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� Abstract

As density functional theory conventionally assumes that the density of a chosen model system (e.g., the Kohn−Sham system) is
the same as the exact one, one might expect that approximations to the exact density introduce supplementary errors by falsifying
the density. In fact, this is not true: by modelling the exchange−correlation holes for all densities, density functional approxima−
tions avoid this problem. The technique used to show it is a potential−driven adiabatic connection which hopefully will also
permit constructing new approximations in the spirit of DFT.

� Introduction

DFT

In density functional theory (DFT) the Schrödinger equation is solved for model systems where the interaction between particles

is fictitious, i.e., not the physical, Coulomb one . In the Kohn−Sham model 1, for example, the interaction is reduced to its
simplest form: it is set to zero. The energy of the model is, of course, different from that of the physical system. Insight into the
nature of this difference, which is needed for obtaining the energy, can be obtained by considering an ’adiabatic connection’, a

process in which the interaction is progressively modified between that of  the of the model to that of the physical system 2-5.
The evolution between the model and the physical system can be characterized by a parameter, Λ which varies between Λ0,

characterizing the model, and Λ1 characterizing the physical system. 

In its most widespread formulation, the expression of the correction to the model energy, needed to obtain the exact energy,
contains the evolution of the pair density, P2Hr1, r2L along the adiabatic connection. Modelling P2Hr1, r2L was not only success−

fully used for constructing many of the density functional approximations (see,e.g., Refs. 6-12 ), but is also explicitly used in

methods like the random phase approximation (see, e.g., Refs. 13, 14).   In its most widespread variant, although P2 is a function

of Λ, the one−particle density nHrL does not vary along the adiabatic connection 3.



Model densities may not be exact

With a density functional approximation (DFA) the model  does not yield the exact density; in general, nΛ0 ¹ nΛ1.   In the follow−
ing, a simple example will be given. It can be considered exaggerated, but it has the advantage that accurate numbers are known

for it 15 . The system of two non−interacting particles in the potential -Ζ �r will be assumed to be an approximation of the exact
Kohn−Sham system which yields the density of the He atom. The choice Ζ = 1.344 ..  yields the exact asymptotic decay of the
density of the He atom. This model system thus reproduces exactly only a given property of the physical density, not the physical
density itself.  One can numerically construct a system in which the interaction between electrons is of Coulomb type, but has

the density of this model, nΛ0 = 2 IΖ3�ΠM expH-Ζ rL   15 and calculate the ground state energy of the fully interacting system

having this density, in the external potential of the He atom. Keeping the density constant produces a very large error in the total
energy (» 0.13hartree ).  Not surprisingly, the largest error comes from the electrostatic part of the electron−electron interac−
tion, » 0.37 hartree and the difference in the one−particle part of the energy is of the same order of magnitude, » 0.3 hartree. If
one concentrates, however, on the parts which are modelled in DFT, the situation is better: the correlation energy obtained for

the physically interacting system with nΛ0 is −0.043 hartree , reasonably close to that of the He atom (see, e.g.,  Ref. 16), −0.042

hartree. However, the exchange energy differs considerably; it is −0.840 hartree 15 for the system with nΛ0, vs. −1.025 for the He

atom (see, e.g.,  Ref. 16).

This example seems to support the idea that one should take into account the change of the density between the model and the
physical system. 

Objective

The objective of this paper is to show that, with a slightly modified adiabatic connection, the problem of variable density is in
fact avoided by DFAs. The key idea is that one has to take into account that DFAs provide models for all densities. Furthermore,
it will be argued that the modified adiabatic connection allows going beyond DFAs  in a systematic way. Of course, like in all
methods of Quantum Chemistry, this last step has to be payed with more computational effort.

� The modified adiabatic connection

Family of Hamiltonians

Let us consider a family of model Hamiltonians, Λ0 £ Λ £ Λ1

(1)HΛ ºHIvΛ, wΛM = T + VΛ +WΛ

where

(2)VΛ =â
i=1,N

vΛHriL
is a local one−particle potential,

(3)Vne=â
i=1,N

vneHriL
is the physical local one−particle potential  IvΛ1 º vneM,

(4)WΛ =â
i< j

wIri, r jM
is  an operator  which describes a  fictitious two−particle  interaction ,  which becomes,  for  Λ = Λ1,  the  physical  two−particle
interaction

(5)Vee=â
i< j

veeIri, r jM



veeHr, r ’ L = 1� r - r ’ , in hartree atomic units.

