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Abstract

The performance of a method is generally mea-
sured by an assessment of the errors between
the method's results and a set of reference
data. The prediction uncertainty is a measure
of the con�dence that can be attached to a
method's prediction. Its estimation is based
on the random part of the errors not explained
by reference data uncertainty, which implies
an evaluation of the systematic component(s)
of the errors. As the predictions of most den-
sity functional approximations (DFA) present
systematic errors, the standard performance
statistics such as the mean of the absolute er-
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rors (MAE or MUE), cannot be directly used
to infer prediction uncertainty. We investigate
here an a posteriori calibration method to es-
timate the prediction uncertainty of DFAs for
properties of solids. A linear model is shown to
be adequate to address the systematic trend in
the errors. The applicability of this approach
to modest-size reference sets (28 systems) is
evaluated for the prediction of band gaps, bulk
moduli and lattice constants with a wide panel
of DFAs.

Keywords : virtual measurement; calibration
statistics; band gap; lattice constant; bulk mod-
ulus.

1 Introduction

The success of density functional theory, of
modern algorithms and computers has pro-
duced not only a large amount of numerical
results, but of also a large number of Density
Functional approximations (DFA). To choose
amongst those, benchmark data sets are in-
creasingly used. Although this should be seen
as a quanti�cation of experience, one should be
also warned that using statistical tools to quan-
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tify DFAs performance has its pitfalls, and care
is needed1.
If ranking is a concern for DFA designers

to assess the overall performance of new de-
velopments, it is less practically useful to end
users, who need to select a method with crite-
ria such as code availability, computing perfor-
mance, and, most important, prediction uncer-
tainty. The later provides a con�dence measure
on the results of a DFA for a given property. If,
in addition to performance statistics, users are
informed of the prediction uncertainty of DFAs,
they might have a better rationale to select a
method satisfying their speci�c requirements.
The de�nition of prediction uncertainty for

computational chemistry methods has been for-
malized by Irikura et al.2 in the Virtual Mea-
surement (VM) framework. The interest of VM
is to de�ne a statistical approach in agreement
with international standards for the evaluation
of measurement uncertainty, as recommended
by the Guide to the Expression of Uncertainty
in Measurement (GUM)3. The VM approach
has been adopted by the National Institute of
Standards and Technology (NIST), notably for
its Computational Chemistry Comparison and
Benchmark Database (CCCBDB)2. The VM
framework has been reported in the computa-
tional chemistry literature mostly to estimate
prediction uncertainty for scaled harmonic and
anharmonic vibrational frequencies and zero-
point energies2,4�10. Recently, Ruscic11 strongly
recommended its use to improve the uncer-
tainty evaluation of predicted thermochemical
quantities. The interest of this approach has
also been demonstrated for molecular simula-
tion12�14.
In the GUM approach to uncertainty estima-

tion, �it is assumed that the result of a mea-
surement has been corrected for all recognized
signi�cant systematic e�ects and that every ef-
fort has been made to identify such e�ects� 3.
This is a key point which is challenging for com-
putational chemistry, where most error sources
are known to be systematic, due to the var-
ious approximations in the chemistry models.
The correction of systematic errors can only
be achieved by comparison with reference data.
The assessment of a prediction uncertainty re-

quires therefore either an internal calibration
(adjustment of parameters) of a method against
a reference data set, or an a posteriori calibra-
tion of the results of this method. We address
the latter approach in this article.
The internal calibration of semi-empirical

DFAs followed by propagation of the uncer-
tainty on calibrated parameters to predictions
has been sparsely reported15�17, and recently
applied to computational catalysis18,19. Few
studies along similar lines have also been re-
ported for molecular simulation force �elds20�22.
In the a posteriori approach, calibration is

used to remove the predictable part of the errors
(systematic errors). Prediction uncertainty for
a method is then derived from the remaining,
unpredictable part of the errors (random er-
rors)3. In the aforementioned vibrational fre-
quency applications, correction of systematic
errors is done through the scaling of the cal-
culated data, and the root-mean-square of the
errors (RMSE) of scaled vibrational frequencies
has been shown to provide, under mild condi-
tions, a good approximation of prediction un-
certainty8,9. This scaling approach has been
used recently by Lejaeghere et al.23 to esti-
mate the prediction errors of solid-state DFAs
for elemental crystals. As will be shown be-
low, two points need to be addressed to com-
plement these scaling studies for other systems
and properties: (i) the calibration model cannot
always be reduced to a simple scaling, and (ii)
the reference data uncertainties are not always
small enough to be neglected in the statistical
analysis.
We present therefore a detailed derivation of

prediction uncertainty of computational meth-
ods by a posteriori calibration in a more gen-
eral framework than for a single scaling factor,
moreover taking into account the uncertainty
on the reference data. The method is applied to
the calculation of lattice constants, bulk moduli
and band gaps for a set of 28 crystals (semicon-
ductors and insulators) with cubic symmetry,
by 18 di�erent DFAs (local, semi-local, and hy-
brid).
The paper consists of four main sections. In

the �rst part, we present the di�culty of deriv-
ing prediction uncertainty from common per-
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formance statistics provided in the benchmark
literature and the need to design a speci�c ap-
proach. In the second part, we illustrate a typ-
ical distribution of errors observed in the appli-
cation cases and derive an adequate stochastic
calibration/prediction model. In the third sec-
tion, we apply the calibration/prediction model
to the reference data and study its validity. Dis-
cussion of the advantages and limitations of the
VM approach in the context of this study is the
object of the fourth section.

2 Method performance eval-

uation

Performance evaluation of computational chem-
istry methods relies on two ingredients: a
benchmark data set used as a reference to assess
calculation accuracy, and performance statistics
on the di�erences between calculations and ref-
erence data (see e.g. Peverati and Truhlar24

for a recent review). Both ingredients play a
crucial role in performance assessment.

2.1 De�nitions

We thereafter call error the di�erence between
the value of a property, cm,s, calculated for a
system s by a method (e.g. DFA) m, and the
corresponding reference value, os (observed or
calculated):

em,s = cm,s − os. (1)

For performance assessment of a method, one
uses statistics summarizing the error sets con-
taining the error values of all systems for a given
method, Em = {em,s; s = 1, Ns}, where Ns is
the number of systems in the reference set.
In the following, we consider deterministic

methods and assume that all sources of code un-
certainty are controlled at a negligible level (nu-
merical errors, convergence thresholds e�ects,
etc.2).
In this case, the errors can be attributed

(i) to reference data uncertainty, us, and, if
this source alone cannot explain the amplitude
of the errors, (ii) to method inadequacy er-

rors, characterizing the inability of a method
to predict the reference data within their error
bars. The uncertainty of the reference data is
therefore a key information to properly assess
method inadequacy errors.

