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Abstract

The present paper studies MX crystals in rock-salt structure (M: Li,Na, K; X: F, Cl, Br, I). They

are often described as being formed by ions. Pictures based on quantum mechanical calculations

sustain and quantify it. The tools used are: i) the Quantum Theory of Atoms in Molecules, ii) the

Electron Localization Function, and iii) the maximization of the probability to find in a spatial

domain a number of electrons equal to that of the ion under consideration. The present paper

shows that the images provided by these three different tools to analyze the quantum mechanical

calculations yield, for these systems, very similar results, in the sense that the spatial domains and

probability distributions are close.

While results for the first two methods are already present in the literature, the last of the

methods is applied for the first time to these systems, and details about the method of calculation

and program are also given.
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I. INTRODUCTION

By firmly grounding a tool to analyze chemical bonding, the Quantum Theory of Atoms in

Molecules (QTAIM) [1], Prof. Richard F.W. Bader also stimulated the interest of researchers

to provide new tools to understand chemistry. Among them are the Electron Localization

Function of Becke and Edgecombe [2], and the Maximum Probability Domains (MPDs) [3].

These three methods are used below to analyze results of quantum mechanical calculations

(at Hartree-Fock level) for crystals in rock-salt structure (MX, M: Li, Na, or K; X: F, Cl,

Br, or I). Results obtained for QTAIM and ELF (and one of the forms of a closely related

electron localizability indicator, ELI-D [4]) were already published [5–11].

In this paper, we analyze maximum probability domains (MPD), the regions of space

which maximize the probability to find in them a given number of electrons in them.

Although MPDs are based on a clear and simple quantum mechanical concept, it is not

self-evident that chemical concepts can be derived from them. At the present stage, we have

to learn how MPDs work. We present in this paper, results for relatively simple crystals in

rock-salt structure.

Because the calcualtions were performed using a recently developed program for crystals,

a few details about the implementation are present, too.

The paper is structured as follows. First we define the MPDs, recall their main features,

and make a short comparison to other related methods. Next, we give some details about

our calculation, in particular the way MPDs are obtained. In the results section, we notice

the similarity of the shapes of the MPD ions to those obtained with QTAIM or ELF, and

interpret their shapes and also the changes in the ionic volumes which we relate to changes

of the counter-ion and of the Madelung forces. We also look at the probabilities to find a

given number of electrons in the spatial domains. We find a relatively high probability to

find as many electrons as in the formal ions. We also find, however, some probability to

find more or less electrons than in the formal ions. When discuss the possibility to define

charges not based upon the average number of electrons in the domains, but also based upon

the probability distribution. We further notice that the often presented indicators, mean

and variance, can lead to inaccurate descriptions of the probability distribution. Some

supplementary information is given in the appendices (simple systems, interpretation of the

density and charges). Furthermore, the numerical data on which we base our discussion can
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be found on-line, as supporting information.

II. DEFINITIONS

A. Objective and choices

1. Electron number

We would like to identify spatial subsystems in a given electronic system by specifying a

given electron number, ν. This is done, for example, when searching for atomic shells, the

electron pairs of the Lewis model, etc. An essential point of the approach we take, is to let

ν be a freely chosen parameter. For example, one would chose ν = 2 when trying to find a

Lewis electron pair from quantum mechanical calculations. In the present paper, we search

for the ions in crystals in the rock-salt structure, and choose ν = 2 for finding the Li+ ion,

ν = 10, for finding the F− ion, etc. Thus, we consider the positive integer ν defined by the

question the user asks.

2. Spatial region

The next choice to be made is for defining a spatial region, Ω. In order not to impose

external requirements, we choose the spatial region to have sharp boundaries: a point in

space either belongs to Ω, or does not. In contrast to basins, as used in QTAIM or ELF, we

allow the MPDs to be spatially disconnected.

Quantum mechanics tells us that, for a given state Ψ, finding a given number of electrons

ν in Ω is only possible with a certain probability, p. We have thus to see our subsystem as an

open system, able to exchange electrons with the region outside Ω, analogously to QTAIM

density basins.
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B. Maximum probability domains

1. Definition

We are now in position to define the maximum probability domains (MPDs) as the regions

of space for which the probability to find ν electrons is maximal. In order to be more precise,

let us consider an electronic system described by a wave function Ψ. The probability to find

ν and only ν electrons out of N in a three-dimensional region Ω is given by

pν(Ω) =

 N

ν

 ∫
Ω

dx1...dxν

∫
Ω̄

dxν+1...dxN |Ψ(x1, ..., xN)|2 (1)

where Ω̄ is the remaining part of the three dimensional space, R3 \ Ω, and the binomial

coefficient is needed for taking into account the permutations of the electrons. For a given

ν, the region Ω for which pν(Ω) is maximal, the MPD, depends on ν, and is written as Ων .

The definition in equation 1 can be immediately extended to ensembles.

Please notice that pν is not a reduced ν-particle density integrated over the domain Ω.