In order to compare with DFT, vΛ is further decomposed:

(6)vΛHrL = vneHrL + vhIr; n, vee- wΛM + vxc
ΛHrL

where

(7)vhHr; n, wL º à d3 r ’ nHr ’ LwHr, r ’ L
and vxc

Λ  is defined by Eq. 6. Below, for analyzing approximations, we will proceed in a different way: we will choose some

vxc
ΛHrL, and use  Eq. 6 to define vΛ; vxc

Λ will be chosen to vanish as Λ ® Λ1, to ensure that vΛ1 ® vne.

Energy expression

To obtain the total energy we will write, also in analogy to DFT,

(8)E = YYΛ T + Vne+WΛ YΛ] +UAnΛ; vee- wΛE + ExcAvΛ, wΛE
where

Y is an antisymmetric wave function; YΛ will be used as a notation for a minimizing Y . YΛ yields the one−particle density nΛHrL.
Furthermore,

(9)U@n; wD º 1

2
à à nHrL nHr ’ LwHr, r ’ L

is a Hartree (i.e., electrostatic) term and Exc is defined by Eq. 8.

Please notice that the last two terms on the r.h.s. of Eq. 8 vanish when Λ = Λ1.

Variation with Λ

In order to study the change w.r.t. Λ, after taking the derivative of Eq. 8 w.r.t. Λ, we get

(10)0= YYΛ ¶ΛWΛ YΛ] -UAnΛ; ¶ΛwΛE - à vxc
Λ ¶ΛnΛ + ¶ΛExcAvΛ, wΛE

To obtain Eq. 10, have used the variational character of YΛ for HΛ, 

(11)

¶Λ YYΛ T + Vne+WΛ YΛ] = ¶Λ YYΛ T + VΛ +WΛ YΛ] + ¶Λà d3 r Ivne- vΛM nΛ =
YYΛ ¶ΛVΛ + ¶ΛWΛ YΛ] - à d3 r nΛ ¶Λ vΛ + à d3 r Ivne- vΛM ¶ΛnΛ =

YYΛ ¶ΛWΛ YΛ] + à d3 r Ivne- vΛM ¶ΛnΛ,

and

(12)¶ΛUAnΛ; vee- wΛE = à d3 r vhIr; nΛ, vee- wM ¶ΛnΛ -
1

2
à à d3 r d3 r ’ nHrL nHr ’ L ¶ΛwΛ,

as well as Eq. 6.



Integrated formulas

Eq. 10 can be integrated over Λ, between Λ0 and Λ1, to yield

(13)ExcAvΛ0, wΛ0E = à
Λ0

Λ1

d Λ KYYΛ ¶ΛWΛ YΛ] -UAnΛ; ¶ΛwΛE - à vxcIr; nΛ, vee- vΛM ¶ΛnΛO

One can also use the exchange−correlation part of the pair density produced by YΛ, P2Ir1, r2; YΛM,
(14)PxcIr1, r2; YΛM = P2Ir1, r1; YΛM - nΛHr1L nΛHr2L

to re−write Eq. 13 as 

(15)ExcAvΛ0, wΛ0E = à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ PxcIr1, r2; YΛM ¶ΛwΛHr, r ’ L - à

Λ0

Λ1

d Λà vxc
ΛHrL ¶ΛnΛHrL

Hamiltonian−driven adiabatic connections

In the derivation of the formulas above, the adiabatic connection was driven by the change in the Hamiltonian, in particular by
the change of the one− and two−body potential: it was potential−driven. One can also produce model Hamiltonians by changing

the kinetic energy operator. For example, one can keep the two−body operator equal to Vee for all Λ (cf., e.g., Ref. 17). With
such a one−body−operator driven adiabatic connection one can produce expressions for the correlation energy which depend on

the one−body density matrix along the adiabatic connection, ΓIr, r ’; YΛM.
This type of adiabatic connection will not be discussed here, as it is only seldom used to produce approximations to the universal
correlation energy functional.

� Relationship to DFT

Relationship to exact DFT

The adiabatic connection formula of DFT is well−known 3. The resulting equation has the same form as  Eq. 15 without the last

term on the r.h.s., as n does not vary with Λ. One should keep in mind that in DFT Exc is not determined by vΛ0 and wΛ0, but by n

and wΛ0, 

(16)ExcAn, wΛ0E = à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ PxcIr, r ’; YΛM ¶ΛwΛHr, r ’ L

and that vΛ is constructed by using in Eq. 6 

(17)vxc
ΛHrL = ∆ ExcAn, wΛ0E � ∆ nHrL .

Density functional approximations

In practice, DFAs are made to define the model systems: Exc is in general replaced by some approximation, E
�

xc:

(18)E
�

xcAn�Λ0, Λ0E = à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ P

�
xcIr, r ’; n

�Λ0HrLM ¶ΛwΛHr, r ’ L

P
�

xc is some model for Pxc; in LDA, for example, it is that of the uniform electron gas with density n
�Λ0HrL; n�Λ0  is the density

obtained from Y
� Λ0 which in turn depends on wΛ0 and vΛ0. For the latter, Eq. 6 is used, and 



(19)v
�
xc
Λ0Hr; n, wL º ∆ E

�
xc@n, Λ0D�∆ nHrL

at n = nΛ0.

