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Abstract

The combination of density-functional theory with other approaches to the many-electron prob-

lem through the separation of the electron-electron interaction into a short-range and a long-range

contribution (range separation) is a successful strategy, which is raising more and more interest in

recent years. We focus here on a range-separated method in which only the short-range correlation

energy needs to be approximated, and we model it within the “extended Overhauser approach”.

We consider the paradigmatic case of the H2 molecule along the dissociation curve, finding encour-

aging results. By means of very accurate variational wavefunctions, we also study how the effective

electron-electron interaction appearing in the Overhauser model should be in order to yield the

exact correlation energy for standard Kohn-Sham density functional theory.
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I. INTRODUCTION

Kohn-Sham (KS) density functional theory (DFT) (see, e.g., [1]) is a successful method

for electronic structure calculations, thanks to its unique combination of low computational

cost and reasonable accuracy. In the Kohn-Sham formalism, the total energy of a many-

electron system in the external potential V̂ne =
∑

i vne(ri) is rewritten as a functional of the

one-electron density ρ(r),

E[ρ] = Ts[ρ] +

∫
dr vne(r) ρ(r) + U [ρ] + Exc[ρ]. (1)

In Eq. (1), Ts[ρ] is the kinetic energy of a non-interacting system of fermions (usually called

KS system) having the same one-electron density ρ of the physical, interacting, system.

The Hartree energy U [ρ] is the classical repulsion energy, U [ρ] = 1
2

∫
dr
∫
dr′ρ(r)ρ(r′)|r −

r′|−1, and the exchange-correlation functional Exc[ρ] must be approximated. Minimization

of Eq. (1) with respect to the spin-orbitals forming the KS determinant lead to the KS

equations. Thus, instead of the physical problem, in KS DFT we solve the hamiltonian of a

model system of non-interacting fermions, and we recover the energy of the physical system

via an approximate functional.

Despite its success in scientific areas ranging from material science to biology, approx-

imate KS DFT is far from being perfect, and many fundamental issues still need to be

addressed. In particular, KS DFT encounters difficulties in handling near-degeneracy cor-

relation effects (rearrangement of electrons within partially filled shells), and in taking into

account long-range van der Waals interaction energies (crucial, e.g., for layered materials and

biomolecules). In principle, all the shortcomings of KS DFT come from our lack of knowl-

edge of the exchange-correlation functional, and a huge effort is put nowadays in trying to

improve the approximations for Exc[ρ] (for recent reviews see, e.g., [2, 3]).

An alternative strategy to overcome the problems of DFT is range separation: the

electron-electron interaction is split into a long-range and a short range part, and the two

are treated at different levels of approximation [4–27]. Prof. Hirao has been a pioneer in this

field, investigating the effect of range separation on the exchange energy with remarkable

success (see, e.g., [4, 5, 18]).

The variant of range separation that we consider here [6–17] can be viewed as a way

to remove the constraint that the model system be non-interacting: instead of the KS

2



system, one can define a long-range-only-interacting system (whose wavefunction is thus

multideterminantal) having the same density of the physical system. The remaining part

of the energy is then approximated with a short-range exchange-correlation functional. The

resulting long-range-only hamiltonian, being weakly interacting (and without the electron-

electron cusp), can be treated at a reasonable computational cost with standard wavefunction

methods: in general, the needed configuration space to achieve good accuracy is small,

and often second-order perturbation theory suffices. At the same time, this long-range

interaction, albeit small, can make the corresponding wavefunction capture near-degeneracy

effects and long-range van der Waals energies. Provided that the energy functionals are

correctly redefined, there is no double counting of the energy, and the method is in principle

exact, as it is KS DFT.

As mentioned, this range-separated multideterminant DFT needs an approximation for

the short-range exchange-correlation functional. One can follow the same path as for KS

DFT: start with the local-spin-density approximation (LSDA), consistently constructed as

the difference between the standard LSD functional and the exchange-correlation energy

of an electron gas with long-range-only interaction [28], and then add gradient corrections

(GGA) [11, 12, 14, 29], and eventually meta-gradient corrections (mGGA). However, this

path, which proved highly successful for KS DFT, may not be the best for a scheme in which

long-range correlations are explicitly taken into account by wavefunction methods. Indeed,

in most cases there is no improvement when passing from LSDA to GGA [11, 12, 30], with

the exception of hydrogen-bonded complexes [31].