In the latter, the integration over ν + 1, . . . is performed over the whole space, and not over

R3\Ω. An example of the difference between the two definitions is discussed in Appendix A,

showing that the integral of the one-particle density yields the average number of electrons

in Ω, and not the probability to find one electron in Ω.

2. Physical multiplicity

As a rule, several solutions exist to the optimization of Ω for given ν, Ων . This is phys-

ically motivated. For example, in the NaF crystal, we may expect one Ω10 corresponding

to the Na+ ion, and another Ω10 that corresponds to the F− ion. Furthermore, several

symmetry equivalent Ωνs can exist. In the NaF crystal, for instance, if one Ω10 is found

and associated to one of the Na+ ions, there are infinitely many such Ω10 produced by

translational symmetry which can be associated to the other Na+ ions of the crystal. Sym-

metry can also produce less trivial situations. For example, in the bent Si2H2 molecule, we

find two sets of three Ω2s, one arranged as an “upward” oriented triangle, the other as a

“downward” oriented triangle (see Fig 18 of Ref [12]). These solutions are equivalent, as

the nuclear arrangement is invariant to inversion, but not the “triple pair” structure. This
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feature corresponds to one known for localized orbitals, is related to resonanting structures,

and did not show up in the present study.

C. Synthetic information

1. Mean

One may provide compact information by using some significant numbers. The mean, or

average number of electrons in Ω is given by:

µ(Ω) =
N∑
ν=0

νpν(Ω) (2)

It can be also obtained by integrating the density electron ρ(r) over the domain Ω, and is

thus the population of Ω. To see it, we can write∫
Ω

ρ(r)d3r =

∫
Ω

〈Ψ|ρ̂(r)|Ψ〉d3r = 〈Ψ|
∫

Ω

ρ̂(r)d3r|Ψ〉 (3)

where we introduced the density operator, ρ̂(r) =
∑N

i=1 δ(r − ri). We write∫
Ω

ρ̂(r) =
N∑
i=1

θΩ(r − ri) = N̂Ω(r) (4)

where θΩ(r − ri) is 1 when electron i is in Ω, and 0 when it is outside it [13]. N̂Ω counts

the electrons in Ω. The expectation value of N̂Ω, 〈Ψ|N̂Ω|Ψ〉, yields the average number of

electrons in Ω. However, expectation values can be also written as in equation 2 (see, e.g.,

chapter III.C.4 of Ref. [14]). The implication of this viewpoint on the physical interpretation

of the electron density is discussed in Appendix A.

In some situations, when the domain Ω contains a nucleus, one can prefer to replace µ

by a charge, defined as the difference between the nuclear charge and the population, µ(Ω).

2. Unphysical multiplicity of domains defined by means

The multiplicity of MPDs should not be confused with that arising from unphysical

requirements. For example, one might think of defining Ω such that the integral of the

electron density over Ω yields the integer number ν (0 < ν < N). For the latter definition,

there are infinitely many Ωs satisfying the required condition. For example, define in the
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Be atom a sphere, centered on the nucleus, with radius R. Let Rc be the radius of the

sphere such that the integral over the density in this sphere is exactly equal to two. For

any radius R1 < Rc, there is a radius R2 > Rc such that the integral of the density over the

spherical shell defined by R1 and R2 yields the same value, two. This is not the case for the

MPDs, cf. figure 7 in [15]. This difference can be understood by the fact that integrating

the density yields the average value µ(Ω) that can be achieved with several distributions,

p0(Ω), p1(Ω), ..., pN(Ω).

3. Variance

Another synthetic information about the probability distribution, p0(Ω), p1(Ω), ..., pN(Ω)

is given by the variance,

σ(Ω)2 =
N∑
ν=0

[ν − µ(Ω)]2pν(Ω) (5)

The population and variance can be found in literature for discussing spatial domains (see,

e.g., [11, 16–18]). Variance can be valuable, as the average, µ, does not necessary reflect the

probability distribution. For example, let us consider the dissociated hydrogen molecule and

choose Ω on one side of the plane that is perpendicular to the line connecting the nuclei,

and is equally distant from the two nuclei. For the ground state, we have p1(Ω) = 1 and

p0(Ω) = p2(Ω) = 0, while for the ionic resonant state, H+ . . .H− ↔ H− . . .H+, we have

p1(Ω) = 0 and p0(Ω) = p2(Ω) = 1/2. For both cases, µ = 1, while the variance is different

(0 in the former, 1 in the latter case).