Comparing the equation of DFT, Eq. 16, with that of DFAs, Eq. 18, one can notice two differences: i) the latter uses of a model,

and ii) the model uses nΛ0 instead of nΛ. The latter point arises as the DFT assumption was made in the derivation, namely that n

was assumed not to change with Λ. (When a calculation at Λ0 is done, only nΛ0 is known, so that the information about nΛI>Λ0M is
missing.)

¶ΛE
�

xcAnΛ; ΛE

Notice that E
�

xc depends on Λ implicitly, via the Λ−dependence of nΛ, and explicitly, for a given Λ, as the functional will change

for the same density, as the interaction wΛ changes with Λ:

(20)¶ΛE
�

xcAnΛ, ΛE = ¶ΛE
�

xcAnΛ, Λ�E Λ�=Λ +¶ΛE
�

xc@n, ΛD n=nΛ

The first term on the r.h.s. is the derivative of E
�

xc at fixed Λ which by the chain rule is

(21)¶ΛE
�

xcAnΛ, Λ�E Λ�=Λ = à v
�
xcIr; nΛ, wΛM ¶ΛnΛHrL

while the last term on the r.h.s. of  Eq. 20, the derivative at fixed n, is , by using Eq. 18,  

(22)¶ΛE
�

xc@n, ΛD n=nΛ = -
1

2
à à d3 r d3 r ’ P

�
xcIr, r ’; nΛHrLM ¶ΛwΛHr, r ’ L

Special choice for vxc
Λ

We now go back to the adiabatic connection in which the density is allowed to vary, but specify now a potential which until now
was arbitrary. We choose 

(23)vxc
ΛHrL = v

�
xcIr; nΛ, wΛM

By this choice,   

(24)YΛ = Y
� Λ

nΛ = n
�Λ

Adiabatic connection for the special choice of vxc
Λ

We can use Eq. 23 in Eq. 15,  next use Eq. 21, followed by Eq. 20, and finally use Eq. 22

25)



25)

ExcAvΛ0, wΛ0E = à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ PxcIr1, r2; YΛM ¶ΛwΛHr, r ’ L - à

Λ0

Λ1

d Λà v
�
xcIr; nΛ, wΛM ¶ΛnΛHrL =

à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ PxcIr1, r2; YΛM ¶ΛwΛHr, r ’ L - à

Λ0

Λ1

d ΛI¶ΛE
�

xcAnΛ, Λ�E Λ�=ΛM =

à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ PxcIr1, r2; YΛM ¶ΛwΛHr, r ’ L - à

Λ0

Λ1

d ΛI¶ΛE
�

xcAnΛ, ΛE - ¶ΛE
�

xc@n, ΛD n=nΛM =

à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ PxcIr1, r2; YΛM ¶ΛwΛHr, r ’ L -

à
Λ0

Λ1

d ΛI¶ΛE
�

xcAnΛ, ΛEM - à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ P

�
xcIr, r ’; nΛHrLM ¶ΛwΛHr, r ’ L

so that, with E
�

xcAnΛ0, Λ1E = 0,

(26)ExcAvΛ0, wΛ0E - E
�

xcAnΛ0, Λ0E = à
Λ0

Λ1

d Λ
1

2
à à d3 r d3 r ’ IPxcIr1, r2; YΛM - P

�
xcIr, r ’; nΛHrLMM ¶ΛwΛHr, r ’ L

Interpretation

Eq. 26 shows that the error of the model is due the difference between PxcIYΛM and the model P
�

xcInΛM. As in DFA the models are

defined to work for all densities (as one does not know beforehand what density is of interest) they also work for nΛ. Thus, from
the perspective of Eq. 26 (and of the modified adiabatic connection) there is no need for  any supplementary correction due to
density changes.

Relevance for  DFAs

When the ground state energy is computed, Eq. 26 tells us that we can comfortably ignore the fact that the density of the model is
not the exact one ~ as long as the DFA is based upon a hole model. Most existing approximations used (the local density
approximation, LDA, most of the generalized gradient approximations, GGAs, etc.)  are based on hole models.

Notice also that in ’density functional calculations’  sometimes potentials are used which are not derivatives of a functional of
the density. They show up, e.g., when optimized effective potentials are used, or when making approximations for time−depe−
nent DFT, e.g., for correcting the asymptotic behavior of the approximate Kohn−Sham potential. In such situation one leaves the
standard frame of DFT, but not that of the present approach.

