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= Abstract

As density functional theory conventionally assumes that the density of a chosen model system (e.g., the Kohn—-Shan
the same as the exact one, one might expect that approximations to the exact density introduce supplementary errors
the density. In fact, this is not true: by modelling the exchange—correlation holes for all densities, density functional ap
tions avoid this problem. The technique used to show it is a potential-driven adiabatic connection which hopefully w
permit constructing new approximations in the spirit of DFT.

= Introduction

DFT

In density functional theory (DFT) the Schrédinger equation is solved for model systems where the interaction betwee

is fictitious, i.e., not the physical, Coulomb one . In the Kohn-Sham mébgdfar example, the interaction is reduced to it
simplest form: it is set to zero. The energy of the model is, of course, different from that of the physical system. InsigFr
nature of this difference, which is needed for obtaining the energy, can be obtained by considering an 'adiabatic conr

process in which the interaction is progressively modified between that of the of the model to that of the physical3ys
The evolution between the model and the physical system can be characterized by a pararheteryaries betweeny,

characterizing the model, ang characterizing the physical system.

In its most widespread formulation, the expression of the correction to the model energy, needed to obtain the exac
contains the evolution of the pair densi®g(r;, r,) along the adiabatic connection. ModelliRgr,, ro) was not only success
fully used for constructing many of the density functional approximations (see,e.g., ®R€f}, but is also explicitly used in
methods like the random phase approximation (see, e.g., Befd. In its most widespread variant, althoughis a function
of A, the one—particle densityr) does not vary along the adiabatic connection



Model densities may not be exact

With a density functional approximation (DFA) the model does not yield the exact density; in géneraf:. In the follow-
ing, a simple example will be given. It can be considered exaggerated, but it has the advantage that accurate number

for it 15. The system of two non—interacting particles in the potentiat will be assumed to be an approximation of the e

Kohn-Sham system which yields the density of the He atom. The chsiée344 . yields the exact asymptotic decay of tt
density of the He atom. This model system thus reproduces exactly only a given property of the physical density, not t
density itself. One can numerically construct a system in which the interaction between electrons is of Coulomb type

the density of this modeiy'o = 2(£3/x)exp(—¢r) *° and calculate the ground state energy of the fully interacting syst
having this density, in the external potential of the He atom. Keeping the density constant produces a very large error
energy (~ 0.13hartree ). Not surprisingly, the largest error comes from the electrostatic part of the electron—electron

tion, ~ 0.37 hartree and the difference in the one—particle part of the energy is of the same order of maggitBiartree. If
one concentrates, however, on the parts which are modelled in DFT, the situation is better: the correlation energy ok

the physically interacting system witfe is —0.043 hartree , reasonably close to that of the He atom (see, e.g%)Re0.042
hartree. However, the exchange energy differs considerably; it is —0.840 h&rfarethe system witine, vs. —1.025 for the H
atom (see, e.g., Ref®).

This example seems to support the idea that one should take into account the change of the density between the mc
physical system.

Obijective
The objective of this paper is to show that, with a slightly modified adiabatic connection, the problem of variable dens
fact avoided by DFAs. The key idea is that one has to take into account that DFAs provide models for all densities. Fu

it will be argued that the modified adiabatic connection allows going beyond DFAs in a systematic way. Of course, lil
methods of Quantum Chemistry, this last step has to be payed with more computational effort.

= The modified adiabatic connection

Family of Hamiltonians

Let us consider a family of model Hamiltoniarg=2A < A,

HY = H(V, w) = T+ VA + WA 1)
where

Vi= ) Vi ©)
is a local one—particle potential,

Ve = Z:l,N Vhe(ri) 3
is the physical local one—patrticle potent(zsrfl = vne),

A
W= (i r) (4)

is an operator which describes a fictitious two—patrticle interaction , which becomass gt the physical two—particle
interaction

Vee= Zq.vee(ri, rj) 5)



Vedl, r')=1/|r —r" |, in hartree atomic units.
In order to compare with DFT} is further decomposed:

V() = V1) + V(15 1, Vee — W) + Wi'(1) (6)
where

Vh(r; N, W)sfd3r’n(r’)w(r,r’) 7)

andv,' is defined by Eq. 6. Below, for analyzing approximations, we will proceed in a different way: we will choose
Vi'(r), and use Eq. 6 to defing; v,.* will be chosen to vanish as- A4, to ensure that's - vpe.