4. Insufficient information from synthetic indicators

Of course, by using the synthetic indicators, µ, σ2, some information gets lost, in general:

a simple counting shows that there is more information in p0, p1, ..., pN ,
∑

ν pν = 1 than in

just two numbers. One can ask, however, what happens if all probabilities are close to 0,

except pν−1, pν and pν+1. Are µ and σ2 sufficient? A numerical example, based on the data

obtained, shows that µ and σ2 do not accurately reconstruct pν−1, pν and pν+1 although the

premise of having the other probabilities small seems to be satisfied. It will be presented in

the Results section.
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5. Fluctuations

Electrons are free to cross the sharp boundaries we have defined. Let us imagine for

a didactical purpose a time-dependent picture. First, let us imagine that all ν electrons

are in Ων . In order to get to the physical probability distribution, we imagine now that

electrons cross the surface of Ων . As electrons get in or out Ων , the probability to find ν

and only ν electrons in Ων decreases, while that of finding ν + 1 or that of finding ν − 1

in this spatial region increases. At the same time, the variance is increased. A change of

the average number of electrons does not necessarily take place. When an electron quits a

domain Ων , and enters another one, equivalent to the first, we at the same time increase

the probability to find ν + 1, and that to find ν − 1 electrons. (With the definition of pν ,

Eq 1, we treat only one domain at a time.) However, when the two domains are of different

nature, a bias between the directions of surface crossing exists, and the average number of

electrons is affected. (Of course, the process can be more complicated than the one just

described, which considered only ν and ν± 1 electrons in Ω, but this should be sufficient for

a qualitative discussion.)

To pin down some factors influencing the surface crossing, a simple model for two closed

shells at variable distance, and varying degree of compactness is given in Appendix B. It

confirms the intuitive picture that as distance (R) times compactness (ζ) increases, the

probability of surface crossings decreases.

We can further expect that surface crossings are more frequent when the contact with

other domains is increased. For example, for independent particles in a box, the exchanges

are less important when Ω2 is at one of the ends of the box, than for Ω2 in the center of the

box.

6. Alternative charges

Analyzing probabilities opens a different perspective on viewing charges. While the clas-

sical one is based on the average electron number in a domain, one can instead present the

probability to find different electron numbers in the same domain. To illustrate the differ-

ence let us take two simple examples. The first one is the already mentioned case of the

symmetrically divided dissociated H2 molecule, in the ionic resonant state: the subsystems
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are charged, but the average charge is zero. Another example is that of the dissociated

H+
2 molecule, H+ . . .H ↔ H . . .H+, with the space divided in two halves, as for the disso-

ciated H2 molecule. The charge of one of the hydrogen atoms is 1/2, although we could

alternatively see it as a statistical mixture of neutral H atoms and ions.

7. Probabilities for independent particles

It is possible to obtain some Ων in situations that are not physically significant. It has

been proposed [19], to consider statistically independent particles as a reference. In this

situation, the probability to find ν particles out of N is given by the binomial distribution,

pindν =

 N

ν

 bν(1− b)N−ν (6)

b ∈ (0, 1) is a parameter of the distribution, and is related to the the mean of this distribution,

bN . We can choose b to maximize pindν for a selected ν, λ. This yields b = λ/N . In this

paper, we are interested in crystals, so let us take N to infinity. We now obtain the Poisson

distribution, pindν → exp(−λ)λν/ν!. For the ions we discuss λ ≥ 2, and the largest probability

for independent particles is thus smaller than 2 exp(−2) ≈ 0.27. We obtained for the ions

in the rock-crystal structure much larger values for the probabilities. This is due to the

fact that the electrons are not independent, even when described with a Hartree-Fock wave

function. For the latter, the Pauli principle is acting, and this is reflected in the calculated

probabilities.

D. Comparison of MPDs with other spatial domains

1. Objects studied

An important difference between MPDs, on one side, and QTAIM or ELF, on the other

side, is the object of study. In the QTAIM the density basins correspond to ”atoms“. Of

course, these ”atoms“ can be closer to ”ions“, as they are in the crystals studied in this

paper. For ELF, one mostly searches for bonds or lone pairs and not for atoms [2]; the

basins are mostly (but not always) attributed to pairs of electrons. [20]. Exceptions are

present when dictated by symmetry, e.g., for atomic shells, as ELF sometimes produces
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averages of pictures, e.g., the L shell of the Ne atom, can be seen as a smeared picture of

the four valence electron pairs. One can deliberately join different ELF basins to a single

domain, especially when one thinks that the basins are not well separated and remind of

a chemical concept, such as an atomic shell, see, e.g., [20–22]. For the present paper,

collections of ELF basins were always chosen to be attributed to a given ion. As stated in

the section defining MPDs, for these, the user is in charge of defining the case to study, i.e.,

to chose a given ν (the optimization defining Ων). We like to see this as a supplementary

freedom existing with MPDs, allowing the user to ask several questions. Please notice that

MPDs are physically defined from the start by a physical construct, and not by using a

mathematical construct, e.g., a basin of a function, even if this function has a clear physical

meaning.

The mentioned differences do not imply that in specific cases the results with the QTAIM,

ELF or MPDs are not similar. On the contrary, the ionic domains presented in this paper

are similar for QTAIM, ELF and MPDs.

2. MPDs do not partition space, basins do

Because each of the Ωνs is optimized separately, their collection, does not necessarily

provide a partition of space: the MPDs can leave out portions of space, or overlap. In

practice, it is observed that most cases studied up to now, such a partition is roughly, but

not exactly achieved. Up to now, there is no general proof, but we have some analytic

results, for simple models, showing this explicitly [23]. There are also numerical examples

where Ωνs do overlap. It is not clear yet whether these are desirable features or not. At the

present stage, we find the lack of partitioning an interesting feature, worth to be explored.