In recent years we have extended the “Overhauser model”, an approximate method to

calculate the short-range part of the pair density in the uniform electron gas, to systems of

nonuniform density [32–35], finding that it yields an accurate description of the short-range

part of the spherically- and system-averaged pair density (intracule density) of small atoms.

In Ref. [35] we have combined the Overhauser equations with the Kohn-Sham equations in

a self-consistent way, recovering full CI total energies within 1 mH for the He isoelectronic

series. In Ref. [34] we have shown that, unlike all the available correlation functionals [36],

the model works equally well for the high-density limit of the He and the Hooke’s atom

series. Thus, on one hand, the Overhauser model seems to be a very good candidate to

construct short-range correlation energy functionals. On the other hand, we have tested

it only on systems dominated by dynamical correlation: in the He atom, the Overhauser
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model yields essentially the exact KS correlation energy. However, when we move to systems

with strong static correlation we expect the Overhauser model to be unable to yield good

results. The combination of the Overhauser model with range-separated multideterminant

DFT seems then natural: it can be viewed as a way to produce an adapted short-range

correlation functional for the range-separated multideterminant DFT, or as a way to add

the description of static correlation to the Overhauser model.

In this work we combine the Overhauser model with range-separated multideterminant

DFT, applying it to the case of the H2 molecule along the dissociation curve, thus analyz-

ing also the case of strong static correlation, as the dissociation limit is approached. The

paper is organized as follows. After briefly reviewing in Secs. II and III the basic equations

of range-separated multideterminant DFT and of the extended Overhauser model, we first

analyze in Sec. IV, using very accurate variational wavefunctions [37–39], how the “exact”

electron-electron interaction which appears in the Overhauser model (and that it is usu-

ally approximated with a physically-motivated interaction) should be as the H2 molecule is

stretched. This analysis shows the difficulty of modeling static correlation within the Over-

hauser model. Since the model is only able to describe correlation, we combine it with a

generalized OEP scheme for multideterminant DFT, which is described in Sec. V. The com-

bination of the two methods is then presented in Sec. VI, with results for the H2 molecule.

The last Sec. VII is devoted to conclusions and perspectives.

II. MULTIDETERMINANT DFT VIA RANGE SEPARATION

Hohenberg and Kohn [40] introduced a universal functional of the density F [ρ], which

can be written as a constrained minimum search [41],

F [ρ] = min
Ψ→ρ
〈Ψ|T̂ + V̂ee|Ψ〉. (2)

In Eq. (2) the expectation of the kinetic energy operator T̂ = −1
2

∑
i∇2

i plus the Coulomb

electron-electron repulsion operator V̂ee =
∑

i>j |ri−rj|−1 is minimized over all wavefunctions

yielding the density ρ. The universality of the functional F [ρ] stems from the fact that T̂

and V̂ee are the same for every electronic system of given particle number N =
∫
ρ(r)dr.

Kohn and Sham [42] introduced another functional, Ts[ρ] of Eq. (1), by replacing V̂ee in
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Eq. (2) with zero,

Ts[ρ] = min
Φ→ρ
〈Φ|T̂ |Φ〉, (3)

and used Ts[ρ] for approximating an important part of F [ρ]. In Eq. (3), and in the rest of

this paper, Φ denotes a non-interacting wavefunction (thus in the majority of cases a single

Slater determinant). Similarly, we can introduce a functional F µ
LR[ρ] for a long-range-only

interaction Ŵ µ
LR (here chosen using the error function, with the real parameter µ governing

the cutoff of the short-range part),

Ŵ µ
LR =

1

2

∑
i 6=j

erf(µ|ri − rj|)
|ri − rj|

, (4)

by defining

F µ
LR[ρ] = min

Ψµ→ρ
〈Ψµ|T̂ + Ŵ µ

LR|Ψ
µ〉. (5)