2.2 Performance estimators: MAD
vs. MAD

Several performance statistics are commonly
used in the benchmark literature to rank meth-
ods. We review these estimators in order to ap-
preciate their usability, or lack thereof, in the
estimation of prediction uncertainty.
First, there is some confusion in the compu-

tational chemistry literature about the nomen-
clature of the performance statistics. In partic-
ular, the use of some acronyms con�icts with
the standard use in the statistical literature.
The main example is the mean absolute devi-
ation (MAD), which is commonly used in the
community to refer to the mean of the absolute
errors (MAE)

MAE =
1

Ns

Ns∑
s=1

|em,s| , (2)

whereas for statisticians25 MAD is a measure of
dispersion around a reference point, either the
mean absolute deviation (from the arithmetic
mean Em),

M [ean]AD =
1

Ns

Ns∑
s=1

∣∣em,s − Em

∣∣ , (3)

or the median absolute deviation (from the me-
dian med(Em))

M [edian]AD = med |Em −med(Em)| . (4)

Synonyms of MAE in the computational
chemistry literature are the mean unsigned er-
ror/deviation (MUE/D) and the average abso-
lute error/deviation (AAE/D). The occasional
occurrence in this corpus of a meaningless def-
inition of MAD as mean average deviation is
even more confusing.26

The arithmetic mean is often referred to as
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mean signed error (MSE)

MSE = Em =
1

Ns

Ns∑
s=1

em,s. (5)

Uncertainty is de�ned in the International
Vocabulary of Metrology27 as a �non-negative
parameter characterizing the dispersion of the
quantity values being attributed to a measur-
and�. With regard to this de�nition, it is impor-
tant to acknowledge that MAE and MeanAD
are di�erent statistics:

• MeanAD is a measure of dispersion (for a
normal distribution of standard deviation
σ, one has MeanAD =

√
2/πσ);

• for Em = 0, MAE and MeanAD are
identical, but when Em 6= 0, MAE is a
non-invertible mixture of dispersion and
location statistics. In the extreme case
where all errors are positive, MAE is
equal to MSE, a measure of location.

In a recent paper intended on clarifying the
di�erence between MAE and prediction uncer-
tainty, Ruscic11 addresses MAE (called MAD
in the paper, but unambiguously synonymized
with MUE) as a dispersion measure, which it
is not for non-zero-centered error samples, the
standard case in computational chemistry. The
MAE can be used, amongst many other crite-
ria, to rank methods, but should not be used to
assess the uncertainty associated with a given
method.
The same remarks apply to the root-mean-

square error (RMSE)

RMSE =

√√√√ 1

NS

Ns∑
s=1

e2m,s, (6)

which is commonly used alongside theMAE in
the benchmark literature. The corresponding
measure of dispersion is the root-mean-square
deviation (RMSD)

RMSD =

√√√√ 1

NS

Ns∑
s=1

(em,s − Em)2. (7)

The equality

RMSE2 = RMSD2 +MSE2 (8)

lets clearly appear the RMSE as a mixture of
location and dispersion measures. The interest
of RMSE in the context of performance mea-
sures is also disputed, because of the better ro-
bustness of MAE to outliers, but the debate is
ongoing28,29.

2.3 From performance estimators
to prediction uncertainty

If an error set is a�ected by a constant (i.e.
system-independent) systematic contribution,
then the MSE estimates the mean value of the
systematic error, and the RMSD provides the
standard deviation of the remaining (random)
part of the errors. In the case of a negligible
contribution of the reference data uncertainty,
the RMSD and the uncertainty on the MSE
could then be combined to estimate a predic-
tion uncertainty.
As will be illustrated in the next section,

DFAs do not generally produce only constant
systematic errors23. Additional corrections are
necessary to access the random contribution
of the errors. Moreover, dispersion statistics
(MeanAD and RMSD) are not always pro-
vided in the benchmark literature, preventing
the estimation of prediction uncertainty from
existing benchmarks. An exception is for scaled
harmonic frequencies, where the RMSD of
scaled frequencies is generally available9,30.
An additional issue with the MAE and

RMSE estimators, is that they do aggregate
reference data uncertainty with the errors due
to the method. If the reference data uncer-
tainty is not negligible before method inade-
quacy, these estimators, as they do not average
out the random reference data errors, underesti-
mate method performance. The applicability of
MAE and RMSE requires therefore the use of
high accuracy reference data11,31, which might
be a severe restriction for some properties.
We show in the following how to circumvent

these di�culties in a practical way and estimate
prediction uncertainty by statistical modeling
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of the errors.

2.4 Some issues in the use of
benchmark data sets

Besides the requirement for high quality data in
the reference sets, one can be confronted with
more challenging issues: the experimental data
do not necessarily re�ect the best, exact refer-
ence to be used. There are several reasons for
this:

1. The calculated quantities do not necessar-
ily correspond to the experimental data.
This can be the case for the fundamental
band gaps, see, e.g., Civalleri et al.1.

2. The theoretical method is not necessar-
ily supposed to provide the quantity ana-
lyzed (Kohn-Sham orbital energies, even
exact, are not supposed to provide funda-
mental band gaps32�34).

3. The experimental data are subject to fac-
tors that are not properly taken into ac-
count (e.g., temperature, in particular for
bulk modulus).

4. The inclusion of the systems into the
benchmark data set is conditioned to data
availability, which introduces a bias in the
representativity of the data set.

3 Prediction uncertainty es-

timation

In order to estimate a prediction uncertainty, a
four-steps procedure is used:

1. build and validate a statistical model of
the errors from the benchmark set (cali-
bration model),

2. evaluate the uncertainties of the parame-
ters involved in this model,

3. propagate the uncertainties of the param-
eters in the calibration model to the pre-
diction model, and

4. validate the prediction model.

Validation in steps 1 and 4 is necessary to en-
sure that calculated values and reference data
agree within the error bars de�ned by the cal-
ibration or prediction model. One generally
faces the case where reference data uncertainty
alone cannot explain the errors amplitude, and
corrections to the calibration model have to
be done, either by updating its deterministic
part (representing the systematic errors), or its
stochastic part (representing the random er-
rors).

3.1 Distribution of errors

Designing a statistical model requires to exam-
ine the data and their distribution. We illus-
trate the process on the case of the B3LYP
DFA for lattice constants (LC), extracted from
the full application set described in Section 4.1.
This example is well representative of the other
cases considered in the present article.

3.1.1 Systematic and random errors

Fig. 1 (a) displays a scatter plot of the reference
data vs. the calculated data. One observes that
the points are grouped along a line which is not
the identity line. This is an evidence of the pres-
ence of systematic errors and of a trend in the
systematic errors, which in this case increase as
a function of the calculated property value.
Plotting the errors (set ELC,B3LY P ) against

the calculated values (Fig. 1 (b)) reveals more
clearly the trend: the errors increase more or
less linearly with the value of the lattice con-
stant and have a non-null mean value. The or-
ange line represents the least squares linear �t
of the errors. The MSE and MSE ± RMSD
values of these data are represented by horizon-
tal full and dashed lines, respectively.
The trend line represents a systematic ef-

fect (a deterministic contribution) in the errors,
which has to be corrected before we can esti-
mate the random contribution on which the un-
certainty estimation is based3. The corrected
errors, obtained by subtraction of the least-
squares regression line are shown in Fig. 1 (b)
(triangles) and present a zero-centered, more or
less symmetrical distribution. One can see that
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Figure 1: Structure of the errors for lattice con-
stants (LC) calculated by the B3LYP method:
(a) Reference vs. calculated data (bullets), the
least-squares regression line through the points
is the red/solid line, while the black/dashed
line represents the identity line; (b) Errors
vs. calculated values, before and after linear
correction. A linear trend (orange line) can
be assigned to a systematic (predictable) com-
ponent of the initial errors. The horizontal
lines in (b) represent the MSE (full line) and
MSE ± RMSD (dashed lines) of the corre-
sponding data sets.