Empty regions of space show up, for example, in the diamond structure in the regions

corresponding to the ”holes“ [24]. Overlapping regions show up in unstable cases, such as

transition states [12]. This non-partitioning of space is to be contrasted to the description

given not only by QTAIM and ELF where basins divide space, but also by loges, to be

discussed below.
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3. MPDs are not loges

The method of MPDs reminds of the method of loges of Daudel and coworkers [25–27].

There, one defines a partition of space into M regions, called loges, and (in the later variants)

minimizes the missing information function,

H(x1, ..., xM) = −
∑
k

P (xk)log2P (xk) (7)

where xk is a given distribution of electrons into the loges, and P its probability. To obtain

MPDs one only optimizes one domain at a time. Here are some reasons for preferring MPDs

to a partition into loges:

• It is more difficult to optimize a partition of the space than to optimize a given spatial

domain.

• When optimizing a partition of space, some uninteresting situations can be favored,

e.g., having no electrons in some vanishingly small loge (one is certain of finding no

electron in a vanishingly small region of space [23]).

• Partitioning the whole space is often not needed, as one is generally only interested

to describe a specific region of space (e.g., a given bond, the active site of the protein,

etc.).

• Partitioning needs a good treatment of all loges. If one of the regions is badly described,

e.g., because starting from a wrong prejudice, it may affect the final result everywhere,

even if the error was produced in the part of space which is considered irrelevant for

the problem studied.

• In a very large system, the probability of having a distribution, x1, corresponding to

”the chemical (Lewis) arrangement“ becomes vanishingly small. Even if the probabil-

ity that the number of electrons ν in a given loge is large (but < 1), when there are

many loges, we can be almost sure that the number of electrons is different from ν in

one of the many equivalent loges.
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FIG. 1: A schematic, 2D representation is shown, to explain the algorithm used. The grid points,

belong to the set G, are shown as empty or filled circles. The domain Ω is shaded. The grid points

selected to describe Ω belong to the set D, are shown as full black circles. The shape derivative,

computed at the origin of the arrow, indicates that Ω has to be extended in the direction shown

by the arrow. In the next step, the gray shaded circles will be made part of D. This operation is

repeated for all pairs of neighboring grid points close to the border of D. During optimization, the

sub-domain may not only change size and shape, but also merge, or one of them may disappear.

III. PROGRAM IMPLEMENTATION

A. Obtaining the domains

1. Ω on a grid

The algorithm used in the program is now described. A simplified, schematic description

is presented in figure 1.

In order to obtain the MPDs, first a regular cubic grid, G, is generated. Typically, the

spacing of the grid points is 0.05 bohr. Subsets of the set of grid points, D ⊆ G, are selected;

all points in D are considered to be inside a spatial domain that can be an atomic or ELF

basin, or the domain Ω to be optimized in order to yield the MPD. To approximate the

surface of a spatial domain, a subset of points of is chosen, S ⊆ D; all points in S have less

than six neighbor grid points. The surface S is triangulized by choosing the vertices of the

triangles from the nearest neighbors in S.
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2. Optimizing Ω

A first guess for the MPD can be an atomic or ELF basin, defined on a grid, or another

domain, chosen by the user (a sphere, an ellipsoid, a cube, or a previously obtained MPD).

For optimization, the barycenter of the triangles (of the surface S) are moved along the

normals. The displacements are proportional to the shape derivatives computed at the

barycenter [15]; they are larger at the start of the optimization, smaller towards the end.

During the optimization process, certain regions of Ω can collapse to a surface, or even

points. These low-coordinated grid points are eliminated both from Ω and S.

B. Obtaining the probabilities

1. Formula

The computation of pν(Ω), Eq 1, is less difficult as it may seem, at least for certain forms

of the wave function. In particular, for a single Slater determinant, as it is produced by

Hartree-Fock, or Kohn-Sham calculations, one first computes the overlaps of all occupied

orbitals over the regions Ω,

Sij(Ω) =

∫
Ω

φi(x)φj(x)dx (8)

Such integrals are also used when computing the variance in atomic or ELF basins [11, 16–

18]. Next, the eigenvalues of the matrix with elements Sij are obtained. From them, the

probabilities are quickly computed for all ν, with the Cancès recursive formula [15].

The effect of correlation is not explored in this paper. For correlated wave functions, the

computation of pν(Ω) is possible, too, e.g., with multi-determinant wave functions [28, 29],

or even for more complicated forms, by using Quantum Monte Carlo [12, 30].

2. Numerical implementation

To obtain the overlap integrals SΩ, Eq 8, needed for computing the probabilities, the

integrand is decomposed into local contributions, as proposed by Boys and Rajagopal [31],

and extensively used in density functional calculations (see, e.g., [32–34]),

Sij(Ω) ≈
∑
k

φi(xk)φj(xk)wkf(xk) (9)
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The quadrature points xk and weights wk are the ones used by Becke [32]. The crystal

orbitals used are Wannier localized [35].

The partitioning function, f(x) is close to one, if x is inside Ω, and close to zero otherwise.

