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I. INTRODUCTION

By firmly grounding a tool to analyze chemical bonding, the
Quantum Theory of Atoms in Molecules (QTAIM),1 Prof.
Richard F. W. Bader also stimulated the interest of researchers
to provide new tools to understand chemistry. Among them are
the Electron Localization Function of Becke and Edgecombe2

and the Maximum Probability Domains (MPDs).3 These three
methods are used below to analyze results of quantum mechan-
ical calculations (at Hartree�Fock level) for crystals in rock-salt
structure (MX, M: Li, Na, or K; X: F, Cl, Br, or I). Results
obtained for QTAIM and ELF (and one of the forms of a closely
related electron localizability indicator, ELI-D4) were already
published.5�11

In this paper, we analyze maximum probability domains
(MPD), the regions of space that maximize the probability to
find in them a given number of electrons in them.

Although MPDs are based on a clear and simple quantum
mechanical concept, it is not self-evident that chemical concepts
can be derived from them. At the present stage, we have to learn
how MPDs work. We present in this paper, results for relatively
simple crystals in rock-salt structure.

Because the calculations were performed using a recently
developed program for crystals, a few details about the imple-
mentation are present, too.

The paper is structured as follows. First we define the MPDs,
recall their main features, and make a short comparison to other
related methods. Next, we give some details about our calcula-
tion, in particular, the way MPDs are obtained. In the Results
section, we notice the similarity of the shapes of the MPD ions to
those obtained with QTAIM or ELF, and interpret their shapes
and also the changes in the ionic volumes that we relate to

changes of the counterion and of the Madelung forces. We also
look at the probabilities to find a given number of electrons in the
spatial domains. We find a relatively high probability to find as
many electrons as in the formal ions.We also find, however, some
probability to find more or less electrons than in the formal ions.
When discuss the possibility to define charges not based upon the
average number of electrons in the domains, but also based upon
the probability distribution. We further notice that the often
presented indicators, mean and variance, can lead to inaccurate
descriptions of the probability distribution. Some Supporting
Information is given in the appendices (simple systems, inter-
pretation of the density and charges). Furthermore, the numer-
ical data on which we base our discussion can be found online, as
Supporting Information.

II. DEFINITIONS

A. Objective and Choices. 1. Electron Number. We would
like to identify spatial subsystems in a given electronic system by
specifying a given electron number, ν. This is done, for example,
when searching for atomic shells, the electron pairs of the Lewis
model, and so on. An essential point of the approach we take is to
let ν be a freely chosen parameter. For example, one would chose
ν = 2 when trying to find a Lewis electron pair from quantum
mechanical calculations. In the present paper, we search for the
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ions in crystals in the rock-salt structure, and choose ν = 2 for
finding the Li+ ion, ν = 10, for finding the F� ion, and so on.
Thus, we consider the positive integer ν defined by the question
the user asks.
2. Spatial Region. The next choice to be made is for defining a

spatial region, Ω. To not impose external requirements, we
choose the spatial region to have sharp boundaries: a point in
space either belongs to Ω or does not. In contrast to basins, as
used in QTAIM or ELF, we allow the MPDs to be spatially
disconnected.
Quantummechanics tells us that, for a given stateΨ, finding a

given number of electrons ν in Ω is only possible with a certain
probability, p. We have, thus, to see our subsystem as an open
system, able to exchange electrons with the region outside Ω,
analogously to QTAIM density basins.
B. Maximum Probability Domains. 1. Definition. We are

now in a position to define the maximum probability domains
(MPDs) as the regions of space for which the probability to find ν
electrons is maximal. To be more precise, let us consider an
electronic system described by a wave function Ψ. The prob-
ability to find ν and only ν electrons out of N in a three-
dimensional region Ω is given by

pνðΩÞ ¼ N
ν

 !Z
Ω

dx1, :::, dxν

Z
Ω
dxνþ1, :::, dxN jΨðx1, :::, xNÞj2

ð1Þ

where Ω̅ is the remaining part of the three-dimensional space,
R3/Ω, and the binomial coefficient is needed for taking into
account the permutations of the electrons. For a given ν, the
region Ω for which pν(Ω) is maximal, the MPD, depends on ν,
and is written as Ων.
The definition in eq 1 can be immediately extended to

ensembles.
Please notice that pν is not a reduced ν-particle density

integrated over the domainΩ. In the latter, the integration over
ν + 1, ..., is performed over the whole space, and not over R3/Ω.
An example of the difference between the two definitions is
discussed in Appendix A, showing that the integral of the one-
particle density yields the average number of electrons inΩ and
not the probability to find one electron in Ω.
2. Physical Multiplicity. As a rule, several solutions exist to