In this way we have

lim
µ→∞

F µ
LR[ρ] = F [ρ] (6)

lim
µ→0

F µ
LR[ρ] = Ts[ρ]. (7)

We can then write the total energy of a given many-electron system as

E[ρ] = F µ
LR[ρ] +

∫
dr vne(r) ρ(r) +

∫
dr

∫
dr′ρ(r)ρ(r′)

erfc(µ|r− r′|)
|r− r′|

+ Eµ
xc[ρ], (8)

where erfc(x) = 1 − erf(x) is the complementary error function. As in KS DFT then,

minimization is performed over the wavefunction Ψµ,

E0 = min
Ψµ

{
〈Ψµ|T̂ + Ŵ µ

LR|Ψ
µ〉+

∫
dr vne(r) ρΨµ(r) +

+

∫
dr

∫
dr′ρΨµ(r)ρΨµ(r′)

erfc(µ|r− r′|)
|r− r′|

+ Eµ
xc[ρΨµ ]

}
, (9)

where ρΨµ is the density corresponding to Ψµ. Eq. (9) yields an effective, long-range-only-

interacting hamiltonian to be solved with a chosen wavefunction method. The short-range

exchange-correlation functional Eµ
xc[ρ] is then defined as the energy needed to make Eq. (8)

exact,

Eµ
xc[ρ] = F [ρ]− F µ

LR[ρ]−
∫
dr

∫
dr′ρ(r)ρ(r′)

erfc(µ|r− r′|)
|r− r′|

. (10)

For instance, the correct LSD approximation to Eµ
xc[ρ] is

Eµ,LSD
xc [ρ] =

∫
ρ(r) {εxc(ρ↑(r), ρ↓(r))− εµxc(ρ↑(r), ρ↓(r))} , (11)
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where εxc(ρ↑(r), ρ↓(r)) is the exchange-correlation energy per electron of the standard

uniform electron gas (with Coulomb electron-electron interaction) and εµxc(ρ↑(r), ρ↓(r)) is

the exchange-correlation energy per electron of a uniform electron gas with interaction

erf(µr12)/r12 [28].

An exact expression for Eµ
xc[ρ] is found from the adiabatic connection formula [16, 43]:

Eµ
xc[ρ] =

∫ ∞
µ

dµ′
∫ ∞

0

4πr2
12f

µ′
(r12)

2√
π
e−µ

′2r212dr12 −
∫
dr

∫
dr′ρ(r)ρ(r′)

erfc(µ|r− r′|)
|r− r′|

,

(12)

where fµ(r12) is the spherically and system-averaged pair density (intracule density) obtained

by integrating |Ψµ|2 over all variables but r12 = |r2 − r1|,

fµ(r12) =
N(N − 1)

2

∑
σ1...σN

∫
|Ψµ(r12,R, r3, ..., rN)|2dΩr12

4π
dRdr3...drN , (13)

with R = (r1+r2)/2. The gaussian damping appearing in Eq. (12) comes from the derivative

of the long-range interaction erf(µr12)/r12 with respect to µ, and shows that the exchange-

correlation energy is determined by the short-range part of the intracule density. Notice that

when µ = 0 Eqs. (12) yields the KS exchange-correlation energy functional from a nonlinear

adiabatic connection [16, 43].

III. THE EXTENDED OVERHAUSER MODEL

The extended Overhuaser model consists in writing an effective Schrödinger-like equation

for the intracule density f(r12) of a given system. The basic idea is the following [32,

33, 35]. We start with the observation that the intracule density f(r12) couples to any

electron-electron interaction operator depending only on the interelectronic distance, Ŵ =∑
i>j w(|ri−rj|), in the same way as the density ρ(r) couples to any local one-body potential

operator V̂ =
∑

i v(ri), i.e.,

〈Ψ|Ŵ |Ψ〉 =

∫
dr12f(r12)w(r12), (14)

〈Ψ|V̂ |Ψ〉 =

∫
drρ(r)v(r). (15)