We use for f(x) the form of a Fermi-Dirac distribution function, f(x) := 1/{1+exp[β(xk−bk)·

nk]}, where nk is the surface normal in bk, the triangle barycenter closest to the quadrature

point xk; It was found convenient to choose β = 50. Numerical test show that the accuracy

achieved is around 1 per cent.

C. Further information

1. Volume of Ω

The volume of Ω can be approximated by the integration scheme used for Sij(Ω), replacing

φi and φj in Eq 9 by unity.

2. QTAIM/ELF branch of the program

In order to obtain the basins (for QTAIM or ELF), the attractors (maxima) of the

corresponding function are found, by searching them first on the grid, and by later refining

the search by using analytical gradients. All the points on the regular cubic grid leading to

a given maximum (by using analytical gradients) form our representation of the basin.

The algorithms in this branch of the program differs presently from that used for MPDs.

The volumes of the basins are approximated by the number of points inside the domain

times the “volume element”, defined by the third power of the smallest distance between

two grid points. For obtaining the overlap integrals, a strict cutoff is used in Eq 9 for f(x),

β →∞.

IV. TECHNICAL DETAILS

3. Basis functions and pseudopotentials

Single-determinant (Hartree-Fock) wave functions are produced with the CRYSTAL pro-

gram [36–39]. The experimental crystal structures were used [40, 41]. For Br and I small
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core pseudopotentials were used [42–44]. For some of the calculations, alkali metals pseu-

dopotentials were used, too [45]. The basis sets were of valence triple zeta plus polarization

quality, mostly taken from the CRYSTAL basis data sets. They were taken from Ref [46]

for Li, with a d function added, with exponent 0.6; from Ref [47] for Na; from Ref [48] for

K; from Ref [49] with one d function added, with exponent 0.8, for F; from Ref [50] with one

d function added, with exponent 0.5, for Cl. As the CRYSTAL data base does not contain

basis sets for Br and I with small core pseudopotentials, new basis sets were generated for

this case. They are given in a supporting information file.

4. Plots

The domains are plotted using the program Xcrysden [51, 52]. The other graphs are

produced with Mathematica [53].

V. RESULTS

A. Shapes and sizes

1. Similarity between QTAIM, ELF and MPD domains

As, by the definition of the MPDs, the spatial domains are generated to maximize the

probability to find in it as many electrons as in the free ion, we assign this region to cations,

or anions, and not to neutral atoms. In this sense, the MPDs are the best regions for

describing ions in a crystal. For atomic or ELF domains, the definition did not explicitly

request the generation of domains defining ions. It turns out, that the spatial domains for

the ions in the crystals MX (M: Li, Na, K; X: F, Cl, Br, I) in rock-salt structure are quite

similar when obtained with the three approach considered for this paper, as can be seen

in figure Fig. 2 which shows, for NaCl, left to right column, the domains obtained with

QTAIM, ELF or MPDs, respectively.
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FIG. 2: Domains in the NaCl crystal, as obtained from QTAIM, ELF, and MPDs (columns, left to

right), when cations are replaced by effective core potentials (i.e., Wigner-Seitz cells for the anion

sublattice), for the cation, and for the anion (rows, top to bottom).

2. Exclusion

To understand the shape of these domains let us first consider those produced using pseu-

dopotentials (effective core potentials, ECPs) for the alkali metal atoms, so that only halo-

gens are explicitly present. In this case, the domains correspond to Wigner-Seitz (Voronoi)

cells obtained for the sublattice of the halogens, Fig 2, top row. In all-electron calculations,

cations claim a region around the alkali metal nucleus (cf. Fig 2, middle row). For hard

cations, the attributed region should have a nearly spherical shape. For cations as soft as

the anions, we intuitively expect planes perpendicular to the cation-anion line to define the

separation surface. We see (Fig 2, middle row) that the shape is, in general, in-between

these extreme situations, as noted previously in the literature, see, e.g., [5, 11]. The anions

suffer from the exclusion effect of the cations, and the remaining part of the space provides

the somewhat peculiar shapes for the anions X−, Fig 2, bottom row.
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FIG. 3: MPDs for the X− anions in MX crystals, for M: Li to K (rows, top to bottom), and X: F

to I (columns, left to right).

3. Relative sizes affect shapes

The relative size of the ions also affects the shapes. As one can expect, the size of the

cations increases from Li+ to K+, and that of the anions from F− to I−, cf. Fig 3, and

changing the size of the cation affects the shape of the anion. For the small Li+ in LiI, the

shape of the domains of the anions looks almost like that of the halogen sublattice Wigner-

Seitz cells, while for the larger K+ in KCl, both ionic domain are closer to having a cubical

shape.

It is interesting to notice that with MPDs the domain of F− in KF does not seem to be

in contact with that of the neighboring F−. With the QTAIM and ELF domains, it seems

that both the domains for K+ and F− have cubical shapes (cf. refs. [6, 11] and Fig 4). For

MPDs however, the cation looks slightly softer than the anion (Fig 4). It is interesting to

point out that this picture is in agreement with the closeness of the (crystallographic data

based) Shannon-Prewitt radii [54, 55] for K+ (138 pm) and F− (133 pm).

