from the introduction of the Kohn-Sham
kinetic energy functional, orbital-free DFT is appealing for its lower computational cost, and is
nowadays an active field of research (see, e.g., [4]). It is thus worth to first analyze the size-
consistency issue in the pure Hohenberg-Kohn framework. In orbital-free DFT the universal
functional F [n] of Eq. (1) is rewritten as

F [n] = Ekxc[n] + EH[n], (2)

where EH[n] is the usual Hartree classical repulsion energy, EH[n] = 1
2

∫

dr
∫

dr′n(r)n(r′)|r −
r′|−1, and Ekxc[n] is the remaining part of the energy, the kinetic and exchange correlation
functional, that needs to be approximated. The simplest approximations to Ekxc[n] have the
form

EAPPR
kxc [n] =

∫

drf(n(r), |∇n(r)|, ...), (3)

where the function f is chosen to yield accurate properties for selected systems, e.g., the energy
of the uniform electron gas, and/or to satisfy some known exact constraints, like scaling relations.

The requirement of size consistency for a quantum chemistry method is that the result for
the energy E(A+B) of two non-interacting systems A and B (e.g., which are at infinite distance
from each other) be equal to the sum of their individual energies, E(A)+E(B). Size consistency
is evidently crucial when computing dissociation energies.

When approximations of the form of Eq. (3) are used, one is tempted to believe that size-
consistency is guaranteed if the function f is intensive, i.e., if its value in the domain of space
pertaining to system A, ΩA, is not changed by the presence of the system B very far from A. A
corresponding statement can be made for the integration ΩB over the region of system B. As
the integral in the composite system is the sum over the regions of the individual (sub-)systems,

∫

drf(n(r), |∇n(r)|, ...) =

∫

ΩA

drf(n(r), |∇n(r)|, ...) +

∫

ΩB

drf(n(r), |∇n(r)|, ...) (4)

size consistency would be guaranteed (for the Hartree and the external potential terms the
same partition obviously holds for non-interacting subsystems). The basic belief behind this
statement is that the density itself be an intensive quantity, i.e., that the total density nA+B(r)
of the composite system A + B be equal to

nA+B(r) =

{

nA(r) r ∈ ΩA

nB(r) r ∈ ΩB
(5)



However, this is not true when one of the two systems (or both) has a degenerate ground state
with different densities. In this case, even an infinitesimal interaction with the other system can
select one of the states (or a specific ensemble of some of the degenerate states). This change is
not infinitesimal, and depends on the nature of the other system. Simple examples are diatomic
molecules in which the individual atoms have partially filled shells with ℓ > 0 (e.g. B2, C2,
...). An even simpler example is one of such atoms (with degenerate non-spherical densities)
perturbed by a proton placed at a large distance. Thus, for degenerate systems, Eq. (5) should
be replaced by

nA+B(r) =

{
∑

i wi(B)nAi(r) r ∈ ΩA
∑

i wi(A)nBi(r) r ∈ ΩB
(6)

where nAi(r) and nBi(r) are, respectively, the ith degenerate densities of A and B, and the
notation wi(B) (and wi(A)) explicits the dependence of the weights of each ensemble (

∑

i wi = 1
and 0 ≤ wi ≤ 1) on the presence of the other system, even if very far away. Equation (6) shows
the non intensive character of the density in the presence of degeneracy.

The exact F [n], of course, would preserve the degeneracy so that it would give for any linear
combination of the degenerate densities, say, nAi(r) the same energy for the system A, leading
to size consistency. But none of the available approximate functionals is able to preserve the
degeneracy of the physical system, as none is invariant within the set of degenerate densities.
Typically, when treating the isolated systems with an approximate functional, one obtains a
lower energy with one of the degenerate densities, or for a particular ensemble. This means
that the approximation is size consistent only for some very specific choices of A and B, not in
general.

Notice that here we consider the simple case in which different degenerate wavefunctions yield
different densities. The interesting case of different denegerate wavefunctions corresponding to
the same density is deeply analyzed in [5].

3. Kohn-Sham framework

In their foundational work, Kohn and Sham [3] split the functional Ekxc[n] of Eq. (2) into

Ekxc[n] = Ts[n] + Exc[n], (7)

where Ts[n] is the kinetic energy of a system of non-interacting fermions with density n(r) [6],

Ts[n] = max
v

{

min
Φ

〈Φ|T̂ + V̂ |Φ〉 −

∫

drn(r) v(r)

}

, with V̂ =

N
∑

i=1

v(ri), (8)

where Φ is in most cases a single Slater determinant. The N spin-orbitals φi entering in Φ are
determined via the self-consistent equations

[

−
1

2
∇2 + vH(r)[n] + vxc(r)[n] + vne(r)

]

φi(r) = ǫiφi(r), n(r) =
∑

i

fi|φi(r)|
2,

vH(r)[n] =
δEH[n]