the optimization of Ω for given ν, Ων. This is physically
motivated. For example, in the NaF crystal, we may expect one
Ω10 corresponding to the Na+ ion, and another Ω10 that
corresponds to the F� ion. Furthermore, several symmetry
equivalentΩνs can exist. In the NaF crystal, for instance, if one
Ω10 is found and associated to one of the Na+ ions, there are
infinitely many suchΩ10 produced by translational symmetry
that can be associated to the other Na+ ions of the crystal.
Symmetry can also produce less trivial situations. For example,
in the bent Si2H2 molecule, we find two sets of threeΩ2s, one
arranged as an “upward” oriented triangle, the other as a
“downward” oriented triangle (see Figure 18 of ref 12). These
solutions are equivalent, as the nuclear arrangement is invar-
iant to inversion, but not the “triple pair” structure. This
feature corresponds to one known for localized orbitals, is
related to resonanting structures and did not show up in the
present study.
C. Synthetic Information. 1. Mean. One may provide com-

pact information by using some significant numbers. The mean,

or average number of electrons in Ω is given by

μðΩÞ ¼ ∑
N

ν¼ 0
νpνðΩÞ ð2Þ

It can be also obtained by integrating the density electron F(r)
over the domainΩ and is, thus, the population ofΩ. To see it, we
can write

Z
Ω
FðrÞd3r ¼

Z
Ω
ÆΨjF̂ðrÞjΨæd3r

¼ ÆΨj
Z
Ω
F̂ðrÞd3rjΨæ ð3Þ

where we introduced the density operator, F̂(r) = Σi = 1
N δ(r� ri).

We write

Z
Ω
F̂ðrÞ ¼ ∑

N

i¼ 1
θΩðr� riÞ ¼ N̂ΩðrÞ ð4Þ

where θΩ(r � ri) is 1 when electron i is in Ω and 0 when it is
outside it.13 N̂Ω counts the electrons inΩ. The expectation value
of N̂Ω, ÆΨ|N̂Ω|Ψæ, yields the average number of electrons inΩ.
However, expectation values can be also written as in eq 2 (see,
e.g., chapter III.C.4 of ref 14). The implication of this viewpoint
on the physical interpretation of the electron density is discussed
in Appendix A.
In some situations, when the domain Ω contains a nucleus,

one can prefer to replace μ by a charge, defined as the difference
between the nuclear charge and the population, μ(Ω).
2. Unphysical Multiplicity of Domains Defined by Means.

The multiplicity of MPDs should not be confused with that
arising from unphysical requirements. For example, one
might think of defining Ω such that the integral of the
electron density over Ω yields the integer number ν (0 < ν < N).
For the latter definition, there are infinitely many Ωs satisfying
the required condition. For example, define in the Be atom a
sphere, centered on the nucleus, with radius R. Let Rc be the
radius of the sphere such that the integral over the density in this
sphere is exactly equal to two. For any radius R1 < Rc, there is a
radius R2 > Rc such that the integral of the density over the
spherical shell defined by R1 and R2 yields the same value, two.
This is not the case for the MPDs, compare Figure 7 in ref 15.
This difference can be understood by the fact that integrating the
density yields the average value μ(Ω) that can be achieved with
several distributions, p0(Ω),p1(Ω), ..., pN(Ω).
3. Variance. Another synthetic information about the prob-

ability distribution, p0(Ω),p1(Ω), ..., pN(Ω) is given by the
variance,

σðΩÞ2 ¼ ∑
N

ν¼ 0
½ν� μðΩÞ�2pνðΩÞ ð5Þ

The population and variance can be found in literature for
discussing spatial domains (see, e.g., refs 11 and 16�18).
Variance can be valuable, as the average, μ, does not necessarily
reflect the probability distribution. For example, let us consider
the dissociated hydrogen molecule and chooseΩ on one side of
the plane that is perpendicular to the line connecting the nuclei,
and is equally distant from the two nuclei. For the ground state,
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we have p1(Ω) = 1 and p0(Ω) = p2(Ω) = 0, while for the ionic
resonant state, H+

3 3 3H
� T H�

3 3 3H
+, we have p1(Ω) = 0 and

p0(Ω) = p2(Ω) = 1/2. For both cases, μ = 1, while the variance is
different (0 in the former, 1 in the latter case).
4. Insufficient Information from Synthetic Indicators. Of

course, by using the synthetic indicators, μ, σ2, some information
gets lost; in general, a simple counting shows that there is more
information in p0, p1, ..., pN, ∑νpν = 1 than in just two numbers.
One can ask, however, what happens if all probabilities are close
to 0, except pν�1, pν, and pν+1. Are μ and σ2 sufficient? A
numerical example, based on the data obtained, shows that μ and
σ2 do not accurately reconstruct pν�1, pν and pν+1 although the
premise of having the other probabilities small seems to be
satisfied. It will be presented in the Results section.
5. Fluctuations. Electrons are free to cross the sharp bound-

aries we have defined. Let us imagine for a didactical purpose a
time-dependent picture. First, let us imagine that all ν electrons
are in Ων. To get to the physical probability distribution, we
imagine now that electrons cross the surface ofΩν. As electrons
get in or outΩν, the probability to find ν and only ν electrons in
Ων decreases, while that of finding ν + 1 or that of finding ν� 1
in this spatial region increases. At the same time, the variance is
increased. A change of the average number of electrons does not
necessarily take place. When an electron quits a domainΩν, and
enters another one, equivalent to the first, we at the same time
increase the probability to find ν + 1 and that to find ν � 1
electrons. (With the definition of pν, eq 1, we treat only one
domain at a time.) However, when the two domains are of
different nature, a bias between the directions of surface crossing
exists, and the average number of electrons is affected. (Of
course, the process can be more complicated than the one just
described, which considered only ν and ν( 1 electrons inΩ, but
this should be sufficient for a qualitative discussion.)
To pin down some factors influencing the surface crossing,