Figure 2: Distribution of errors obtained us-
ing the B3LYP functional to predict lattice con-
stants, before and after linear correction of sys-
tematic errors. The histograms are produced
by distributing the data into bins of 0.02Å.

they do not present any obvious trend. More-
over, their RMSD is smaller than for the un-
corrected errors.
Histograms of the errors before and after lin-

ear correction can be compared in Fig. 2. It
is interesting to contrast the width of the cor-
rected distribution (about 0.02Å) with the typ-
ical measurement errors on lattice constants,
which are considered to be an order of mag-
nitude smaller (about 0.001Å, see Section 4.1).
One has thus to face the fact that, even after a
linear correction, the B3LYP DFA cannot pre-
dict the reference data within their uncertainty
range.

3.1.2 From deterministic calculations to
random errors

Considering the very small uncertainty on lat-
tice constants, the errors in the ELC,B3LY P set
can be mainly attributed to the method's in-
ability to reproduce reference data, and de-
composed in Fig. 1 into predictable/systematic
and unpredictable/random contributions. In
the following, we will refer to the random
part of method inadequacy as method inad-
equacy error, the systematic part being ad-
dressed through corrections.
The method inadequacy error has a random-

like trace as a function of lattice constant value
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(Fig. 1 (b)), despite the fact that the model
chemistry (i.e. method and basis set) calcu-
lations are deterministic23. This is not truly a
random process, in the sense that repeated cal-
culations with a model chemistry for the same
systems would provide the same values, but its
variation with the lattice constant value is prac-
tically unpredictable without doing the calcula-
tion. Moreover, for a given basis set, this ran-
dom contribution is irreducible without chang-
ing the DFA or splitting the reference data set
(if it appears heterogeneous).
The method inadequacy error represents

therefore our lack of knowledge on the pre-
diction of properties of new systems, due to the
use of an approximate method, and to some
extent, of a limited reference data set.
This pattern can be exploited to de�ne and

estimate prediction uncertainty by modeling
method inadequacy error by a random variable,
as detailed in the next section.

3.2 Calibration/prediction statis-
tical modeling

In this section we present the implementation
of the VM framework by an a posteriori cali-
bration model, enabling (1) to correct for the
systematic errors of a method, (2) to evaluate
the method inadequacy uncertainty, and (3) to
estimate the prediction uncertainty of the cali-
brated method.

3.2.1 Calibration

Let us start with the simplest statistical model
linking the calculated values (cm,s) and the un-
certain reference values (os ± us)

os = cm,s + εs (s = 1, Ns), (9)

where the εs are independent random variable
of mean 0 and known, �nite, standard devia-
tion us. This model is a generalization of Eq. 1:
it uses random variables εs to describe stochas-
tic processes from which one assumes that the
actual errors em,s are realizations.
In most cases of interest in the present study

and many others, this model is invalid, in the

sense that the values calculated by a given DFA
are not compatible with the reference values
within their uncertainty range.35

In order to get a valid calibration model, one
has to account for the structure of the errors
set. A systematic trend observed in the error
sets of the benchmark data can be corrected by
a transformation of the calculated values cm,s,
providing a new (calibration) model

os = fm(cm,s; ϑm) + εs, (10)

where ϑm represents the set of parameters
de�ning fm. The functional form and param-
eters values of fm are method-dependent. It
is important for the prediction ability of the
model to choose a functional form which does
not over�t the data. One can always �nd a
high-degree polynomial �tting exactly all points
in the errors set. However this kind of correc-
tion has no generalizability, i.e. it performs
poorly at the prediction stage. Low-order poly-
nomials or functions with few parameters (com-
pared to Ns) should be preferred.
After optimization of the parameters ϑm (ϑ̂m

represents the set of optimal parameters), the
validity of the model depends on the compari-
son between the residual errors

rm,s = os − fm(cm; ϑ̂m) (11)

and the reference data uncertainties us. In the
least-squares optimization framework, one com-
pares the chi-square value

χ2 =
∑

s=1,Ns

(
rm,s

us

)2

(12)

to the number of degrees of freedom ndf = Ns−
Nϑ, where Nϑ is the number of free parameters
in fm

36 37.
If χ2 ' ndf the corrected model can be con-

sidered as valid, and the prediction uncertainty
will be limited to the parametric uncertainty
of the correction function, as de�ned below
(Eq. 16).
In most practical cases however, the reference

data uncertainties are small compared to the
residual errors, which invalidates this calibra-
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tion model (χ2 � ndf ). If the residual errors
still present discernible trends, the correction
function fm has to be updated.
If the residual errors rm,s present a random-

like pattern, for which no further determinis-
tic correction appears suitable, one introduces
a new stochastic term δm, to describe the dis-
persion of the errors in excess of the reference
data uncertainty, that we attribute to method
inadequacy

os = fm(cm,s; ϑ̂m) + εs + δm, (13)

where δm is a random, unpredictable, variable
of mean 0 (systematic errors are corrected by
fm) and unknown, �nite, standard deviation
dm. The value of dm is estimated in order to
ensure the statistical validity of Eq. 13.
Practically, d2

m can be chosen as the di�er-
ence between the variance of the residual errors
rm,s and the mean variance of the reference data
(see Appendix A). With this choice, the cor-
rected calculated values and the reference data
are compatible within the combination of their
respective error bars.

3.2.2 Prediction

For the estimation of a new value of a property
knowing a calculated value c∗ (i.e. for a system
not in the benchmark set), the prediction model
and prediction variance are3

pm(c∗) = fm(c∗; ϑ̂m) + δ̂m (14)

u2
pm

(c∗) = u2
fm

(c∗; ϑ̂m) + d2
m (15)

where δ̂m ≡ 0 has been left in the prediction
equation as a reminder of the occurrence of d2

m

in the prediction variance.
The term ufm(c∗; ϑ̂m) represents the paramet-

ric uncertainty on the value of the function fm

at c∗. This contribution results from the un-
certainty in the optimal parameters set due to
the stochastic terms in Eq. 13. For functional
forms of fm linear in ϑm or showing weak non-
linearity on the variation domain of ϑm, it can
be estimated by combination of variances3,38

u2
fm

(c∗; ϑ̂m) = JT Σ2
ϑm
J, (16)

where J is a vector of sensitivity coe�cients
evaluated at ϑm = ϑ̂m,

Ji =
∂fm(c∗; ϑm)

∂ϑm,i

∣∣∣∣
ϑ̂m

, (17)

and Σ2
ϑm

is the variance-covariance matrix of
the parameters. For highly non-linear func-
tions, Monte Carlo uncertainty propagation can
be used39.