4. Madelung forces

There is also a feature which can be noticed by a more careful analysis of the data. As

a rule, the volume of a given ion X− (or M+) increases, as the size the counterion M+ (or
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FIG. 4: Domains for K+ (top row) and F− (bottom row) in KF obtained from QTAIM, ELF and

the MPD (from left to right column).

X−) increases. This effect is stronger for (the softer) anions than for the cations and can be

seen in Fig 5. An explanation is that as the distance between ions increases when a larger

counterion is present, the lattice constant increases, too, and the Madelung force decreases.

Thus, for larger counterions, the compression of the ion is less important.

5. Space partitioning

To our numerical accuracy of 1 per cent, we obtain indeed that the density or ELF

basins partition space. However, up to 5 per cent of the space is missing when adding up

the volumes of MPDs. As we find that the average number of electrons for cationic and

anionic regions together yields a value close to the correct number of electrons, we interpret

the missing part of space as “empty” space. Because an MPD corresponds to an extremum

of a probability, any change of the MPD produces changes in the probability that are of

second order and makes the “shrinking” of Ω difficult to pinpoint. As we do not have the

numerical accuracy yet to analyze it reliably, we would not like to overemphasize this effect.
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FIG. 6: Maximal probabilities, pν(Ων), for a domain around a nucleus, containing a number of

electrons equal to that of the formal ion (cations M+, left, and anions X−, right).
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B. Probabilities

1. Maximal probabilities

Of course, one of the outcomes of the method of MPDs is to provide probability distri-

butions for the electrons in Ω. The maximal probability corresponds to that of having as

many electrons as in the free ion. They are quite large, see Fig 6, not only when compared

to independent particles, but also when compared, e.g., with the probability to find two

particles in the SiSi bond of the Si crystal (p2 ≈ 0.4) [24].

2. p in QTAIM, ELF and MPD

As a consequence of the similitude of the spatial domains, the probability distributions

are qualitatively the same for QTAIM or ELF domains, as for the MPDs, cf. Fig 7.

This can be explained by realizing that the MPDs maximize the probabilities: changing

Ω away from the MPDs only changes pν at second order.

3. Electron surface crossings

As mentioned above, and illustrated in Appendix B we can expect for most diffuse ion,

I−, the strongest effect of surface crossing (illustrated by the strongest reduction of maximal

probability, see Fig 6. The maximal probability decrease is weaker in the cations (from Li

to K) than it is in anions.

Surface crossing can be expected to be important when domains have surfaces in contact.

Intuitively, one expects that a larger contact surface between anionic domains also favors

the penetration effect discussed here. The trend is confirmed by comparing the maximal

probabilities for LiI and KI, Fig 6, and the contact surfaces between X− domains, Fig 3.

Let us now look at the symmetry of probability distributions and their relationship to

charges. Wigner-Seitz cells illustrate, by construction, the symmetric case with no charge

transfer, and it can be recognized in the symmetric probability distributions (see Fig 7, top).

When pseudopotentials are eliminated, and cations are present, the probability distribution

for the cationic domains showd an asymmetry (see Fig 7, middle row). By the change in the

probabilities (increase of pν+1 for M+, and of pν−1 for X−), it can be related to a transfer
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FIG. 7: Probability distributions in the NaCl crystal: for a Wigner-Seitz cell of the halogen

sublattice, top, for Na+, middle row, and for Cl−, bottom. The spatial domains for which the

probabilities are computed are the atomic basins of QTAIM, triangles; the MPDs, circles; the

domains obtained from ELF, squares, yield probabilities that can be hardly distinguished from the

MPD on the scale of this plot.
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from the ideal ions X− and M+, to neutral atoms, X and M. Even when cations are present,

the contact surfaces between anionic domains remain important in most cases, and one can

still expect an important contribution coming from the symmetric surface crossings. For the

anions, we thus find a mixture of the two types of electron surface crossings. The probability

distribution in the anions presents an asymmetry towards the neutral atoms. However, it is

relatively weak, and slightly reduced when going from the QTAIM basins to ELF or MPDs.

The dominant effect for anions seems to be the reduction of pν(Ων) due to the exchange of

electrons between anions, as it was for the Wigner-Seitz cells.

4. Uncommon ions

As there is a significant probability not only to find X but to also find X2− in the domain

attributed to X−, we would like to ask whether it would be of interest to consider the

existence of such charged systems. Of course, they showed up by our construction, by

attributing a limited domain of space to the ions, and their probability will probably decrease

when correlation is taken into account. But is it not something we should accept as imposed

by the quantum description?

If we see this effect as related to a different picture, as due to ”penetration“, or ”overlap“,

should we replace the concept of ”charge“ by it? While it is tempting to do it for equivalent

domains, should we do it for non-equivalent domains?

5. Charges

In the examples studied in this paper, the deviations from the formal ionic charges are

relatively small. The largest deviation observed in the crystals studied, for QTAIM, is ≈ 0.2.