δn(r)
, vxc(r)[n] =

δExc[n]

δn(r)
. (9)

The Kohn-Sham potential vKS = vH[n] + vxc[n] + vne is the maximizing potential of Eq. (8).
Common approximations for the exchange-correlation energy Exc[n] are typically of the form of
Eq. (3), so that as far as size consistency in the presence of degeneracy is concerned, we can
apply to the Kohn-Sham Exc[n] the same considerations of the previous section, although in
this case the situation is complicated by the presence of the functional Ts[n], which depends



on the density in a rather complex way. Ts[n] can have different values for different densities
ni(r) that are degenerate in the physical system. The work of Fertig and Kohn [7] clearly shows
that to different degenerate ni(r) can correspond different Kohn-Sham potentials vKS,i(r). For
example, in an open shell atom with several degenerate non-spherical densities we have different
non-spherical Kohn-Sham potentials, one for each symmetry. And for an ensemble of these
densities, we usually need yet another Kohn-Sham potential [8].

The requirement for approximate Exc[n] to recover the degeneracy of the physical system has
been recognized by several authors. Usually, it is written in the form (see, e.g., Ref. [9])

Ts[Σiwi ni] + Exc[Σiwi ni] + EH[Σiwi ni] = Σiwi (Ts[ni] + Exc[ni] + EH[ni]) , (10)

where ni are the densities of the physical system corresponding to a set of orthonormalized
degenerate ground-state wavefunctions Ψi, and Eq. (10) should hold for any set of the weights
wi. However, as noted in Refs. [10, 8], imposing Eq. (10) to approximate Exc[n] is probably a
daunting task: the Hartree energy EH[Σiwi ni] contains cross terms ij, and must be compensated
by a complex interplay between Ts and Exc. This is illustrated with simple examples in the next
Sec. 4.

In practical Kohn-Sham calculations, the individual spin densities, n↑(r) and n↓(r), are used
as two indipendent variables. In this case the total energy is rewritten as

E[n↑, n↓] = Ts[n↑, n↓] + EH[n] + Exc[n↑, n↓] +
∫

dr v(r)n(r). (11)

As the total density, the spin densities are also non-intensive. Besides, degeneracy can occur
more often than when considering the total density only. The simplest example is the hydrogen
atom, which has two degenerate set of spin densities, n↑ = n, n↓ = 0 and n↑ = 0, n↓ = n. In
the streched hydrogen molecule, we have the equi-ensemble of the two on each atom.

4. Fractional number of electrons

The behavior of density functionals in the presence of a fractional number of electrons has been
widely investigated [11, 12, 13]. Nowadays, there is a renovated interest in this issue (see, e.g.,
[14, 15, 16]), which has lead to the definition of the “many-electron self-interaction error”.

Fractional number of electrons can be recast in the same class of problems (degeneracy and
size-consistency) discussed in the previous sections (see also Ref. [9]). To understand why,
consider the simple example of the stretched He+

2 molecule, where now system A is the He
nucleus plus its electronic cloud on the left, and system B is the one on the right. We can take
the two degenerate densities n2,1(r) and n1,2(r),

n2,1(r) =

{

nHe(r) r ∈ ΩA

nHe+(r) r ∈ ΩB
n1,2(r) =

{

nHe+(r) r ∈ ΩA

nHe(r) r ∈ ΩB
(12)

and form any ensemble of the two. We should always get the same energy. In particular, we can
choose the symmetric one, n3/2,3/2(r) = 1

2n2,1(r) + 1
2n1,2(r), which yields 3

2 electrons on A and
3
2 electrons on B. Since the two degenerate wavefunctions corresponding to n1,2(r) and n2,1(r)
have zero overlap, we must have, for any 0 ≤ w ≤ 1,

E[w n2,1 + (1 − w)n1,2] = w E[n2,1] + (1 − w)E[n1,2]. (13)

If we now only look at the region pertaining to system A, we find [11, 9]

EA[(1 − w)nHe+ + w nHe] = (1 − w)EA[nHe+ ] + w EA[nHe], (14)
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Figure 1. The non-interacting Kohn-Sham kinetic energy functional Ts, the exchange functional
Ex, the correlation functional Ec, and their sum Exc for the ensemble n = (1 − w)n1 + w n2

formed by the N = 1 and N = 2 densities of the Hooke’s atom series, as a function of the weight
w. All quantities are exact, calculated from the analytical solutions given by Taut [17], and are
reported in Hartree atomic units.

which is the usual result for the energy of a fractional number of electrons [11, 12, 13],
corresponding to the well-known requirement for density functionals as a function of w,

Ts[(1 − w)nN + w nN+1] + EH[(1 − w)nN + w nN+1] + Exc[(1 − w)nN + w nN+1] =

(1 − w) (Ts[nN ] + EH[nN ] + Exc[nN ]) + w (Ts[nN+1] + EH[nN+1] + Exc[nN+1]) , (15)

where nN and nN+1 are the densities of the physical system (same vne) with N and N + 1
electrons, respectively. Equation (15) is formally equivalent to Eq. (10). We have only two
densities nN and nN+1, non-degenerate on the same region A, coming from the degeneracy
arising in systems composed of many sub-systems [9].