a simple model for two closed shells at variable distance, and
varying degree of compactness is given in Appendix B. It
confirms the intuitive picture that as distance (R) times
compactness (ζ) increases, the probability of surface cross-
ings decreases.
We can further expect that surface crossings are more frequent

when the contact with other domains is increased. For example,
for independent particles in a box, the exchanges are less
important when Ω2 is at one of the ends of the box, than for
Ω2 in the center of the box.
6. Alternative Charges. Analyzing probabilities opens a

different perspective on viewing charges. While the classical
one is based on the average electron number in a domain, one
can instead present the probability to find different electron
numbers in the same domain. To illustrate the difference let
us take two simple examples. The first one is the already
mentioned case of the symmetrically divided dissociated H2

molecule, in the ionic resonant state: the subsystems are
charged, but the average charge is zero. Another example is
that of the dissociated H2

+ molecule, H+
3 3 3H T H 3 3 3H

+,
with the space divided in two halves, as for the dissociated H2

molecule. The charge of one of the hydrogen atoms is 1/2,
although we could alternatively see it as a statistical mixture of
neutral H atoms and ions.
7. Probabilities for Independent Particles. It is possible to

obtain some Ων in situations that are not physically significant.
It has been proposed19 to consider statistically independent
particles as a reference. In this situation, the probability to find ν

particles out of N is given by the binomial distribution,

pindν ¼ N
ν

 !
bνð1� bÞN � ν ð6Þ

b ∈ (0, 1) is a parameter of the distribution, and is related to the
mean of this distribution, bN. We can choose b to maximize pν

ind

for a selected ν, λ. This yields b = λ/N. In this paper, we are
interested in crystals, so let us take N to infinity. We now obtain
the Poisson distribution, pν

ind f exp(�λ)λν/ν!. For the ions we
discuss λ g 2, and the largest probability for independent
particles is thus smaller than 2 exp(�2) ≈ 0.27. We obtained
for the ions in the rock-crystal structure much larger values for
the probabilities. This is due to the fact that the electrons are not
independent, even when described with a Hartree�Fock wave
function. For the latter, the Pauli principle is acting, and this is
reflected in the calculated probabilities.
D. Comparison of MPDs with Other Spatial Domains. 1.

Objects Studied. An important difference betweenMPDs, on one
side, andQTAIMor ELF, on the other side, is the object of study.
In the QTAIM the density basins correspond to “atoms”. Of
course, these “atoms” can be closer to “ions”, as they are in the
crystals studied in this paper. For ELF, one mostly searches for
bonds or lone pairs and not for atoms;2 the basins aremostly (but
not always) attributed to pairs of electrons.20 Exceptions are
present when dictated by symmetry, for example, for atomic
shells, as ELF sometimes produces averages of pictures, for
example, the L shell of the Ne atom, can be seen as a smeared
picture of the four valence electron pairs. One can deliberately
join different ELF basins to a single domain, especially when one
thinks that the basins are not well separated and remind of a
chemical concept, such as an atomic shell, see, for example, refs
20�22. For the present paper, collections of ELF basins were
always chosen to be attributed to a given ion. As stated in the
section definingMPDs, for these, the user is in charge of defining
the case to study, that is, to chose a given ν (the optimization
defining Ων). We like to see this as a supplementary freedom
existing with MPDs, allowing the user to ask several questions.
Please notice thatMPDs are physically defined from the start by a
physical construct, and not by using amathematical construct, for
example, a basin of a function, even if this function has a clear
physical meaning.
The mentioned differences do not imply that in specific cases

the results with the QTAIM, ELF, or MPDs are not similar. On
the contrary, the ionic domains presented in this paper are similar
for QTAIM, ELF, and MPDs.
2. MPDs Do Not Partition Space, but Basins Do. Because each

of the Ωνs is optimized separately, their collection does not
necessarily provide a partition of space: the MPDs can leave out
portions of space, or overlap. In practice, it is observed that for
most cases studied up to now, such a partition is roughly, but not
exactly, achieved. Up to now, there is no general proof, but we
have some analytical results, for simple models, showing this
explicitly.23 There are also numerical examples where Ωνs do
overlap. It is not clear yet whether these are desirable features or
not. At the present stage, we find the lack of partitioning an
interesting feature, worth to be explored. Empty regions of space
show up, for example, in the diamond structure in the regions
corresponding to the “holes”.24 Overlapping regions show up in
unstable cases, such as transition states.12 This non-partitioning
of space is to be contrasted to the description given not only by
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QTAIM and ELF where basins divide space, but also by loges, to
be discussed below.
3. MPDs Are Not Loges. The method of MPDs reminds of the

method of loges of Daudel and co-workers.25�27 There, one
defines a partition of space into M regions, called loges, and (in
the later variants) minimizes the missing information function,

Hðx1, :::, xMÞ ¼ � ∑
k
PðxkÞ log2 PðxkÞ ð7Þ

where xk is a given distribution of electrons into the loges and P
its probability. To obtain MPDs one only optimizes one domain
at a time. Here are some reasons for preferring MPDs to a
partition into loges:
• It is more difficult to optimize a partition of the space than to
optimize a given spatial domain.