The average deviation from the formal charges is ≈ 0.1 for QTAIM, and approximately half

this value for ELF and MPDs. Notice, however, that these numbers are close to the numerical

accuracy of integration of ≈ 1 per cent. Thus, we can consider that the ionic description

is appropriate for the crystals studied here. In view of the precise definitions given for the

MPDs, it seems that there is no need to further argue in favor of the charges obtained, and

there is no need to further support the statements made by Bader and Matta [56] in the

controversy about the magnitude of the charges.
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One might ask what happens if one defines Ωs by choosing ν values corresponding to the

number of electrons in the atom, and not to that of the ion. We get an ”atom“ in the crystal,

and not an ”ion“ in the crystal, and can consider its charge, too. We would like to mention

first that it has already been noticed before that for physically insignificant domains the

maxima are less pronounced and thus more difficult to obtain (cf. Figs. 1 and 2 in Ref [15]).

Nevertheless, we have tried to obtain atomic domains for the NaCl crystal, and the found

that the changes are dramatic

1. The Na atomic domain is much larger than that of the ionic domain; the reverse occurs

for Cl.

2. The probabilities to find as many electrons as in the atom (≈ 0.4) are approximately

half those obtained for the finding in the ionic domain as many electrons as in the free

ion.

3. The atomic domains bear (on average) almost no charge but there is a significant

probability to find ionic structures, ≈ 0.3 for the expected ions Na+ and Cl−, and

≈ 0.2 for the unexpected ions Na− and Cl+.

Thus, one does not reach the same conclusion about the degree of ionicity, starting with the

“atom” in the crystal as with the “ion” in the crystal.

Thus, in spite of being able to obtain charges, and even define them rigorously, we believe

that one must be very careful in using them. We would like to sustain our statement with

charges, obtained from measurable data, viz., dipole moments, equilibrium distances and

derivatives of the dipole moment w.r.t. the distance. It turns out that the charges obtained

cannot even be kept for the zero-point vibration (see Appendix C). For the present paper,

we do not want to continue with this type of questioning, and simply stay with the data we

have produced, the probability distributions in the Ωs.

6. Reducing the probability distribution to mean and variance.

Although the mean (Eq. 2) and the variance (Eq. 5) provide important information about

the probability distribution, we would like to illustrate that this may not be sufficient to

reconstruct it. To do it, let us assume that we can safely neglect all probabilities except
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FIG. 8: Probability distributions in the NaCl crystal, dots; a Gaussian function having the same

mean and variance as the distribution, full curve; a Gaussian function fitting this distribution,

dashed curve.

those for ν − 1, ν, and ν + 1. This seems to be well justified by the plots in Fig 7. Knowing

also that the probabilities have to sum to 1, we can try to use the mean Eq 2, and variance,

Eq 5, to determine the three important probabilities. To make the argument quantitative, we

define δ = p(ν+ 1)−p(ν−1) as a measure of the asymmetry of the probability distribution.

One obtains for the mean µ = ν + δ. Thus, at no surprise, µ− ν is a good measure for the

asymmetry of the probability distribution. For the variance, one obtains σ2 = 1− p(ν)− δ2.

We see that the last term can be neglected, when δ is small, and that the variance indicates

the decrease of p(ν) from the maximal value of one. It turns out, however, that in spite of

the smallness of the probabilities neglected, the error propagation can be significant. For

example, from the probability distribution obtained for the domain optimized for Cl− in

NaCl, one can compute µ ≈ 17.96 and σ2 ≈ 0.37. One can now use this information to

obtain backwards pν−1=17, pν=18, and pν+1=19. While δ is reproduced reasonably well (-0.03

instead of -0.04), pν is underestimated (0.63 instead of 0.71). This is understandable: the

probabilities for finding a number of electrons largely different from ν − 1, ν, or ν + 1 are

small, but they are more heavily weighted in the variance. A fit to Gaussian distribution

[57, 58] can sustain this point making the discrete points of the exact probability distribution

lie quite close to the fit [53] which, however, has a different variance (≈ 0.30).
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VI. CONCLUSIONS

This paper present a new program which: i) computes the probabilities to find a given

number of electrons in a spatial domain within a crystal, and ii) optimizes this domain in

order to maximize the probability to find a chosen number of electrons; the domain obtained

is a maximum probability domain (MPD). The program is used to analyze crystals studied

in rock-salt structure (MX; M: Li, Na, K; X: F, Cl, Br, I), where a physical intuition suggest

a strong ionic character. We produced spatial domains for which the probability to find the

same number of electrons as in a free ions is maximal.

For all systems studied, the MPDs resemble the atomic basins of QTAIM, or collections of

ELF basins. This might be less surprising for ELF basins, as, for single Slater determinants,

in the ideal limiting case of strictly localized (non-overlapping) orbitals, the localization

domain of the orbitals, the ELF basins and the MPDs become identical [59]. The similitude

with QTAIM density basins stems probably from the remains of atomic shell structure,

which is reproduced by all three methods. This similitude is an effect specific to the systems

studied in this paper, and not a general feature: i) in the Si crystal, the density basins differ

qualitatively from those produced by ELF basins and MPDs, cf.Ref. [24], ii) in the bent

Si2H2, the also the ELF basins are different from the MPDs [12].