Energy expression
To obtain the total energy we will write, also in analogy to DFT,
E=(¥"| T+ Vie+ W [ ¥) + U["; Vee— W] + Ex[V', W] (8)

where

¥ is an antisymmetric wave functio&* will be used as a notation for a minimizifig ¥* yields the one—particle density(r).

Furthermore,

1
U[n;w]sgffn(r)n(r’)w(r,r’) 9
is a Hartree (i.e., electrostatic) term afyd is defined by Eq. 8.

Please notice that the last two terms on the r.h.s. of Eq. 8 vanismwtgn

Variation with A

In order to study the change w.At.after taking the derivative of Eq. 8 w.Af.we get

0=(¥" [y W! | 91) - U[n'; ,w'] - f V' G + 0 Exe[V*, W] (10)
To obtain Eq. 10, have used the variational charact tr H”,

O (T | T+ Vie + WH | 91) = 0y (¥1 | T+ VA + W | ¥) +£)Afd3r(vne—v*) n =

(P LV + o W ) - fd3r n oV + fd3r (Vhe — V) da* = (11)
<\P‘|6AW"|l11">+fd3r(vne—\/‘)am*,

and

U[N; Vee — WH| = fd3rvh(r; M, Vee— W) 9y — %f drd®r’ nryner’)aw, (12)

as well as Eq. 6.



Integrated formulas

Eq. 10 can be integrated overbetweeny andi,, to yield
A
Ex[Vo, W] = f 1d/\((\lf7‘ | o W [¥) = U[n'; o w']| - f Vie(F; M, Vee— V) 8An7‘) (13)
Ao

One can also use the exchange—correlation part of the pair density prodﬁéeﬂ’gﬁyl, ro; ‘I’*),
Puc(r1, r2i ¥4) = Po(ry, ry; ¥) = nt(rp n'(ro) (14)

to re-write Eq. 13 as
A 1 Ay
Exc[v%,w‘o]:f d;\gf d®rd®r’ Pec(re, 12 ‘P“)mw‘(r,r’)—f di\fvxc"(r)c’)mk(r) (15)
o Ao

Hamiltonian—driven adiabatic connections

In the derivation of the formulas above, the adiabatic connection was driven by the change in the Hamiltonian, in pan
the change of the one- and two-body potential: it was potential-driven. One can also produce model Hamiltonians by

the kinetic energy operator. For example, one can keep the two-body operator &guébitall A (cf., e.g., Ref. 7). With
such a one-body-operator driven adiabatic connection one can produce expressions for the correlation energy whict

the one-body density matrix along the adiabatic conneqt(onr " ‘P").

This type of adiabatic connection will not be discussed here, as it is only seldom used to produce approximations to tt
correlation energy functional.

= Relationship to DFT

Relationship to exact DFT

The adiabatic connection formula of DFT is well-knowWnThe resulting equation has the same form as Eq. 15 without tl
term on the r.h.s., asdoes not vary witd. One should keep in mind that in DEJ. is not determined by'> andwe, but byn
andw'o,

A 1
= M°]=f d/lgf dBrdr Py(r, r; ¥) o wir, 1) (16)
Ao

and thaw" is constructed by using in Eg. 6

V' (1) = 8 Exe[n, w'e] / o n(r). (17)
Density functional approximations

In practice, DFAs are made to define the model systEgass in general replaced by some approximatifg;
- vl I 2
Exc[A™, Ao :f d/\Ef drdr Pyo(r, r' AO(N) Sy wi(r, 1) (18)
Ao