We can then follow the Hohenberg and Kohn philosophy but with the roles of ρ(r) and

f(r12), and of V̂ne and V̂ee, interchanged. That is, in analogy with Eq. (2) we can define a
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system-dependent functional G[f ],

G[f ] = min
Ψ→f
〈Ψ|T̂ + V̂ne|Ψ〉, (16)

so that the total energy of a given physical system is equal to

E[f ] = G[f ] +

∫
dr12

f(r12)

r12

. (17)

Like Kohn and Sham, we can define another functional by setting V̂ne equal to zero in

Eq. (16),

Tf [f ] = min
Ψ→f
〈Ψ|T̂ |Ψ〉. (18)

The functional Tf [f ] corresponds to the internal kinetic energy of a free (zero external po-

tential) cluster of fermions having the same intracule density of the physical system. The

fermions of this cluster interact with an effective interaction weff(r12) which has the same

role of the KS potential for the KS system. In practice, this effective interaction must be

approximated. Moreover, for N > 2 electrons the cluster equation become a complicated

many-body problem, so that other approximations are needed. As in the original Overhauser

model for the uniform electron gas [44, 45], we can approximate the cluster equation with a

set of radial geminals gi(r12),[
− 1

r12

d2

dr2
12

r12 +
`(`+ 1)

r2
12

+ weff(r12)

]
gi(r12) = εi gi(r12)∑

i

ϑi|gi(r12)|2 = f(r12), (19)

whose occupancies ϑi must be defined (e.g., in a determinantal-like way as in the original

Overhauser model [45]). In practice, trying to solve the whole many-electron Schrödinger

equation by means of Eqs. (17)-(19) is a daunting task. The idea is rather [32, 33, 35]

to couple this “average-pair-density-functional theory” with a density functional scheme:

Eqs. (19) can be generalized to any fµ(r12) along the adiabatic connection of DFT. In

Refs. [32, 35] we started from the effective interaction wKS
eff (r12) which, when inserted in

Eqs. (19), gives the intracule density corresponding to the Kohn-Sham system, fKS(r12)

(that can be obtained from the KS determinant). We then wrote an approximation for

wµeff(r12) along the long-range adiabatic connection of DFT as

wµeff(r12) = wKS
eff (r12) + wc,µeff (r12). (20)
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The only term that needs to be approximated is then wc,µeff (r12), an effective interaction that

should essentially “tell” to the intracule density that, while the electron-electron interaction

is turned on (i.e. as µ increases), the one-electron density ρ(r) does not change. As the

information on ρ(r) has been “washed away” in the integration over the center of mass R

of Eq. (13), this constraint can be imposed only in an approximate way. For two-electron

atoms, for which Eq. (19) is exact with one geminal [33], g =
√
f , a simple approximation

for wc,µeff (r12) is [32, 34, 35]

wc,µeff (r12) =
erf(µ r12)

r12

−
(

4π

3
r3
s

)−1 ∫
|x|≤rs

erf(µ|r12 − x|)
|r12 − x|

dx, (21)

where rs is a screening length associated to the radius of a sphere containing on average

one electron [44–46]. The physical idea behind Eq. (21) is to mimic the constraint of fixed

one-electron density by screening the electron-electron interaction over a length associated

to the “space” available to each electron (which is determined by the density). Indeed,

for the He isoelectronic series Eqs. (12), (19) and (21), combined self-consistently with the

Kohn-Sham equations, recover the full CI total energy within 1 mH [32, 34, 35].