• When optimizing a partition of space, some uninteresting
situations can be favored, for example, having no electrons in
some vanishingly small loge (one is certain of finding no
electron in a vanishingly small region of space23).

• Partitioning the whole space is often not needed, as one is
generally only interested in describing a specific region of
space (e.g., a given bond, the active site of the protein, etc.).

• Partitioning needs a good treatment of all loges. If one of the
regions is badly described, for example, because starting
from a wrong prejudice, it may affect the final result every-
where, even if the error was produced in the part of space,
which is considered irrelevant for the problem studied.

• In a very large system, the probability of having a distribu-
tion, x1, corresponding to “the chemical (Lewis) arrange-
ment” becomes vanishingly small. Even if the probability
that the number of electrons ν in a given loge is large (but
<1), when there are many loges, we can be almost sure that
the number of electrons is different from ν in one of the
many equivalent loges.

III. PROGRAM IMPLEMENTATION

A. Obtaining the Domains. 1. Ω on a Grid. The algorithm
used in the program is now described. A simplified, schematic
description is presented in Figure 1.
To obtain the MPDs, first a regular cubic grid, G, is generated.

Typically, the spacing of the grid points is 0.05 bohr. Subsets of
the set of grid points, D ⊆ G, are selected; all points in D are
considered to be inside a spatial domain that can be an atomic or
ELF basin, or the domain Ω to be optimized to yield the MPD.
To approximate the surface of a spatial domain, a subset of points
of is chosen, S⊆D; all points in S have less than six neighbor grid
points. The surface S is triangulized by choosing the vertices of
the triangles from the nearest neighbors in S.
2. OptimizingΩA first guess for theMPD can be an atomic or

ELF basin, defined on a grid, or another domain, chosen by the
user (a sphere, an ellipsoid, a cube, or a previously obtainedMPD).
For optimization, the barycenter of the triangles (of the surface S)
are moved along the normals. The displacements are propor-
tional to the shape derivatives computed at the barycenter;15 they
are larger at the start of the optimization, smaller toward the end.
During the optimization process, certain regions of Ω can

collapse to a surface or even points. These low-coordinated grid
points are eliminated both from Ω and S.
B. Obtaining the Probabilities. 1. Formula. The computa-

tion of pν(Ω), eq 1, is less difficult as it may seem, at least for
certain forms of the wave function. In particular, for a single

Slater determinant, as it is produced by Hartree�Fock or
Kohn�Sham calculations, one first computes the overlaps of
all occupied orbitals over the regions Ω,

SijðΩÞ ¼
Z
Ω
ϕiðxÞϕjðxÞdx ð8Þ

Such integrals are also used when computing the variance in
atomic or ELF basins.11,16�18 Next, the eigenvalues of the matrix
with elements Sij are obtained. From them, the probabilities are
quickly computed for all ν, with the Canc�es recursive formula.15

The effect of correlation is not explored in this paper. For
correlated wave functions, the computation of pν(Ω) is possible,
too, for example, with multideterminant wave functions,28,29 or
even for more complicated forms, by using Quantum Monte
Carlo.12,30

2. Numerical Implementation.To obtain the overlap integrals
SΩ, eq 8, needed for computing the probabilities, the integrand is
decomposed into local contributions, as proposed by Boys and
Rajagopal,31 and extensively used in density functional calcula-
tions (see, e.g., refs 32�34),

SijðΩÞ≈∑
k
ϕiðxkÞϕjðxkÞwkf ðxkÞ ð9Þ

The quadrature points xk and weights wk are the ones used by
Becke.32 The crystal orbitals used are Wannier localized.35

The partitioning function, f(x), is close to one if x is insideΩ
and close to zero otherwise. We use for f(x) the form of a Fermi-
Dirac distribution function, f(x) = 1/{1 + exp[β(xk� bk)� nk]},
where nk is the surface normal in bk, the triangle barycenter
closest to the quadrature point xk. It was found convenient to
choose β = 50. Numerical tests show that the accuracy achieved is
around 1%.
C. Further Information. 1. Volume of Ω; The volume of Ω

can be approximated by the integration scheme used for Sij(Ω),
replacing ϕi and ϕj in eq 9 by unity.
2. QTAIM/ELF Branch of the Program. To obtain the basins

(for QTAIM or ELF), the attractors (maxima) of the corre-
sponding function are found by searching them first on the grid
and by later refining the search by using analytical gradients.