Py is some model foP,.: in LDA, for example, it is that of the uniform electron gas with derigftyr); i*° is the density

obtained from¥"® which in turn depends om‘ andv'. For the latter, Eq. 6 is used, and



U °(r; 0, W) = 6 Exeln, Aol /6 1(r) (19)
atn=nlo,

Comparing the equation of DFT, Eq. 16, with that of DFAs, Eqg. 18, one can notice two differences: i) the latter uses o
and ii) the model usas® instead oft*. The latter point arises as the DFT assumption was made in the derivation, nanrel

was assumed not to change wit{When a calculation af is done, onlyn'e is known, so that the information abant) is
missing.)

9y Exe[m; 1]
Notice thatE,. depends on implicitly, via theA-dependence af*, and explicitly, for a given, as the functional will changs

for the same density, as the interactidnchanges with.:

O\ Exc[, A] = 01 Exe[n', A] [s_, +02 BN, AT | (20)

The first term on the r.h.s. is the derivativeEgf at fixedA which by the chain rule is
OEx[M, 4] |, = foc(f: ', wh)ayn(r) (21)

while the last term on the r.h.s. of Eq. 20, the derivative at fixexd, by using Eq. 18,
. 1 .
O Exeln, Al [op = — Effd3 rd®r Py(r, 1 mt(n) dawir, r') (22)

Special choice fon,*

We now go back to the adiabatic connection in which the density is allowed to vary, but specify now a potential which
was arbitrary. We choose

V' (1) = vxc(r; n, M) (23)
By this choice,
A

=g

A
n' =

(24)

=1

Adiabatic connection for the special choice of,c*

We can use Eq. 23 in Eg. 15, next use Eq. 21, followed by Eq. 20, and finally use Eg. 22



N1 M
EXC[WU, MO] =f a1 Ef @rdr ch(rl, rz;\P/\) WA, 1) _f d)\f\”/xc(r; n, M) 8\ (r) =
o Lo
N 4 - -
f da Ef Brd®r Py(ry, ra; ¥ awi(r, r') - f dA(0 Exe[r, 1] |)I=A) -
Ao Yo
N 4 . -
f dkgf 1 dr Pelry, 12 #) uwAr, 1) - f dA( Exe[ s A] = 91 Excl M) =
o %o
A1 1
f d/\Ef dBrddr’ ch(rlv rz;\P/‘)aaW‘(r, r-
Ao

Ay - Ay 1 -
f d A(6) Exc[n", )L])—f d)«;f dBrdr Pyr, r'; () o wir, r)
o o
so that, withEy[n', 11| =0,
~ 4 1 -
Exc[V'o, W] = Exc[n'°, 2] =f da Ef dPrd®r (Pc(re, ra; ®) = Pxe(r, r'; n'(n)) dawi(r, 1) (26)
Ao

Interpretation

Eq. 26 shows that the error of the model is due the difference beRygeth) and the modeP,(n'). As in DFA the models ar

defined to work for all densities (as one does not know beforehand what density is of interest) they alsordFkidisy from
the perspective of Eq. 26 (and of the modified adiabatic connection) there is no need for any supplementary correcti
density changes.

Relevance for DFAs

When the ground state energy is computed, Eq. 26 tells us that we can comfortably ignore the fact that the density of 1
not the exact one- as long as the DFA is based upon a hole model. Most existing approximations used (the local d
approximation, LDA, most of the generalized gradient approximations, GGAs, etc.) are based on hole models.

Notice also that in 'density functional calculations’ sometimes potentials are used which are not derivatives of a func
the density. They show up, e.g., when optimized effective potentials are used, or when making approximations for tin
nent DFT, e.g., for correcting the asymptotic behavior of the approximate Kohn-Sham potential. In such situation one
standard frame of DFT, but not that of the present approach.

m Perspectives

Losses and gains

A Hamiltonian—driven adiabatic connection is identical to the adiabatic connection in DFT when the density is kept ¢
When the density is not kept fixed, it looses the pure beauty of DFT. However, the added flexibility might not only brir
theory to what is done in practice in DFAs, but also might give some hints about how to improve approximations. Fina
of the successful DFAs were constructed from hole models, and they can continue to be used in the potential-driven
connection.