IV. THE OVERHAUSER MODEL FOR THE H2 MOLECULE: HOW THINGS

SHOULD BE

For a closed-shell physical electronic system (atom, molecule) with N = 2 particles, the

Schrödinger equation describing the internal degrees of freedom of a cluster of fermions

having the same intracule density f(r12) is exactly given by [33–35][
− 1

r12

d2

dr2
12

r12 + weff(r12)

]√
f(r12) = ε

√
f(r12). (22)

As a first study, we calculate and analyze the “exact” Overhauser interaction weff(r12) at

full coupling strength (i.e., for electron-electron interaction 1/r12, corresponding to µ =∞)

for the H2 molecule at different values of the internuclear distance R, and we compare it

with the approximation of Eq. (21). To this purpose, we need extremely accurate intracule

densities f(r12), which are described in the next Subsec. IV A.
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A. Intracule densities from accurate variational wavefunctions

We use the accurate variational wavefunctions of Refs. [37–39], which are expanded in

explicitly correlated gaussian geminals,

Ψ(r1, r2) = (1 + P̂12)(1 + îe)
K∑
k=1

ckψk(r1, r2) (23)

ψk(r1, r2) = e−αk|r1−rAk|2e−βk|r2−rBk|2e−γkr
2
12 , (24)

where rAk and rBk are centers that lie on the internuclear axis, P̂12 means permutation

of r1 and r2, and îe is the inversion operator with respect to the center of the molecule.

The parameters appearing in Eqs. (23)-(24) are determined variationally by minimizing the

energy with the conjugate gradient method (for more details on the wavefunction and the

algorithms employed, see Refs. [37–39]). The expansion length K = 1200 in Eq. (23) is used,

resulting in energies with the extraordinary accuracy of 10−10 Hartree.

The intracule densities f(r12) from these extremely accurate wavefunctions can be easily

calculated, since all the needed integrals are analytic. We also calculated the one electron

densities ρ(r), and the intracule densities fKS(r12) corresponding to the KS system, which

can be obtained by inserting in Eq. (13) the KS wavefunction 1
2

√
ρ(r1)

√
ρ(r2). In Fig. 1 we

show the intracule densities f(r12) and fKS(r12) for the internuclear distances R = 1.4, 3.0,

4.5 and 6.0 a.u. Although mathematically the wave function of Eqs. (23)-(24) is cuspless,

we see that the very elaborate ansatz permits to describe the exact linear behaviour of

the intracule density for r12 → 0, up to extremely short distances. Fig. 2 shows the same

quantities multiplied by the volume element 4πr2
12. This figure better visualizes the transition

from dynamical to static correlation. In Fig. 3 we also report the same quantities in the

extreme stretched case, R = 20, obtained from the simple Heitler-London wavefunction.

B. Accurate Overhauser potentials

From the accurate intracule densities of the previous subsection we can calculate, by

inversion, the corresponding “exact” Overhauser interaction weff(r12),

weff(r12) =
1√
f(r12)

1

r12

d2

dr2
12

(
r12

√
f(r12)

)
+ const. (25)

The inversion of Eq. (25) is done numerically, by finite differences. In Fig. 4 we report

the effective Overhauser interactions that, when inserted in Eq. (22), give the physical and
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the KS intracule, corresponding, respectively, to µ = ∞ and µ = 0 along the long-range

adiabatic connection of Sec. II (or to λ = 1 and λ = 0 along the usual linear adiabatic

connection in which V̂ee is simply multiplied by λ). We see that weff(r12) for large r12 goes

to the same constant for both the KS and the physical system, as it should be [35] (of course

if we go to too large r12 we start to observe the wrong harmonic wall due to the gaussian

asymptotic decay of our wavefunction). The difference between the effective Overhauser

interaction for the physical and the KS system gives wc,µ→∞eff ≡ wceff of Eq. (20), and is

reported in Fig. 5, where also the Coulomb repulsion 1/r12 is shown. From this figure, we

see that, when the system is still dominated by dynamical correlation, as in the case R = 1.4

and R = 3, wceff(r12) is essentially a screened Coulomb interaction. That is, for short-range

it behaves as 1/r12, and then for large r12 goes to zero much faster than 1/r12. In such cases,

the approximation of Eq. (21), which at µ =∞ reads

wceff(r12) = 1
r12

+
r212
2r3s
− 3

2rs
r12 ≤ rs

wceff(r12) = 0 r12 > rs. (26)

can work reasonably well, with a screening length rs ∼ R. However, as R grows and the

system starts to be dominated by static correlation, we see that the approximation of Eq. (26)

cannot work: the “exact” wceff(r12) still decays much faster than 1/r12 for large r12, but at

short range is more repulsive than the Coulomb interaction! I.e., we need an “overscreened”

interaction. This is completely evident in the extreme stretched case R = 20 of Fig. 6, again

obtained from the simple Heitler-London wavefunction.