3.2.3 The linear case

A linear transformation function, fm(x; am, bm) =
am + bm(x), will be used in this study, leading
to the calibration model

os = am + bmcm,s + εs + δm. (18)

Weighted least-squares regression can be used
to estimate the optimal values of all parame-
ters, âm, b̂m, d̂m, and the uncertainties and co-
variance of the line parameters u(am), u(bm)
and u(am, bm). The details are provided in Ap-
pendix A.
The prediction model and prediction variance

are

pm(c∗) = âm + b̂mc
∗ (19)

u2
pm

(c∗) = u2
fm

(c∗; âm, b̂m) + d̂2
m(20)

u2
fm

(c∗; âm, b̂m) = u2(am) + c∗2u2(bm) (21)

+2c∗u(am, bm). (22)

The prediction uncertainty upm depends on the
calculated value c∗. However, if the benchmark
set is large enough and if c∗ lies within the range
covered by the benchmark set (no extrapola-
tion), the uncertainty on the calibration model
can become negligible before dm

9, and Eq. 20
reduces to

upm(c∗) ' dm. (23)

This convenient approximation will be tested in
the next section.
We insist on the fact that the prediction

uncertainty upm has two contributions: the
method inadequacy error dm and the correction
model uncertainty ufm . An example of the rela-
tive contributions of these quantities is shown in
Fig. 3, where the major contribution of dm can

8



Figure 3: Prediction uncertainty using the
B3LYP functional for lattice parameters: the
dashed lines represent the contribution of the
calibration model uncertainty, ±uf ; the dotted
lines represents the method inadequacy error
contribution, ±dm; the full lines is the total pre-
diction uncertainty, ±up; the blue bullets are
the residual errors for the reference set used for
calibration and the red triangles are the resid-
ual errors for the data in the validation set.

be appreciated. In terms of variance, the con-
tribution of u2

fm
to u2

pm
is about 20% at the ex-

tremities of the plotted lattice constant range,
which corresponds to a value of upm larger than
dm by about 10%. As shown by Pernot and
Cailliez8,9, ignoring method inadequacy errors
leads to unreliable prediction uncertainty esti-
mations.

4 Application

4.1 Benchmark and validation
data

We analyze the lattice constant, bulk modu-
lus and band gap for a set of 28 crystals with
cubic symmetry (semiconductors and insula-
tors) and compare 18 di�erent density func-
tional approximations (local, semi-local, and
hybrid functionals). All calculations have been
carried out with the CRYSTAL14 code.40,41 All-
electron and e�ective-core potentials calcula-
tions have been done by using atom-centerd
Gaussian-type basis sets. The latter have been

taken from Ref.42, except for alkali halides and
SrTiO3 for which a triple-zeta quality basis set
has been employed. The full set of data is re-
ported in the Supplementary Material.

4.1.1 Choice of reference data

Reference data were collected for the follow-
ing crystals (Strukturbericht designation66 in
parentheses): 22 semiconductors, also present
in the SC40 data set42, namely : C(A4),
Si(A4), Ge(A4), SiC(B3), BN(B3), BP(B3),
BAs(B3), AlP(B3), AlAs(B3), AlSb(B3),
GaN(B3), GaN(B4), GaP(B3), GaAs(B3),
GaSb((B3), InP(B3), InAs(B3), InSb(B3),
ZnS(B3), ZnSe(B3), ZnTe(B3), CdTe(B3),
MgS(B1); 4 alkali halides: LiF(B1), LiCl(B1),
NaF(B1) and NaCl(B1); and two oxides:
MgO(B1), SrTiO3(E21).
The reference dataset includes: (1) experi-

mental lattice constant values corrected for the
zero-point anharmonic expansion, as reported
in Ref.67; (2) experimental bulk modulus val-
ues, taken from Refs.57,68�70; and (3) low tem-
perature (below 77K) experimental (fundamen-
tal) band gap values42,69,71,72.
For bulk modulus, we referred to low temper-

ature data57,68,69, if available, and, when possi-
ble, the zero-point anharmonic expansion cor-
rection has been included from Ref57. The band
gaps considered cover two orders of magnitude,
between ≈0.2 and ≈12 eV.

Validation data. A set of 9 system has been
set aside for validation purpose. These are sys-
tems for which we did not �nd bulk modulus
reference data: AlN(B3), CdS(B3), CdSe(B3),
MgSe(B1), MgTe(B1), BaS(B1), BaSe(B1),
BaTe(B1), and LiH(B1).

Reference data uncertainties. Concerning
the error bars for lattice constants, the uncer-
tainty from X-ray di�raction experiments de-
pends on the sample (i.e. powder or single
crystals) and on the instrument/detector. It is
claimed that the uncertainty can reach 0.0001Å
or even smaller73,74. However, due to the pro-
cedure adopted to obtain the reference ZPAE-
corrected data, that mixes experimental lattice

9



Table 1: List of the DFT methods assessed in the present work. Parameters are also
reported for global (GH) and range-separated hybrid (RSH) exchange functionals.

Method Name Exchange cSR cMR cLR ωSR ωLR Correlation Ref.

HF HF HF - - - - - -

LDA SVWN S - - - - - VWN 43,44

GGA PBE PBE - - - - - PBE 45

PBEsol PBEsol - - - - - PBEsol 46

mGGA M06-L M06-L - - - - - M06-L 47

GH-GGA B3LYP B88 0.20 0.20 0.20 0.00 0.00 LYP 43,44,48�50

B97 B97 0.21 0.21 0.21 0.00 0.00 B97 51,52

PBE0 PBE 0.25 0.25 0.25 0.00 0.00 PBE 45,53,54

PBEsol0 PBEsol 0.25 0.25 0.25 0.00 0.00 PBEsol 46

GH-mGGA M06 M06 0.27 0.27 0.27 0.00 0.00 M06 55

SC-RSH HSE06 PBE 1.00 0.00 0.00 0.11 0.11 PBE 45,56

HSEsol PBEsol 1.00 0.00 0.00 0.11 0.11 PBEsol 46,57

MC-RSH HISS PBE 0.00 0.60 0.00 0.84 0.20 PBE 45,58,59

LC-RSH LC-ωPBE PBE 0.00 0.00 1.00 0.40 0.40 PBE 45,60

LC-ωPBEsol PBEsol 0.00 0.00 1.00 0.60 0.60 PBEsol 46,60

RSHXLDA S 0.00 0.00 1.00 0.40 0.40 VWN 44,61�64

ωB97 B97 0.00 0.00 1.00 0.40 0.40 B97 52,65

ωB97-X B97 0.157706 0.00 1.00 0.30 0.30 B97 52,65

constants and computed ZPAE corrections, we
assume that an uncertainty of 0.001Å is more
representative.
For band gaps, most of the reference data cor-

respond to low temperature (LT) values, but
some of them have been measured at room
temperature (RT). When comparing LT and
RT data, as reported by Lucero et al.75, the
former are systematically larger than the lat-
ter by 0.10 eV on average (23 systems), with a
maximum di�erence of 0.30 eV. However, from
Ref.71 and reference therein, the error bar for
the band gaps ranges from 0.001 eV, or less, up
to 0.01 eV. This depends on the experimental
technique adopted to measure it (e.g. di�use
re�ectance, photoluminescence spectroscopy,...)
but is more or less independent from the tem-
perature. Therefore, we consider 0.01 eV as
the uncertainty for reference experimental band
gaps.
The experimental uncertainties for bulk mod-

ulus range from a few tenths of GPa up to 4-
5GPa. Again, it depends on the measurement
approach: either from equation of state data by
means of x-ray di�raction measurements, usu-

ally for a given hydrostatic path, or through the
knowledge of elastic constants. For the latter,
various techniques can be employed (e.g. Bril-
louin scattering, ultrasonic resonance...) and
measurements can be carried out at di�erent
temperatures thus allowing extrapolation at the
static limit. Here, we refer to an average esti-
mated experimental uncertainty of 2GPa.
One should consider these global estimations

of reference data uncertainties as optimistic.
They often result from the simple transcrip-
tion of experimental repeatability statistics3,27,
without considering additional uncertainties re-
sulting from sample preparation, materials im-
purities, uncertainty in various corrections, ap-
paratus calibration, etc. A more pessimistic
scenario will be explored in Section 4.5.