The resulting picture is in accord with the conventional one, the MX crystals being

predominantly ionic, in the sense that the probability of finding an number of electrons

equal to that of a free ion is relatively large. Of course, fluctuations are unavoidable.

We interpret the trends in probability changes using other physical concepts like com-

pactness of the ions, contact surfaces between ions, distance between them and Madelung

forces.

Finally, we mention some side-issues of this paper. One is to point out that using syn-

thetic quantities like mean (or population, or charge) and variance might not be enough

to correctly characterize the probability distribution. We also discuss the definition of the

charge. Usually the charge is related to populations (to the mean of the probability distribu-

tion). However, probability distributions can show non-negligible the probability of finding

a number of electrons different from the formal one. We naturally find charge fluctuations

between ions of different kind, which can be assymetric and induce net charges, but fluctua-

tions can also be symmetric, as between ions of the same kind, and increase the probability
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of finding a differently charged system.

We knowingly did not address the issue of transferability, and hint to the difficulty of

enterprising it by illustrating it in an appendix by showing that two different, well-defined,

measurable “charges”, can be qualitatively different. We also found it useful to clarify the

interpretation of electron density, also in an appendix.

VII. SUPPORTING INFORMATION

All the raw numerical data used in the discussion is available free of charge via the

Internet http://pubs.acs.org .

Appendix A: Physical significance of the electron density

Usually ρ(r) times the volume element is interpreted as the probability to find an electron

in the volume element around r. However, this produces the paradox that the integral over

all space yields the total number of electrons, N , which, in general, is larger than 1, the

upper limit for a probability. Sometimes, it is argued that the density should be normalized

to 1, and not to N , in order to be a probability. The solution to this paradox is simple. The

density, normalized to N , integrated over the volume yields not the probability mentioned,

but the average number of electrons in it, cf. Eqs 3, 4. When the volume becomes very

small, i) the integral becomes ρ(r) times the volume element, ii) the probability of finding

more than one electron vanishes. Thus, the average number of electrons for a vanishingly

small Ω becomes the probability to find one electron in it

ρ(r)VΩ ≈
∫

Ω

ρ(r)d3r = 〈Ψ|N̂Ω|Ψ〉 ≈ 0 p0(Ω) + 1 p1(Ω) + · · · = p1(Ω) + . . . (A1)

where VΩ is the volume of the Ω.

Appendix B: Two closed-shell atom model

In order to better understand surface crossings by electrons, let us consider a simple two-

center model, described by a hydrogenic orbital (with exponent ζ) on each of the center.

Two of the electrons occupy the σg orbital, two more the σu orbital. In a localized picture,

we have two closed shells, compact if ζ is large, diffuse if ζ is small. The centers are at
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FIG. 9: Charges in first row hydrides defined as the ratio of dipole moments to internuclear

distances, filled circles, and as derivatives of the dipole moment wrt the internuclear distance,

empty circles.

distance R. A plane perpendicular to the internuclear axis, equally distant from the two

nuclei, produces two equivalent half-spaces. The probabilities to find ν electrons in one of

the half-spaces can be computed analytically and depend on ζR. When ζR → ∞, we are

certain that two and only two electrons are in the half-space: p2 → 1. In this case, the

two subsystems are well separated, either by being compact, or by their distance. While p2

decreases monotonically with ζR, p1 = p3 increase, and p0 = p4 ≈ 0 are almost unchanged.

Thus, there is a finite probability not to have two electrons for a finite separation between

the two closed shell “atoms”. The origin of this is that the plane splitting the space in two

halves can be crossed by the electrons (the hydrogenic wave function crosses it more and

more as ζR decreases). From this model we expect that for more diffuse systems (smaller ζ)

this penetration effect (or electron surface crossing, or fluctuation) is more important than

for more compact systems. However, more diffuse systems may also be associated to larger

distances between nuclei, and thus the opposite effect (increased R) may also happen.

Appendix C: “Experimental” charges

Let us try to define “charges” in the first-row diatomic hydrides LiH, BeH, BH, ..., HF,

using only measurable quantities. If atomic charges could be associated to atomic centers,

one could obtain a “static” charge, from the values of the dipole moments, m, divided by

26



the bond length, R:

qstatic = m/R (C1)

Alternatively, one could define a “dynamic” charge, as the derivative of the dipole moment

with respect to the bond length, R:

qdynamic =
dm

dR
(C2)

Although one might use experimental data for these charges, we use here, for consistency,

the calculated data (CEPA) of Ref [60]. Figure 9 shows important differences between the

two definitions. For BH, CH, and NH, not even the sign of the charge is the same for the

two definitions. This should not be too surprising. It is know for a long time that changing

the bond length also induces changes in the charge distribution (see, e.g., [61], or for a more

recent application [62]). The static charge, qstatic is qualitatively different from that arising

from infinitesimal changes in the bond length. Please notice that centering the charges in

points away for the nuclei does not change the sign, and thus will not correct the discrepancy

for BH, CH, or NH.
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