Figure 1. Schematic, 2D representation is shown, to explain the
algorithm used. The grid points, belong to the set G, are shown as
empty or filled circles. The domainΩ is shaded. The grid points selected
to describe Ω belong to the set D, are shown as full black circles. The
shape derivative, computed at the origin of the arrow, indicates that Ω
has to be extended in the direction shown by the arrow. In the next step,
the gray shaded circles will be made part ofD. This operation is repeated
for all pairs of neighboring grid points close to the border of D. During
optimization, the subdomain may not only change size and shape, but
also merge, or one of them may disappear.

http://pubs.acs.org/action/showImage?doi=10.1021/jp205622x&iName=master.img-001.jpg&w=200&h=123
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All the points on the regular cubic grid leading to a given
maximum (by using analytical gradients) form our represen-
tation of the basin.
The algorithms in this branch of the program differs presently

from that used for MPDs. The volumes of the basins are
approximated by the number of points inside the domain times
the “volume element”, defined by the third power of the smallest
distance between two grid points. For obtaining the overlap
integrals, a strict cutoff is used in eq 9 for f(x), β f ∞.

IV. TECHNICAL DETAILS

A. Basis Functions and Pseudopotentials. Single-determi-
nant (Hartree�Fock) wave functions are produced with the
CRYSTAL program.36�39 The experimental crystal structures
were used.40,41 For Br and I, small core pseudopotentials were
used.42�44 For some of the calculations, alkali metal pseudopo-
tentials were used, too.45 The basis sets were of valence triple-ζ
plus polarization quality, mostly taken from the CRYSTAL basis
data sets. They were taken from ref 46 for Li, with a d function
added, with exponent 0.6; from ref 47 for Na; from ref 48 for K;
from ref 49 with one d function added, with exponent 0.8, for F;
and from ref 50 with one d function added, with exponent 0.5,
for Cl. As the CRYSTAL database does not contain basis sets
for Br and I with small core pseudopotentials, new basis sets
were generated for this case. They are given in a Supporting
Information file.
B. Plots. The domains are plotted using the program

Xcrysden.51,52 The other graphs are produced with Mathematica.53

V. RESULTS

A. Shapes and Sizes. 1. Similarity between QTAIM, ELF, and
MPD Domains. As, by the definition of the MPDs, the spatial
domains are generated to maximize the probability to find in it as
many electrons as in the free ion, we assign this region to cations,
or anions, and not to neutral atoms. In this sense, the MPDs are
the best regions for describing ions in a crystal. For atomic or ELF
domains, the definition did not explicitly request the generation
of domains defining ions. It turns out, that the spatial domains for
the ions in the crystals MX (M: Li, Na, K; X: F, Cl, Br, I) in rock-
salt structure are quite similar when obtained with the three
approaches considered for this paper, as can be seen in Figure 2
which shows, for NaCl, left to right column, the domains
obtained with QTAIM, ELF, or MPDs, respectively.
2. Exclusion. To understand the shape of these domains let us

first consider those produced using pseudopotentials (effective
core potentials, ECPs) for the alkali metal atoms, so that only
halogens are explicitly present. In this case, the domains corre-
spond toWigner-Seitz (Voronoi) cells obtained for the sublattice
of the halogens, Figure 2, top row. In all-electron calculations,
cations claim a region around the alkali metal nucleus (cf.,
Figure 2, middle row). For hard cations, the attributed region
should have a nearly spherical shape. For cations as soft as
the anions, we intuitively expect planes perpendicular to the
cation�anion line to define the separation surface. We see
(Figure 2, middle row) that the shape is, in general, in-between
these extreme situations, as noted previously in the literature, see,
for example, refs 5 and 11. The anions suffer from the exclusion
effect of the cations, and the remaining part of the space provides
the somewhat peculiar shapes for the anions X�, Figure 2,
bottom row.

3. Relative Sizes Affect Shapes. The relative size of the ions
also affects the shapes. As one can expect, the size of the cations
increases from Li+ to K+, and that of the anions from F� to I�,
compare Figure 3, and changing the size of the cation affects the
shape of the anion. For the small Li+ in LiI, the shape of the
domains of the anions looks almost like that of the halogen
sublattice Wigner-Seitz cells, while for the larger K+ in KCl, both
ionic domain are closer to having a cubical shape.
It is interesting to notice that with MPDs the domain of F� in

KF does not seem to be in contact with that of the neighboring
F�. With the QTAIM and ELF domains, it seems that both the
domains for K+ and F� have cubical shapes (cf. refs 6,11 and
Figure 4). For MPDs however, the cation looks slightly softer
than the anion (Figure 4). It is interesting to point out that this
picture is in agreement with the closeness of the (crystallographic
data based) Shannon-Prewitt radii54,55 for K+ (138 pm) and F�

(133 pm).
4. Madelung Forces.There is also a feature that can be noticed

by a more careful analysis of the data. As a rule, the volume of a
given ion X� (or M+) increases as the size the counterionM+ (or
X�) increases. This effect is stronger for (the softer) anions than
for the cations and can be seen in Figure 5. An explanation is that
as the distance between ions increases when a larger counterion is
present, the lattice constant increases, too, and the Madelung

Figure 2. Domains in the NaCl crystal, as obtained fromQTAIM, ELF,
and MPDs (columns, left to right), when cations are replaced by
effective core potentials (i.e., Wigner-Seitz cells for the anion sublattice),
for the cation, and for the anion (rows, top to bottom).