� Perspectives

Losses and gains

A Hamiltonian−driven adiabatic connection is identical to the adiabatic connection in DFT when the density is kept constant.
When the density is not kept fixed, it looses the pure beauty of DFT. However, the added flexibility might not only bring closer
theory to what is done in practice in DFAs, but also might give some hints about how to improve approximations. Finally, many
of the successful DFAs were constructed from hole models, and they can continue to be used in the potential−driven adiabatic
connection.

Choosing vΛ

Analyzing vΛ was used over the years to understand DFAs which are normally constructed by using an ansatz of the form



(27)E
�

xc@n, Λ0D = à d3 r nHrL ¶Λ ¶�xc
ΛInHrL, ÑnHrL 2, ...M

Unfortunately, the equality does not suffice to define ¶
�

xc: the l.h.s. is a number, while ¶
�

xc is a function. (In other words, any

function which multiplied with n integrates to zero can be added to ¶
�

xc without changing the value of the integral.) However, in

DFT, one can compare safely, for a given system, the accurate vxc
Λ, Eq. 17, with that obtained from approximations. Thus, one

can also use the knowledge gained in the last years for constructing accurate vxc
Λ in DFT for constructing  vΛ for the potential−

driven adiabatic connection.

By the requirement of using model systems having as ground state density the exact one, DFT ensures that the model system is
in most cases sufficiently close to the exact one, e.g., has the exact electrostatic energy. In practice, however, as the exact density
is unknown, DFAs produce only  ’reasonable’ densities. Thus, to have similar performance in the potential−driven adiabatic

connection, the vΛ should yield ’reasonable’ densities, and thus be sufficiently ’close’ to the vΛ which keep the density constant.

As the terms ’reasonable’ and ’close’ are not well−defined, the choice of vΛ is left to further exploration. It is possible to perform
calculations in the spirit of DFT without the constraint of using potentials which are derivatives of some density functional. To

start the explorations, however, one can imagine using forms of vΛ  similar to those existing in DFAs; a few parameters in vΛ

could be determined ’on the flight’, i.e., made system specific, e.g., by using perturbation theory, see below.  

State following

In the potential−driven adiabatic connection the model system does not have to be in its ground state. (Of course, the model for
the pair density will have to show some dependence on the state chosen, e.g., by a dependence on the depth of the exchange−

correlation hole, cf. Refs. 18-20.) By convenient choices of vΛ, it should not only be possible to follow a given state along the
adiabatic connection,  but  also to avoid some of  the surprises produced in model  systems keeping the ground state density
constant (the change of the nature of the ground state, artificial degeneracies, missing degeneracies, jumps, ...). As the potential−

driven adiabatic connection has more flexibility, size−consistency problems as those presented in 21, might also be avoided. 

Perturbation series for improving Exc
Λ

The idea to use perturbation theory to improved density functionals (see, e.g. 22) can also borrowed for the present context.

Considering the system at Λ0, defined by the Hamiltonian HΛ0, one can recover information about the system at HΛ  by using

perturbation series where the perturbation operator is HΛ -HΛ0. To obtain the first−order correction to the energy might be not
very expensive, as only the wave function (or the reduced density matrices) at Λ0 are needed. The ’slope of the correction’ being

now known, can be used for improving ’on the flight’ Exc, e.g., by re−adjusting the depth of the exchange−correlation hole. 

Such an approach to correct Exc  was already used with a different adiabatic connection, where the one−electron part of the

Hamiltonian is modified, TΛ + VΛ + Vee . 17 

By a change of viewpoint one can see the perturbation series as resulting from taking derivatives w.r.t.  Λ.  Taking the first
derivative w.r.t. Λ in Eq. 8 is equivalent to considering the first−order perturbation term. Higher derivatives are related to higher

orders in perturbation theory. One can use, as when deriving Eq. 10, that the total physical energy, E, is independent of Λ. This

method yields further equations which can be used to constrain Exc using information specific to the system.

 The adiabatic connection,  Eq. 13 or Eq. 15, amounts to replace the perturbation expansion in one point with first−order perturba−

tion corrections on all points between Λ0 and Λ1. This suggests that one could repeat the calculation at a new Λ0, say Λ0 ’ , and use

both the information at Λ0 and Λ0 ’  to improve an existing ansatz for an approximation of the exchange−correlation term. This
could be useful, for instance, if we want either to avoid the effort of higher order perturbation calculations, or we don’t trust the
perturbation expansion to higher order.   

Still another way to exploit the adiabatic connection is to use different potentials, and to compute different corrections to it,
starting at the same Λ0. Of course, in principle, the physical energy, E, is independent of the path chosen. This constraint may be

a path to further improve the approximations for Exc.

�
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