V. GENERALIZED OPTIMIZED EFFECTIVE POTENTIAL METHOD FOR

MULTIDETERMINANT DFT

In recent years, the focus of a large part of the scientific community working on improving

the approximations for Exc[ρ] has shifted from seeking explicit functionals of the density (like

the generalized gradient approximations), to implicit functionals, typically using the exact

exchange Ex[ρ], which is only explicitly known in terms of the Kohn-Sham orbitals φi(r). The

corresponding Kohn-Sham potential must then be computed with the optimized effective

potential (OEP) method (for a recent review, see [47]). The OEP scheme can be generalized
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to the multideterminant range-separated DFT by first noticing that we can divide Eµ
xc[ρ]

into exchange and correlation in two different ways [10]: we can define the exchange energy

with respect to the KS determinant Φ,

Eµ
x [n] = 〈Φ|V̂ee − Ŵ µ

LR|Φ〉 −
∫
dr

∫
dr′ρ(r)ρ(r′)

erfc(µ|r− r′|)
|r− r′|

, (27)

and then define the usual correlation energy functional Eµ
c [ρ] as the energy missed by the

KS wavefunction,

Eµ
c [ρ] = Eµ

xc[ρ]− Eµ
x [ρ], (28)

but we can also define a multideterminantal (md) exchange functional [10] by using the

wavefunction Ψµ,

Eµ
x,md[ρ] = 〈Ψµ|V̂ee − Ŵ µ

LR|Ψ
µ〉 −

∫
dr

∫
dr′ρ(r)ρ(r′)

erfc(µ|r− r′|)
|r− r′|

, (29)

and then a corresponding correlation energy that recovers the energy missed by Ψµ (which

is smaller than the energy missed by the KS determinant Φ),

Eµ
c,md[ρ] = Eµ

xc[ρ]− Eµ
x,md[ρ]. (30)

Then, with this latter definition of the correlation energy, the generalized OEP-like scheme

for multideterminant DFT becomes [10]

E0 = inf
vµ

{
〈Ψµ

vµ |T̂ + V̂ee + V̂ne|Ψµ
vµ〉+ Eµ

c,md[ρΨµ
vµ

]
}
, (31)

where Ψµ
vµ is obtained by solving the Schrödinger equation corresponding to the hamiltonian

Ĥµ = T̂ + Ŵ µ
LR + V̂ µ, V̂ µ =

∑
i

vµ(ri). (32)

Notice that this multideterminant OEP scheme is different from the one recently proposed

in Ref. [48]. In Eq. (31) the weak long-range interaction Ŵ µ
LR automatically selects the

configuration space needed to yield an accurate solution for the hamiltonian Ĥµ of Eq. (32),

while in Ref. [48] the configuration space is chosen essentially by hand, using physical and

chemical intuition.

In the next Sec. VI we use the Overhauser model to approximate Eµ
c,md[ρ], and we apply

our combined formalism to the case of the H2 molecule.
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VI. MULTIDETERMINANT DFT COMBINED WITH THE OVERHAUSER

MODEL

From the adiabatic connection formalism we can easily write an exact formula for Eµ
c,md[ρ],

Eµ
c,md[ρ] =

∫ ∞
µ

dµ′
∫ ∞

0

4π r2
12

[
fµ

′
(r12)− fµ(r12)

] 2√
π
e−µ

′2r212 dr12, (33)

which shows that Eµ
c,md[ρ] is determined by the change in the short-range part of the in-

tracule density when the electron-electron interaction increases from erf(µr12)/r12 to the full

Coulomb repulsion 1/r12. By adding and subtracting fKS(r12), Eq. (33) can also be written

as

Eµ
c,md[ρ] = Eµ

c [ρ]−
∫ ∞

0

4π r2
12 [fµ(r12)− fKS(r12)]

erfc(µr12)

r12

dr12, (34)

where Eµ
c [ρ] is the correlation energy of Eq. (28), defined with respect to the KS determinant.