Figure 3. MPDs for the X� anions in MX crystals, for M: Li to K (rows,
top to bottom), and X: F to I (columns, left to right).
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force decreases. Thus, for larger counterions, the compression of
the ion is less important.
5. Space Partitioning. To our numerical accuracy of 1%, we

obtain the density or ELF basins partition space. However, up to
5% of the space is missing when adding up the volumes of MPDs.
As we find that the average number of electrons for cationic and
anionic regions together yields a value close to the correct number
of electrons, we interpret the missing part of space as “empty”
space. Because an MPD corresponds to an extremum of a prob-
ability, any change of the MPD produces changes in the prob-
ability that are of second order and makes the “shrinking” of Ω
difficult to pinpoint. As we do not have the numerical accuracy
yet to analyze it reliably, we would not like to overemphasize this
effect.
B. Probabilities. 1. Maximal Probabilities. Of course, one of

the outcomes of the method of MPDs is to provide probability
distributions for the electrons in Ω. The maximal probability
corresponds to that of having as many electrons as in the free ion.
They are quite large, see Figure 6, not only when compared to
independent particles, but also when compared, for example,
with the probability of finding two particles in the Si�Si bond of
the Si crystal (p2 ≈ 0.4).24

2. p in QTAIM, ELF and MPD. As a consequence of the
similitude of the spatial domains, the probability distributions
are qualitatively the same for QTAIM or ELF domains, as for the
MPDs, compare Figure 7.
This can be explained by realizing that theMPDsmaximize the

probabilities: changingΩ away from the MPDs only changes pν
at second order.
3. Electron Surface Crossings. As mentioned above and

illustrated in Appendix B, we can expect for most diffuse ions,
I�, the strongest effect of surface crossing (illustrated by the
strongest reduction of maximal probability, see Figure 6). The

maximal probability decrease is weaker in the cations (from Li to
K) than it is in anions.
Surface crossing can be expected to be important when

domains have surfaces in contact. Intuitively, one expects that a
larger contact surface between anionic domains also favors the
penetration effect discussed here. The trend is confirmed by
comparing the maximal probabilities for LiI and KI, Figure 6, and
the contact surfaces between X� domains, Figure 3.
Let us now look at the symmetry of probability distributions

and their relationship to charges. Wigner-Seitz cells illustrate, by
construction, the symmetric case with no charge transfer, and it
can be recognized in the symmetric probability distributions (see
Figure 7, top). When pseudopotentials are eliminated, and
cations are present, the probability distribution for the cationic
domains showed an asymmetry (see Figure 7, middle row). By
the change in the probabilities (increase of pν+1 for M

+, and of
pν�1 for X

�), it can be related to a transfer from the ideal ions X�

and M+, to neutral atoms, X and M. Even when cations are
present, the contact surfaces between anionic domains remain
important in most cases, and one can still expect an important
contribution coming from the symmetric surface crossings. For
the anions, we thus find a mixture of the two types of electron
surface crossings. The probability distribution in the anions
presents an asymmetry toward the neutral atoms. However, it
is relatively weak and slightly reduced when going from the
QTAIM basins to ELF or MPDs. The dominant effect for anions
seems to be the reduction of pν(Ων) due to the exchange of
electrons between anions, as it was for the Wigner-Seitz cells.
4. Uncommon Ions. As there is a significant probability not

only to find X but to also find X2� in the domain attributed to X�,
we would like to ask whether it would be of interest to consider
the existence of such charged systems. Of course, they showed up
by our construction, by attributing a limited domain of space to
the ions, and their probability will probably decrease when
correlation is taken into account. But is it not something we
should accept as imposed by the quantum description?
If we see this effect as related to a different picture, as due to

“penetration” or “overlap”, should we replace the concept of
“charge” by it? While it is tempting to do it for equivalent
domains, should we do it for nonequivalent domains?
5. Charges. In the examples studied in this paper, the devia-

tions from the formal ionic charges are relatively small. The
largest deviation observed in the crystals studied, for QTAIM, is
≈0.2. The average deviation from the formal charges is≈0.1 for
QTAIM, and approximately half this value for ELF and MPDs.
Notice, however, that these numbers are close to the numerical

Figure 4. Domains for K+ (top row) and F� (bottom row) in KF
obtained from QTAIM, ELF, and the MPD (from left to right column).

Figure 5. Volume of anionic MPDs, in bohr3.