Choice of density functional approxima-
tions. The DF approximations used in the
present work can be classi�ed into the following
groups:

• local and semi-local density functionals
(i.e. LDA, GGA and mGGA),

10



• linear global hybrids (GH, where the den-
sity functional exchange is mixed up lin-
early with the Hartree-Fock exchange),
and

• range separated hybrids (RSH).

In the latter class of functionals, the amount of
HF exchange included depends on the distance
between electrons. They are obtained from the
separation of the Coulomb operator in di�erent
ranges (three ranges in the current implemen-
tation) by means of the error function as:

1

r12

=
erfc(ωSRr12)

r12︸ ︷︷ ︸
SR

+
1− erfc(ωSRr12)− erf(ωLRr12)

r12︸ ︷︷ ︸
MR

+
erf(ωLRr12)

r12︸ ︷︷ ︸
LR

(24)

where ω is the length scale of separation.
Range separated hybrids can be subdivided in:
long-range corrected (LC-RSH), middle-range
hybrids (MC-RSH) and short-range corrected
(SC-RSH) functionals, also known as screened
Coulomb. In these approximations, the long-,
middle- and short-range part of the exchange,
respectively, is described by Hartree-Fock.
The general form of a range-separated hybrid

is:

ERSH
xc = EDFA

xc + cSR(EHF
x,SR − EDFA

x,SR )

+cMR(EHF
x,MR − EDFA

x,MR)

+cLR(EHF
x,LR − EDFA

x,LR ) (25)

According to the values of cSR, cMR, cLR, ωSR

and ωLR, short-, middle- and long-range cor-
rected RSH functionals can be de�ned. When
ω = 0 and cSR = cMR = cLR, range separated
hybrids reduce to linear global hybrids.
Mixtures of RSH and linear hybrid functional

have also been considered, as for the ωB97-
X. The list of DFT methods considered in the
present work is summarized in Table 1, includ-
ing HF.

Table 2: Sample statistics for the meth-
ods on the benchmark set for band gap:
mean absolute error (MAE), root-mean-
square error (RMSE), mean signed error
(MSE) and root-mean-square deviation
(RMSD). The minimal absolute values in
each column are in bold type.

Band Gap (eV)

MAE RMSE MSE RMSD

HF 6.1 6.2 6.1 1.2

LDA 1.4 1.7 -1.4 1.0

PBE 1.4 1.8 -1.4 1.1

PBEsol 1.4 1.8 -1.4 1.1

B97 0.46 0.67 -0.06 0.66

B3LYP 0.59 0.75 -0.20 0.73

PBE0 0.55 0.63 0.28 0.56

PBEsol0 0.53 0.60 0.28 0.53

HSE06 0.45 0.72 -0.30 0.65

HSEsol 0.42 0.68 -0.32 0.60

HISS 0.48 0.53 0.32 0.41

RSHXLDA 4.5 4.5 4.5 0.53

ωB97 4.3 4.4 4.3 0.52

ωB97X 3.9 4.0 3.9 0.54

LC-ωPBE 4.4 4.4 4.4 0.41

LC-ωPBEsol 5.4 5.4 5.4 0.72

M06-L 0.89 1.2 -0.88 0.86

M06 0.52 0.65 0.19 0.62

Note that in contrast to the generally used
B3LYP, we used the variant implemented in the
CRYSTAL code, where the local functional is
�tted to the accurate correlation energy of the
uniform electron gas, i.e. VWN544, and not to
the VWN3 random phase approximation.
The statistical calculation presented in this

paper have been done in the R environment76,
either with core functions, additional packages
as mentioned in the text, or speci�cally devel-
oped routines.
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Table 3: Same as Table 2 for bulk modu-
lus.

Bulk Modulus (GPa)

MAE RMSE MSE RMSD

HF 10.0 14.0 6.2 13.0

LDA 7.1 9.1 3.9 8.3

PBE 12.0 15.0 -12.0 9.9

PBEsol 6.2 9.2 -4.2 8.2

B97 8.0 11.0 -6.9 7.9

B3LYP 9.8 12.0 -9.3 8.3

PBE0 5.1 7.4 0.52 7.4

PBEsol0 7.5 10.0 5.8 8.3

HSE06 5.2 7.4 -0.34 7.4

HSEsol 6.8 9.6 4.8 8.4

HISS 9.1 13.0 7.6 11.0

RSHXLDA 12.0 14.0 11.0 9.5

ωB97 11.0 12.0 7.5 9.5

ωB97X 8.3 9.5 4.6 8.4

LC-ωPBE 14.0 17.0 13.0 11.0

LC-ωPBEsol 24.0 28.0 23.0 17.0

M06-L 7.2 10.0 -4.4 9.1

M06 7.1 9.5 -0.95 9.5

4.2 Benchmark statistics

The estimations of MAE, RMSE, MSE and
RMSD for all methods and properties are re-
ported in Tables 2-4. The comparison of MSE
and RMSE values tells us that most methods
present signi�cant systematic errors (|MSE| '
RMSE). Note that because of the presence of
trends in the systematic errors, a small abso-
lute value of the MSE is not an indicator of
the absence of systematic errors.
Results in Tables 2-4 agree with previous

benchmarks studies24,57,67,68,75,77. Hybrid meth-
ods are by far superior to semilocal functionals
in the prediction of the band gap of solids as
expected because of the inclusion of some HF
exchange within the generalized Kohn-Sham
formalism. In this respect, results for global,
short and middle range-separated hybrids are
not far from each other. Surprisingly, long-

Table 4: Same as Table 2 for lattice con-
stants.

Lattice Constant (Å)

MAE RMSE MSE RMSD

HF 0.100 0.130 0.100 0.078

LDA 0.035 0.044 -0.035 0.026

PBE 0.089 0.096 0.089 0.038

PBEsol 0.024 0.029 0.024 0.016

B97 0.088 0.097 0.088 0.041

B3LYP 0.100 0.110 0.100 0.052

PBE0 0.040 0.047 0.039 0.027

PBEsol0 0.013 0.019 -0.006 0.018

HSE06 0.044 0.051 0.043 0.028

HSEsol 0.012 0.015 -0.001 0.015

HISS 0.020 0.026 0.011 0.024

RSHXLDA 0.032 0.040 -0.013 0.038

ωB97 0.029 0.037 0.026 0.027

ωB97X 0.041 0.051 0.041 0.032

LC-ωPBE 0.035 0.041 -0.019 0.037

LC-ωPBEsol 0.062 0.072 -0.062 0.037

M06-L 0.067 0.092 0.066 0.064

M06 0.058 0.074 0.057 0.047

range corrected hybrids tend to systematically
overestimate band gaps although HF exchange
is included at long-range to recover the cor-
rect decay of the exchange potential. For lat-
tice parameters and bulk moduli, GGA and re-
lated hybrid functionals for solids (e.g. PBEsol
family) give improved results with respect to
common functionals devised for molecules (e.g.
PBE family). Interestingly, we con�rm results
by Lucero et al.75 for the HISS functional which
gives overall good results when compared to
other hybrids. Highly parametrized mGGA
functionals such as M06-L and M06 do not sig-
ni�cantly improve results with respect to other
examined functionals. As expected, inclusion
of HF exchange in the M06 hybrid functional
leads to a better prediction of band gaps than
the semilocal counterpart.
Overall, computed MAE and MSE for LDA,
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PBE, PBEsol, M06-L, HSE06, HSEsol and
HISS on similar set of solids agree with the ones
reported in other works24,57,67,68,75.