We computed fµ(r12) within the Overhauser model, Eq. (19) with one geminal g =
√
f ,

using the simple screened potential of Eqs. (20)-(21) with the screening length rs = R. For

each internuclear distance R, the intracules fµ(r12) have been calculated for 33 values of µ

between µ = 0.01 and µ = 20. By numerical integration we then computed

∂Eµ
c [ρ]

∂µ
=

∫ ∞
0

4π r2
12 [fµ(r12)− fKS(r12)]

2√
π
e−µ

′2r212 dr12, (35)

and we fitted the values of ∂Eµc [ρ]
∂µ

with the derivative of the function

Eµ
c [ρ] =

a4

b10
− a1µ

6 + a2µ
7 + a3µ

8 + a4µ
10

(1 + b2µ2)5
, (36)

which has the correct asymptotic behaviors [49]. We also computed, again by numerical

integration, the second term on the right-hand-side of Eq. (34) in order to obtain Eµ
c,md[ρ].

We then implemented the generalized OEP scheme of Eq. (31) by first minimizing the

effective potential vµ(r) at the “generalized-exchange”-only level, and by adding Eµ
c,md[ρ]

only as a final correction. Since Eµ
c,md[ρ] is very small, we do not expect substantial changes

by implementing a full self-consistent scheme. Our procedure can be summarized with the

equation

E0 =
(

inf
vµ
〈Ψµ

vµ |T̂ + V̂ee + V̂ne|Ψµ
vµ〉
)

+ Eµ
c,md[ρΨµ

vµ
], (37)

where Eµ
c,md[ρΨµ

vµ
] is calculated with the final density resulting from the minimization in the

first term on the right-hand-side of Eq. (37).

12



To carry out the minimization with respect to the potential vµ(r) in Eq. (37) we proceeded

as follows. We parametrized the potential vµ(r) with a simple two-parameter form, by

adding to the physical external potential a gaussian centered on each atom, c e−γr
2
. The

minimization of the expectation 〈Ψµ
vµ|T̂+V̂ee+V̂ne|Ψµ

vµ〉 with respect to the two parameters c

and γ is done by calculating at each step full-CI wavefunctions Ψµ
vµ for the hamiltonian with

electron-electron interaction erf(µr12)/r12 and external potential vµ(r). All calculations were

done at the cc-V5Z basis-set level. We also produced with MOLPRO [50] full CI reference

results for the physical hamiltonian, for comparison. Our simple parametrization of the

potential vµ, containing only two parameters, is enough to yield at µ = 0 the HF energy

within 0.5 mH, which is the accuracy we sought in this study. This way, we avoid all the

well-known problems of the OEP method in finite basis set [51] at the price of obtaining

only an upper bound for our minimization problem (yet, with the reasonable accuracy of

0.5 mH).

In Fig. 7 we report the results for Eµ
c,md[ρ] for three different values of the internuclear

distance R. The dots (•) are the “exact” values of Eµ
c,md[ρ], i.e., the full-CI total energies

obtained with MOLPRO minus the energies corresponding to the first term on the right-

hand-side of Eq. (37), infvµ〈Ψµ
vµ|T̂ + V̂ee + V̂ne|Ψµ

vµ〉. The solid line is Eµ
c,md[ρ] from the

Overhauser model, and the dashed line is the LDA result, obtained from the parametrization

of Ref. [28], in which Eµ
c,md[ρ] for the uniform electron gas has been calculated with Quantum

Monte Carlo methods. We see from this figure that when the system is still dominated by

dynamical correlation, as in the R = 1.4 and the R = 2 cases, the Overhauser model yields,

even at µ = 0 (i.e. for pure KS DFT), correlation energies with errors of ∼ 5 mH (while

LDA is off by ∼ 60 mH), which reduce to 1 mH at µ = 0.5 (where the LDA error is still