Figure 6. Maximal probabilities, pν(Ων), for a domain around a
nucleus, containing a number of electrons equal to that of the formal
ion (cations M+, left, and anions X�, right).
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accuracy of integration of ≈1%. Thus, we can consider that the
ionic description is appropriate for the crystals studied here. In
view of the precise definitions given for the MPDs, it seems that
there is no need to further arguing in favor of the charges
obtained, and there is no need to further support the statements
made by Bader andMatta56 in the controversy about themagnitude
of the charges.
Onemight ask what happens if one definesΩs by choosing ν

values corresponding to the number of electrons in the atom
and not to that of the ion. We get an “atom” in the crystal, and
not an “ion” in the crystal, and can consider its charge, too. We
would like to mention first that it has already been noticed
before that for physically insignificant domains the maxima are
less pronounced and thus more difficult to obtain (cf., Figures
1 and 2 in ref 15). Nevertheless, we have tried to obtain atomic

domains for the NaCl crystal and found that the changes are
dramatic.
1. The Na atomic domain is much larger than that of the ionic

domain; the reverse occurs for Cl.
2. The probabilities to find as many electrons as in the atom

(≈0.4) are approximately half those obtained for the finding
in the ionic domain as many electrons as in the free ion.

3. The atomic domains bear (on average) almost no charge,
but there is a significant probability to find ionic structures,
≈0.3 for the expected ions Na+ and Cl� and ≈0.2 for the
unexpected ions Na� and Cl+.

Thus, one does not reach the same conclusion about the
degree of ionicity, starting with the “atom” in the crystal as with
the “ion” in the crystal.
Thus, in spite of being able to obtain charges and even define

them rigorously, we believe that one must be very careful in using
them. We would like to sustain our statement with charges,
obtained from measurable data, namely, dipole moments, equi-
librium distances, and derivatives of the dipole moment wrt the
distance. It turns out that the charges obtained cannot even be
kept for the zero-point vibration (see Appendix C). For the
present paper, we do not want to continue with this type of
questioning and simply stay with the data we have produced, the
probability distributions in the Ωs.
6. Reducing the Probability Distribution to Mean and

Variance. Although the mean (eq 2) and the variance (eq 5)
provide important information about the probability distribu-
tion, we would like to illustrate that this may not be sufficient to
reconstruct it. To do it, let us assume that we can safely neglect all
probabilities except those for ν� 1, ν, and ν + 1. This seems to be
well justified by the plots in Figure 8. Knowing also that the
probabilities have to sum to 1, we can try to use the mean, eq 2,
and variance, eq 5, to determine the three important probabil-
ities. To make the argument quantitative, we define δ = p(ν + 1)
� p(ν � 1) as a measure of the asymmetry of the probability
distribution. One obtains for the mean μ = ν + δ. Thus, at no
surprise, μ � ν is a good measure for the asymmetry of the
probability distribution. For the variance, one obtains σ2 = 1 �
p(ν)� δ2. We see that the last term can be neglected, when δ is
small, and that the variance indicates the decrease of p(ν) from
the maximal value of one. It turns out, however, that, in spite
of the smallness of the probabilities neglected, the error propaga-
tion can be significant. For example, from the probability dis-
tribution obtained for the domain optimized for Cl� in NaCl,
one can compute μ≈ 17.96 and σ2≈ 0.37. One can now use this
information to obtain backward pν�1=17, pν=18, and pν+1=19. While
δ is reproduced reasonably well (�0.03 instead of �0.04), pν is

Figure 7. Probability distributions in the NaCl crystal: for a Wigner-
Seitz cell of the halogen sublattice, top, for Na+, middle row, and for Cl�,
bottom. The spatial domains for which the probabilities are computed
are the atomic basins of QTAIM, triangles; the MPDs, circles; the
domains obtained from ELF, squares, yield probabilities that can be
hardly distinguished from the MPD on the scale of this plot.

Figure 8. Probability distributions in the NaCl crystal, dots; a Gaussian
function having the same mean and variance as the distribution, full
curve; a Gaussian function fitting this distribution, dashed curve.
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underestimated (0.63 instead of 0.71). This is understandable:
the probabilities for finding a number of electrons largely
different from ν � 1, ν, or ν + 1 are small, but they are more
heavily weighted in the variance. A fit to Gaussian distribution57,58

can sustain this point making the discrete points of the exact
probability distribution lie quite close to the fit,53 which, how-
ever, has a different variance (≈0.30).

VI. CONCLUSIONS

This paper presents a new program that (i) computes the
probabilities to find a given number of electrons in a spatial domain
within a crystal and (ii) optimizes this domain to maximize the
probability of finding a chosen number of electrons; the domain
obtained is a maximum probability domain (MPD). The pro-
gram is used to analyze crystals studied in the rock-salt structure
(MX; M: Li, Na, K; X: F, Cl, Br, I), where a physical intuition
suggests a strong ionic character. We produced spatial domains
for which the probability to find the same number of electrons as
in a free ion is maximal.

For all systems studied, the MPDs resemble the atomic basins
of QTAIM or collections of ELF basins. This might be less
surprising for ELF basins, as, for single Slater determinants, in the
ideal limiting case of strictly localized (nonoverlapping) orbitals,
the localization domain of the orbitals, the ELF basins, and the
MPDs become identical.59 The similitude with QTAIM density
basins probably stems from the remains of an atomic shell
structure, which is reproduced by all three methods. This
similitude is an effect specific to the systems studied in this paper
and not a general feature: (i) in the Si crystal, the density basins
differ qualitatively from those produced by ELF basins and
MPDs, compare ref 24; (ii) in the bent Si2H2, the ELF basins
are also different from the MPDs.12

The resulting picture is in accord with the conventional one,
the MX crystals being predominantly ionic, in the sense that the
probability of finding an number of electrons equal to that of a
free ion is relatively large. Of course, fluctuations are unavoidable.