DFAs ranking. One could attempt a rank-
ing based on MSE and RMSD statistics. At this
level, the best performing methods are charac-
terized by two criteria: (1) the errors are nearly
centered on zero; and (2) they have a small dis-
persion. With such criteria, there is no impor-
tant distinction for band gaps between HSEsol
and other hybrids, like PBE0, PBEsol0, and
even HSE06, ωB97, M06, and B3LYP. The sit-
uation is less clear for bulk moduli, with a slight
advantage to PBE0 and HSE06, and, for lattice
parameters, PBEsol0 and HSEsol are the best
contenders.
Whatever the performance statistics, none of

the methods seems optimal for all the proper-
ties.

4.3 Statistical modeling

Figures 4-6 show the probability densities of the
Em error sets for the three properties, before
and after linear calibration (Eq. 18).
The errors distributions for the raw data (be-

fore calibration) con�rm or reveal a few features
relevant for the following developments:

• most methods provide biased estimates
for some or all properties;

• the shape of the distributions varies con-
siderably between methods and prop-
erties, some distributions are strongly
asymmetric while others are bimodal; and

• some points seem to lie far of the main
batch (outliers) and many distributions
present a long tail.

4.3.1 Calibration

In order to determine the polynomial degree
of the trend in systematic errors, we used
Bayesian Model Selection (BMS)78 for all er-
ror sets. BMS calculates the posterior probabil-
ity distribution over a set of models, combining
a parsimony criterion (Occam's razor) with a

Figure 4: Probability density of the Ep,m error
sets for band gaps: for each method, the upper
density represents the errors for the raw calcu-
lation data and the lower density the residual
errors for the calibrated data.

goodness-of-�t criterion. It avoids to over�t the
data with overly complex models. We used the
algorithm described in Mana et al.79, over poly-
nomial degrees from 1 to 3. BMS shows that
the linear model is the most probable, except
for RSHXLDA, ωB97 and ωB97-X in the pre-
diction of band gaps, where second order poly-
nomials have slightly higher posterior probabil-
ity. As the linear model is not fully rejected for
these cases, we considered a linear correction
for all cases.
As can be seen on Figs. 4-6, linear correction,

besides eliminating prediction bias, contributes
often to produce more symmetrical distribu-
tions (e.g., HF for band gaps), albeit without
always resulting in normal distributions (e.g.,
ωB97 for band gaps). In many cases, the dis-
persion of the errors is notably reduced (e.g.,
B3LYP for lattice constants), along with the
distribution tails (e.g., PBE for band gaps).
For some methods, one observes a mere shift
of the distribution due to bias correction, as

13



Figure 5: Same as Fig 4 for bulk modulus.

Figure 6: Same as Fig 4 for lattice constant.

for ωB97 for band gaps; this corresponds to
methods for which the points were originally
distributed along a line nearly parallel to the

identity line.
Despite the linear correction, there might re-

main a variation of the dispersion of the errors
as a function of the property value. In Fig-
ure 1(b), the corrected errors display no sig-
ni�cant trend, but get larger in absolute value
for systems with increasing lattice parameters.
Capturing this behavior in the method inad-
equacy model might contribute to improve the
quality of prediction uncertainty. This can how-
ever be considered as a second order e�ect and
its correction has not been attempted in the
present study, where, considering the small size
of our calibration samples, we aimed at testing
the simplest correction setup.

4.3.2 Internal validation of the calibra-
tion model

In order to validate the linear correction, we
calculated the q2 statistics through the Leave-
One-Out cross-validation method80

q2 = 1−

∑Ns

s=1

(
os − fm(cm,s; ϑ̂

(−s)
m )

)2

∑Ns

s=1 (os − o)2
, (26)

where one performs Ns linear regressions for
sets of data without one of the points (regres-
sion parameters noted ϑ̂(−s)

m ), and compares the
the sum-of-squares of the prediction errors of
these regressions for the left-out data (numera-
tor) to the sum-of-squares of the deviations of
the sample points from their mean (denomina-
tor).
The q2 statistics goes from 0 to 1, the larger

the better. The q2 statistics for all meth-
ods/properties pairs are reported in Fig. 7. Val-
ues of q2 above 0.95 can be considered as ex-
cellent. There is therefore no evidence at this
stage against the choice of a linear correction
function.

4.4 Prediction uncertainty analy-
sis

We calculated the contribution of the calibra-
tion model uncertainty uf to the total variance
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Figure 7: Validation of linear calibration by
Leave One Out (q2) statistics.

in Eq. 20. This uncertainty is typically larger at
the extremes of the calibration range, and min-
imal around the mean value of the calibration
data (Fig. 3). Its relative contribution for any
calculated value x of a property is (ignoring the
method index)

r(x) =
u2

f (x)

u2
p(x)

. (27)

The maximal and minimal values of r(x) over
the calibration range have been found to be
very weakly dependent of the DFA for a given
property, but strongly dependent on the prop-
erty. The DFA-averaged maximal value of r(x)
is about 25% for band gaps, 30% for bulk mod-
uli and 15% for lattice constants, and its mini-
mal value is about 5% for all properties.
The approximation of the prediction uncer-

tainty by method inadequacy uncertainty dm

alone (Eq. 23) is therefore too optimistic, no-
tably for band gaps and bulk moduli, in the
sense that it underestimates uncertainty, no-
tably at the extremities of the calibration range.
In terms of uncertainty, using dm represents
a maximal underestimation of prediction un-
certainty of about 8% for lattice constants,
15% for band gaps and 20% for bulk mod-
uli. These values are to be compared with the
the relative uncertainty on the standard devia-
tion of a normal-distributed sample of size Ns,
∆u/u ' 1/

√
2(Ns − 1), which for Ns = 28 is

about 15%. Therefore, except maybe for lat-
tice constants, one cannot consider these dif-
ferences as negligible. One has also to keep in
mind that they are obtained for values of the
reference data uncertainty which are plausibly
underestimated. Increasing the reference data
uncertainties can only reduce the the method
discrepancy uncertainty dm (Eq. 33), and in-
crease the relative contribution of the correc-
tion model uncertainty, uf , to the prediction
uncertainty, up.
The non-negligible contribution of the correc-

tion model to the total uncertainty is mainly
due to the small size of the benchmark sets
(28 values). For instance,the calibration uncer-
tainty contribution has been shown by Pernot
and Cailliez8 to be negligible for calibration sets
with 500 and 2500 harmonic vibrational fre-
quencies, and around 12% for sets of 39 zero
point vibrational energies.
A thorough way to improve the constant un-

certainty approximation (Eq. 23) is therefore to
complement the benchmark set by new refer-
ence data, which is not always possible at short
term. Another solution is to provide users with
all the parameters required to use Eq. 20 (u(a),
u(b) and u(a, b); see Supporting Material). Al-
though accurate, this solution does not enable
a quick assessment of a set of DFAs. In order
to provide a reliable uncertainty estimate while
maintaining simplicity, we use the mean value
of the prediction uncertainty

up =

√√√√ 1

n

n∑
i=1

u2
p(xi) (28)

calculated on a regular grid of values of the
property x covering its calibration range.
We reported in Tables 5-7 the linear cor-

rection factors to apply to the di�erent DFAs
of this study and their approximate predic-
tion uncertainties dm (Eq. 23) and up (Eq. 28;
n = 1000). Uncertainties are conventionally re-
ported with two signi�cant digits3, but consid-
ering the small sample size and the approxima-
tions involved, one should not attach too much
credit to the last digit.
Comparison with Tables 2-4 shows that cor-
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rection of the trend in systematic errors enables
a strong reduction of the higher values of the
standard deviation of residual errors: the meth-
ods have prediction uncertainties between 0.4
and 0.8 eV for band gaps (RMSD between 0.4
and 1.2 eV), 7.2 and 10GPa for bulk moduli
(RMSD between 7.4 and 17GPa), 0.013 and
0.049Å for lattice constants (RMSD between
0.015 and 0.078Å).