Choosingv*

AnalyzingV* was used over the years to understand DFAs which are normally constructed by using an ansatz of the fo



Exc[n, Ao]zdern(r)aléxch(n(r), ARG (27)

Unfortunately, the equality does not suffice to defipe the I.h.s. is a number, whig. is a function. (In other words, any
function which multiplied wit integrates to zero can be adde@gowithout changing the value of the integral.) However
DFT, one can compare safely, for a given system, the acawht€&q. 17, with that obtained from approximations. Thus, «

can also use the knowledge gained in the last years for constructing aggdratdDFT for constructingv' for the potential—
driven adiabatic connection.

By the requirement of using model systems having as ground state density the exact one, DFT ensures that the mod
in most cases sufficiently close to the exact one, e.g., has the exact electrostatic energy. In practice, however, as the
is unknown, DFAs produce only ’'reasonable’ densities. Thus, to have similar performance in the potential-driven a

connection, the! should yield 'reasonable’ densities, and thus be sufficiently 'close’ ta'tiwaich keep the density constat

As the terms 'reasonable’ and 'close’ are not well-defined, the choideiofeft to further exploration. It is possible to perfc
calculations in the spirit of DFT without the constraint of using potentials which are derivatives of some density functic

start the explorations, however, one can imagine using formssifilar to those existing in DFAs; a few parameters'in
could be determined 'on the flight', i.e., made system specific, e.g., by using perturbation theory, see below.

State following

In the potential—driven adiabatic connection the model system does not have to be in its ground state. (Of course, the
the pair density will have to show some dependence on the state chosen, e.g., by a dependence on the depth of the

correlation hole, cf. Refs1®-20)) By convenient choices af, it should not only be possible to follow a given state along
adiabatic connection, but also to avoid some of the surprises produced in model systems keeping the ground state
constant (the change of the nature of the ground state, artificial degeneracies, missing degeneracies, jumps, ...). As tf

driven adiabatic connection has more flexibility, size—consistency problems as those preséhtetight also be avoided.

Perturbation series for improving E,c*

The idea to use perturbation theory to improved density functionals (se€?paan also borrowed for the present contex
Considering the system &g, defined by the HamiltoniaH', one can recover information about the systeird’aby using

perturbation series where the perturbation operatdr is H'. To obtain the first-order correction to the energy might be
very expensive, as only the wave function (or the reduced density matrigggratneeded. The 'slope of the correction’ be
now known, can be used for improving 'on the flighf, e.g., by re—adjusting the depth of the exchange—correlation hole.

Such an approach to corrdgf; was already used with a different adiabatic connection, where the one-electron part c
Hamiltonian is modifiedT* + VA + Vee . 17

By a change of viewpoint one can see the perturbation series as resulting from taking derivativesTakirig the first
derivative w.r.tA in Eqg. 8 is equivalent to considering the first-order perturbation term. Higher derivatives are related t
orders in perturbation theory. One can use, as when deriving Eq. 10, that the total physicaEeiengyependent of. This
method yields further equations which can be used to conBjgairsing information specific to the system.

The adiabatic connection, Eq. 13 or Eq. 15, amounts to replace the perturbation expansion in one point with first-ord
tion corrections on all points betwegfanda;. This suggests that one could repeat the calculation at agheaydy’, and use
both the information atg andAy’ to improve an existing ansatz for an approximation of the exchange—correlation term
could be useful, for instance, if we want either to avoid the effort of higher order perturbation calculations, or we don’t
perturbation expansion to higher order.

Still another way to exploit the adiabatic connection is to use different potentials, and to compute different correctior
starting at the sam,. Of course, in principle, the physical enerByjs independent of the path chosen. This constraint mq
a path to further improve the approximationsEgy.
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