We interpret the trends in probability changes using other
physical concepts like compactness of the ions, contact surfaces
between ions, distance between them and Madelung forces.

Finally, we mention some side issues of this paper. One is to
point out that using synthetic quantities likemean (or population
or charge) and variance might not be enough to correctly
characterize the probability distribution. We also discuss the
definition of the charge. Usually the charge is related to popula-
tions (to the mean of the probability distribution). However,
probability distributions can show a non-negligible probability
of finding a number of electrons different from the formal one.
We naturally find charge fluctuations between ions of different
kind, which can be asymmetric and induce net charges, but
fluctuations can also be symmetric, as between ions of the same kind,
and increase the probability of finding a differently charged system.

We knowingly did not address the issue of transferability, and
hint to the difficulty of enterprising it by illustrating it in an
appendix by showing that two different, well-defined, measurable
“charges”, can be qualitatively different. We also found it useful to
clarify the interpretation of electron density, also in an appendix.

’APPENDIX A: PHYSICAL SIGNIFICANCE OF THE
ELECTRON DENSITY

Usually F(r) times the volume element is interpreted as the
probability to find an electron in the volume element around r.

However, this produces the paradox that the integral over all
space yields the total number of electrons,N, which, in general, is
larger than 1, the upper limit for a probability. Sometimes, it is
argued that the density should be normalized to 1, and not to N,
in order to be a probability. The solution to this paradox is
simple. The density, normalized toN, integrated over the volume
yields not the probability mentioned, but the average number of
electrons in it, compare equations 3 and 4. When the volume
becomes very small, (i) the integral becomes F(r) times the
volume element and (ii) the probability of finding more than one
electron vanishes. Thus, the average number of electrons for a
vanishingly smallΩ becomes the probability to find one electron
in it

FðrÞVΩ ≈
Z
Ω
FðrÞd3r ¼ ÆΨjN̂ΩjΨæ≈ 0p0ðΩÞ þ 1p1ðΩÞ

þ ::: ¼ p1ðΩÞ þ ::: ðA1Þ
where VΩ is the volume of the Ω.

’APPENDIX B: TWO CLOSED-SHELL ATOMS MODEL

To better understand surface crossings by electrons, let us
consider a simple two-center model, described by a hydro-
genic orbital (with exponent ζ) on each of the center. Two
of the electrons occupy the σg orbital, two more the σu orbital.
In a localized picture, we have two closed shells, compact if
ζ is large, diffuse if ζ is small. The centers are at distance R. A
plane perpendicular to the internuclear axis, equally distant
from the two nuclei, produces two equivalent half-spaces.
The probabilities to find ν electrons in one of the half-spaces
can be computed analytically and depend on ζR. When ζRf
∞, we are certain that two and only two electrons are in the
half-space: p2 f 1. In this case, the two subsystems are well
separated, either by being compact, or by their distance.
While p2 decreases monotonically with ζR, p1 = p3 increase,
and p0 = p4 ≈ 0 are almost unchanged. Thus, there is a finite
probability not to have two electrons for a finite separation
between the two closed shell “atoms”. The origin of this is
that the plane splitting the space in two halves can be
crossed by the electrons (the hydrogenic wave function
crosses it more and more as ζR decreases). From this model
we expect that for more diffuse systems (smaller ζ) this penetration
effect (or electron surface crossing, or fluctuation) is more
important than for more compact systems. However, more
diffuse systems may also be associated to larger distances
between nuclei, and thus the opposite effect (increased R) may
also happen.

’APPENDIX C: “EXPERIMENTAL” CHARGES

Let us try to define “charges” in the first-row diatomic hydrides
LiH, BeH, BH, ..., HF, using onlymeasurable quantities. If atomic
charges could be associated to atomic centers, one could obtain a
“static” charge, from the values of the dipole moments,m, divided
by the bond length, R:

qstatic ¼ m=R ðC1Þ

Alternatively, one could define a “dynamic” charge, as the
derivative of the dipole moment with respect to the bond
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length, R:

qdynamic ¼ dm
dR

ðC2Þ

Although one might use experimental data for these charges,
we use here, for consistency, the calculated data (CEPA) of ref
60. Figure 9 shows important differences between the two
definitions. For BH, CH, and NH, not even the sign of the
charge is the same for the two definitions. This should not be too
surprising. It has been known for a long time that changing the
bond length also induces changes in the charge distribution (see,
e.g., ref 61 or, for a more recent application, ref 62). The static
charge, qstatic, is qualitatively different from that arising from
infinitesimal changes in the bond length. Please notice that
centering the charges in points away for the nuclei does not
change the sign and, thus, will not correct the discrepancy for BH,
CH, or NH.
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