DFAs ranking. The best preforming DFAs
do not see their dispersion notably improved,
but Tables 5-7 o�er a new landscape for method
selection: it can be used to select methods ac-
cording to uncertainty requirements. For in-
stance, assuming that one wants to be able to
estimate the lattice constant for a new com-
pound with an uncertainty smaller than 0.02Å,
the last column of Table 7 tells us that one
can choose amongst �ve (corrected) methods:
PBEsol, PBE0, PBEsol0, HSE06, and HSEsol.
If our requirement is an uncertainty below
0.05Å, basically all methods should be able to
comply.

Prediction uncertainty estimation. Ta-
bles 5-7 can also be used to estimate the un-
certainty of a calculated value and to elaborate
an uncertainty budget, for instance in the com-
parison of the properties of various compounds
for screening studies. As an example of uncer-
tainty evaluation, let us assume that we calcu-
lated a band gap of 10 eV for a new compound
using the PBE method. The prediction of the
'true' value for this property is calculated from
Table 5 as 0.502 + 1.385*10 = 14.35 eV (Eq.
20), with an uncertainty of 0.60 eV (the value
of the uncertainty using the exact expression
Eq. 20 is only slightly larger: 0.67 eV; the full
sets of coe�cients for Eq. 20 are provided as
Supplementary Material).

4.4.1 External validation of prediction
model

In order to validate the prediction uncertainty
model derived in the previous section, we use a
validation set of 9 systems not included in the

Table 5: Linear correction factors a, b
and approximate prediction uncertainties
d and up for all methods on band gaps.

Band Gap (eV)

a b† d up

HF -3.773 0.770 0.70 0.74

LDA 0.500 1.347 0.47 0.49

PBE 0.502 1.385 0.57 0.60

PBEsol 0.503 1.385 0.46 0.48

B97 -0.476 1.142 0.53 0.55

B3LYP -0.196 1.108 0.67 0.70

PBE0 -0.819 1.132 0.40 0.42

PBEsol0 -0.835 1.134 0.35 0.37

HSE06 -0.293 1.167 0.44 0.46

HSEsol -0.268 1.167 0.34 0.36

HISS -0.594 1.065 0.37 0.39

RSHXLDA -4.052 0.948 0.52 0.54

ωB97 -4.328 0.998 0.54 0.57

ωB97-X -3.909 0.996 0.56 0.59

LC-ωPBE -4.312 0.987 0.43 0.45

LC-ωPBEsol -4.175 0.872 0.52 0.55

M06-L 0.166 1.240 0.56 0.59

M06 -0.568 1.093 0.56 0.59
†the slope parameter b is dimensionless

calibration set. For this systems, we have data
only for band gaps and lattice constants. No
external validation is done on bulk modulus.
The principle of the validation is, for each

DFA and property to:

1. correct the calculated values by the ap-
propriate linear factors (Tables 5-7 and
Eq. 19);

2. calculate the residual errors with the val-
idation reference values (Eq. 11); and

3. calculate the number of errors falling
within a prediction con�dence interval ex-
tended to account for reference data un-
certainty (Eq. 41). Here, we count the
errors within a 2-σ con�dence interval
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Table 6: Same as Table 5 for bulk modu-
lus.

Bulk Modulus (GPa)

a b† d up

HF 5.300 0.907 7.8 8.4

LDA -2.880 0.992 8.3 8.9

PBE 5.745 1.057 8.4 9.0

PBEsol 1.259 1.026 7.8 8.4

B97 4.004 1.027 7.5 8.1

B3LYP 6.673 1.024 8.1 8.6

PBE0 2.248 0.977 7.0 7.5

PBEsol0 -0.830 0.960 7.1 7.6

HSE06 2.902 0.978 7.0 7.6

HSEsol 0.188 0.959 7.1 7.7

HISS 2.368 0.920 6.7 7.2

RSHXLDA -4.091 0.948 7.7 8.3

ωB97 -10.670 1.025 9.3 10.0

ωB97-X -5.779 1.010 8.4 9.0

LC-ωPBE -5.248 0.940 8.8 9.5

LC-ωPBEsol -5.818 0.878 9.4 10.0

M06-L 3.656 1.007 9.2 9.9

M06 0.291 1.006 9.6 10.0
†the slope parameter b is dimensionless

(about 95% coverage for a normal distri-
bution).

Two di�culties are to be expected: (1) with
small validation samples, the statistics might
be far from their asymptotic values (i.e. one
should not expect that 95% of the points fall
within a 95% con�dence interval), and (2) the
de�nition of con�dence intervals requires to
know the shape of the errors distribution.
Considering the latter point, the part of the

prediction uncertainty due to the correction
function (uf ) can be assumed to have a normal
distribution: the optimal regression coe�cients
being the combination of many uncertain con-
tributions (os) with �nite variance (Eqn. 29-30),
the Central Limit Theorem ensures that they
are normally distributed. This is not the case
for the method inadequacy term dm, represent-

Table 7: Same as Table 5 for lattice con-
stants.

Lattice Constant (Å)

a b† d up

HF 0.266 0.930 0.047 0.049

LDA 0.031 1.001 0.027 0.028

PBE 0.092 0.966 0.024 0.024

PBEsol 0.017 0.992 0.015 0.015

B97 0.115 0.962 0.024 0.024

B3LYP 0.178 0.948 0.024 0.025

PBE0 0.082 0.977 0.019 0.019

PBEsol0 0.054 0.991 0.017 0.018

HSE06 0.091 0.974 0.018 0.019

HSEsol 0.046 0.991 0.013 0.013

HISS 0.063 0.986 0.021 0.022

RSHXLDA -0.033 1.009 0.039 0.040

ωB97 -0.045 1.004 0.027 0.028

ωB97-X 0.014 0.990 0.031 0.033

LC-ωPBE -0.088 1.020 0.034 0.035

LC-ωPBEsol -0.069 1.025 0.032 0.033

M06-L 0.225 0.945 0.042 0.043

M06 0.102 0.970 0.041 0.043
†the slope parameter b is dimensionless

ing essentially the residual errors distributions,
which are often non normal (Figs. 4-6). It is
therefore to be expected that con�dence inter-
vals built on a normality hypothesis will not be
fully consistent with the validation data.
The results of the validation test are reported

in Table 8. For band gaps, 9 points fall within
the predicted interval in 12 cases, 8 points in
4 cases, and 7 in 2 cases. We can consider
that the predicted uncertainties are satisfying,
even if they are probably slightly overestimated.
This is on the safe side: users have a very small
risk to overestimate the accuracy of their cal-
culations.
For lattice constants, there are 7 cases where

only 6 points or less are correctly predicted. For
two DFAs (RSHXLDA and ωB97), the prob-
lem persist if one uses a 3-σ con�dence interval.
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Table 8: Number of points of the vali-
dation set within the predicted 2-σ error
range after linear correction. The valida-
tion set contains 9 points.