∼ 10 mH). We focuse here on the value µ ∼ 0.5 since it is the one commonly used in practical

applications [9–15]. When the system starts to be dominated by static correlation, as in the

R = 4 case, the Overhauser model with the simple screened potential of Eq. (21) gives, at

µ = 0, errors very close to those of LDA (∼ 20 mH), which are still of the order of ∼ 10 mH

at µ = 0.5. As the molecule approaches the dissociation limit, R → ∞, the exact Eµ
c,md[ρ]

tends to the limiting behavior in which Eµ=0
c,md[ρ] = EKS

c [ρ], and Eµ
c,md[ρ] = 0 for any µ > 0.

This is due to the fact that, as R→∞, the long-range only wavefunction Ψµ, even at very

small µ (i.e., with an infinitesimal interaction), becomes essentially exact and equal to the

Heitler-London wavefunction, so that the functional should be just equal to zero. In this
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limit, the Overhauser model is wrong for small µ (because, as explained in Sec. IV, it misses

the “overscreening” at short range), but, for µ � 0, yields Eµ
c,md[ρ] that go to zero much

faster than LDA, as it can be already grasped from the third panel of Fig. 7. It is thus still

more suitable than LDA to be combined with the range-separated multideterminant DFT,

but it definitely needs some improvement.

Notice that the Overhauser model would yield much more accurate results if we were able

to compute Eµ
c,md[ρ] by using in Eq. (20) instead of wKS

eff (r12) the interaction wµeff(r12) which

yields the intracule fµ(r12) associated to the wavefunction Ψµ. This way, we would use the

information available in Ψµ to the maximum extent, and we would not have the problems

associated to the “overscreening” discussed in Sec. IV. This possibility will be investigated

in future work.

VII. CONCLUSIONS AND PERSPECTIVES

We have presented a preliminary study of the combination of range-separated multide-

terminant DFT with the Overhauser model, with an application to the paradigmatic case

of the H2 molecule. We have first analyzed, by means of very accurate variational wave-

functions, the failure of the Overhauser model in describing static correlation and we have

then used it to produce an adapted short-range correlation functional for range-separated

multideterminant DFT. The results are very good for internuclear distances close to equi-

librium, and are still encouraging as the molecule is stretched. Indeed, in the dissociation

limit the exact short-range correlation functional should go to zero for any µ > 0, and the

Overhauser model yields short-range correlation energies that go to zero faster than LDA

as µ increases.

Future work will address the study of better approximations for the unknown Overhauser

electron-electron interaction, and the development of a more efficient scheme to combine it

with range-separated multideterminant DFT.
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captions

• Figure 1 - Intracule densities f(r12) for the H2 molecule at different internuclear dis-

tances R for the physical system (from the accurate variational wavefunction described

in Subsec. IV A) and for the KS system (from the density corresponding to the same

accurate variational wavefunctions).

• Figure 2 - The same intracule densities of Fig. 1 multiplied by the volume element

4πr2
12.

• Figure 3 - The intracule density f(r12) multiplied by the volume element 4πr2
12 for

the H2 molecule in the extreme stretched case R = 20. The physical f(r12) has

been calculated from the simple Heitler-London wavefunction, and fKS(r12) from its

corresponding density.

• Figure 4 - The “exact” effective Overhauser interaction weff(r12) for the intracule

densities of the physical and of the KS systems of Fig. 1.

• Figure 5 - The difference wceff(r12) between the “exact” effective Overhauser inter-

action for the intracule density of the physical and of the KS systems of Fig. 4. The

Coulomb repulsion 1/r12 is also reported.

• Figure 6 - Same as Figs. 4-5 for the extreme stretched molecule, using the simple

Heitler-London wavefunction.

• Figure 7 - The short-range correlation energy for range-separated multideterminant

DFT as a function of the cutoff parameter µ for the H2 molecule at three different

values of the internuclear distance R. Dots (•) are “exact” values (see text in Sec. VI),

solid lines are the results from the Overhuaser model, and the dashed lines are the

LDA values.
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