Again, we may wonder whether Eq. (15) can ever be attained by approximate functionals.
To illustrate the complicated interplay between Ts and Exc as a function of w, we consider
here the simple cases of the Hooke’s atom series (two interacting electrons in an harmonic
external potential, vne(r) = 1

2kr2), and of the He isoelectronic series (two interacting electrons
with vne(r) = −Z/r). The Hooke’s atom series has a set of analytical solutions for specific
values of the spring constant k [17]. Thus, we can calculate the exact densities and energies for
N = 1 and N = 2 electrons, and, by inversion (see [18]), all the exact Kohn-Sham functionals
corresponding to the ensemble density (1−w)n1 + w n2. In Figure 1 we report, as a function of
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Figure 2. The non-interacting Kohn-Sham kinetic energy functional Ts, the exchange functional
Ex, the correlation functional Ec, and their sum Exc for the ensemble n = (1 − w)n1 + w n2

formed by the N = 1 and N = 2 densities of the He atom series, as a function of the weight w.
All quantities are very accurate, calculated from the variational wavefunctions of Ref. [19] (see
also [20] and [21]), and are reported in Hartree atomic units.

w, the exact Ts[(1−w)n1 +w n2] and Exc[(1−w)n1 +w n2] (with its two components, exchange
and correlation, separately) for three different values of k. As k decreases, the system becomes
more and more correlated. The non-interacting kinetic energy Ts as a function of w changes
from being almost linear in the less correlated case k = 1

4 , to displaying a minimum in the more

correlated case k = 4
(

35−3
√

57
1424

)2
≈ 0.0003. The functional Exc must compensate the quadratic

behavior of EH with w,

EH[(1 − w)n1 + w n2] = (1− w)2 EH[n1] + w2 EH[n2] + w (1 − w)

∫

dr

∫

dr′
n1(r)n2(r

′)
|r− r′|

, (16)

as well as the non-linear behavior of Ts for correlated systems.
A very similar trend of the functionals is observed for the He isoelectronic series, as shown

in Fig. 2. In this case we have used an improved version [20] of the accurate variational
wavefunctions and energies of Ref. [19] (see also [21]) to calculate the exact functionals. Notice
in particular the behavior of Ts for the more correlated case, Z = 1.

A closed shell interacting system of two-electrons is weakly correlated when n2(r) ≈ 2n1(r).
In this case, the ensemble density with the corresponding N = 1 system is simply given by
w n1 + (1−w)n2 ≈ (1+ w)n1, and Ts[(1−w)n1 + w n2] ≈ (1−w)Ts[n1] + w Ts[n2]. This is the



case, e.g., of the Ne8+ system of Fig. 2, for which Ts is almost linear. However, the deviation of
the Hartree term from linearity,

EH[(1 − w)n1 + wn2] − (1 − w)EH[n1] − wEH[n2] =

= −w (1−w)
2

∫

dr
∫

dr′ [n2(r)−n1(r)][n2(r′)−n1(r′)]
|r−r

′| = −w (1 − w)EH[n2 − n1] (17)

is significantly different from zero when n2 ≈ 2n1, while it could become smaller when n2 is much
more diffuse than 2n1. For example, for an ensemble of H and H− we have EH[n2−n1] = 0.1203
Hartree, while EH[n1] = 0.3125 Hartree. That is, if the N = 2 system were less correlated so
that n2 − n1 were equal (or close) to n1, EH would be further from the linear behavior. So (in
the simple systems considered here) when Ts is closer to linearity EH can be further from it,
and viceversa.

While the relative deviation of Ts from linearity decreases as the N = 2 system becomes less
correlated (as shown in Figs. 1 and 2), the maximum absolute value of Ts[(1 − w)n1 + wn2] −
(1 − w)Ts[n1] − wTs[n2] is always of the same order of magnitude, i.e. ≈ 2 mH for the Hooke’s
series and ≈ 15 mHartree for the He series.

5. Conclusions

Size-consistency in DFT is often taken for granted with approximate functionals of the form of
Eq. (3), because the density is believed to be an intensive quantity. However, the density is not
intensive in the presence of degeneracy. An attempt to build a correct description of ensembles
in DFT seems in order [22], but using Eqs. (10) and (15) is probably not the best starting point.
The alternative path of building ensembles of Kohn-Sham systems (e.g., using different Kohn-
Sham potentials for each symmetry of the degenerate system [10]) deserves further investigation.
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