Band Gap Lattice Constant

HF 9 7
LDA 8 8
PBE 9 7
PBEsol 8 6
B97 9 6
B3LYP 9 7
PBE0 9 7
PBEsol0 8 8
HSE06 9 7
HSEsol 7 7
HISS 7 7
RSHXLDA 9 5
ωB97 9 4
ωB97-X 9 5
LC-ωPBE 9 6
LC-ωPBEsol 9 5
M06-L 8 9
M06 9 8

Referring to the results on Bayesian Model Se-
lection (Section 4.3.1), this could suggest that
the linear correction model is insu�cient. How-
ever, investigation of the errors distributions for
these cases shows that there is a small over-
lap between the calibration and validation error
sets. The linear correction does not contribute
to shift those points towards the center of the
distribution (Fig. 8). For these DFAs, it seems
that the calibration set is not fully representa-
tive of the species in the validation set.
Globally, we checked that, despite the caveats

of small sample size and non-normal distribu-
tion, the prediction models provides reason-
able con�dence intervals, except for a few DFAs
(RSHXLDA and ωB97),for which the lattice
constants calibration set is poorly representa-
tive of the data in the validation set. Ever af-
ter linear correction, theses DFAs should not be
recommended to predict lattice constants.

Figure 8: Errors redistribution by linear cor-
rection, for calibration (blue dots) and valida-
tion (red triangles) sets of lattice constants es-
timated by the RSHXLDA method. The gray
area represents the 2-σ interval used for valida-
tion.

4.5 Sensitivity to reference data
uncertainty

Up to this point, all evaluations have been done
with reference data uncertainty values us which
are plausibly underestimated (Section 4.1.1). In
order to assess the impact of us on the predic-
tion uncertainty up, we reevaluate up (Eq. 28)
with values of us more akin to account for var-
ious perturbations such as temperature e�ects,
corrections uncertainty...
We consider indeed a worst case scenario, i.e.

the largest values of us that do not compromise
the least-squares regression validity. As over-
estimated values of us would produce unlikely
small values of χ2 (Eq. 12), we request χ2 to
be above the 5% quantile of the standard chi-
squared distribution with Ns−2 degrees of free-
dom (χ2

min ' 15.4). The corresponding values
are us = 0.3 eV for band gaps, 7GPa for bulk
moduli, and 0.015Å for lattice constants.81

The new values of up are shown in Table 9
alongside those issued from Tables 5-7. For all
properties, the e�ect is more visible for meth-
ods which had a prediction uncertainty close or
below the worst case value of us. One reached
a point where some methods (most of them for
bulk modulus, indicating that the worst case
value of us = 7GPa might be too large) have
their prediction uncertainty smaller than refer-
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ence data uncertainty. In this scenario, such
methods, after a posteriori correction, could
be selected to replace advantageously costly
and/or di�cult measurements, with the same
level of con�dence.
Globally, the prediction uncertainty presents

a low sensitivity to the reference data uncer-
tainty: for band gaps and lattice constants, an
increase of more than one order of magnitude
in us results at most in a reduction by a fac-
tor 2 (band gaps) or 4 (lattice constants) of up.
These factors are however still much larger than
the 15% of relative uncertainty on a standard
deviation one can expect for samples of this size
(see Section 4.4).
This analysis shows that for a reliable esti-

mation of method prediction uncertainty one
needs an adequate evaluation of reference data
uncertainty, which is probably the most sen-
sitive issue in the implementation of the VM
framework.

4.6 Looking back at the reference
data

Figures 9-11 show the distributions of errors per
system, Ep,s = {Ep,m,s;m ∈ DFAs}, before and
after the linear correction applied in the previ-
ous section.
At the system level, the reduction of disper-

sion is remarquable, con�rming that calibrated
DFAs produce more consistent results. After
correction, some systems present a signi�cant
bias, i.e. their error distribution does not over-
lap the zero axis. Outstanding examples are the
bulk moduli of GaN, MgS, and SrTiO3, or the
band gap for LiF, NaF and NaCl. These sys-
tems are contributing to the �outliers� in the er-
rors distributions per method in Figs. 4-6, and
the fact that all methods are unable to predict
these systems properties deserves further atten-
tion.
For the bulk modulus, the reason is proba-

bly the experimental temperature. In fact, data
for GaN, MgS, and SrTiO3 correspond to room
temperature values. For GaN, there is also a
problem with the zinc-blende phase (B3), be-
cause there are some discrepancies among avail-
able experimental data. Moreover, the bulk

Figure 9: E�ect of linear calibration on er-
rors distribution per system for band gap.
Above/blue: before; below/red: after.

modulus has been derived from experimental
data for the wurzite phase (B4). These data
should either be corrected for temperature ef-
fects, and their uncertainty increased accord-
ingly, or rejected from the calibration set23.
Concerning the band gaps, alkali halides are

the systems with the largest values in the
dataset (from 9 eV to 14 eV) and all tested
methods systematically fail in predicting the
band gap of wide band gap insulators. Here
again, one has to consider if these data should
be rejected.
One might be tempted to treat this problem

by making subsets of the reference data (such
as done for vibrational frequencies30, or inter-
molecular potentials12), using a di�erent cali-
bration models for each subset. This is not a
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Table 9: E�ect of reference data uncertainty (us) on prediction uncertainty up. The
values in boldface are the one where up ≤ us.

Band Gap (eV) Bulk Modulus (GPa) Lattice Constant (Å)

us 0.01 0.30 2 7 0.001 0.015

HF 0.74 0.67 8.4 5.0 0.049 0.047

LDA 0.49 0.39 8.9 5.9 0.028 0.024

PBE 0.60 0.52 9.0 6.0 0.024 0.019

PBEsol 0.48 0.38 8.4 5.1 0.015 0.004

B97 0.55 0.46 8.1 4.5 0.024 0.019

B3LYP 0.70 0.63 8.6 5.5 0.025 0.020

PBE0 0.42 0.30 7.5 3.4 0.019 0.012

PBEsol0 0.37 0.21 7.6 3.6 0.018 0.009

HSE06 0.46 0.35 7.6 3.5 0.019 0.011

HSEsol 0.36 0.19 7.7 3.7 0.013 0.004

HISS 0.39 0.25 7.2 2.7 0.022 0.016

RSHXLDA 0.54 0.45 8.3 4.9 0.040 0.037

ωB97 0.57 0.48 10.0 7.5 0.028 0.024

ωB97X 0.59 0.51 9.0 6.0 0.033 0.029

LC-ωPBE 0.45 0.33 9.5 6.7 0.035 0.032

LC-ωPBEsol 0.55 0.46 10.0 7.6 0.033 0.029

M06-L 0.59 0.50 9.9 7.2 0.043 0.041

M06 0.59 0.51 10.0 7.9 0.043 0.040

viable solution in the present case for two rea-
sons: (i) the resulting subsets would become
too small to enable signi�cant statistical analy-
sis; and (ii) one would then calibrate the calcu-
lation methods to correct for di�erent reference
biases and ruin the prediction ability of the cal-
ibrated methods.

5 Discussion

We have derived a statistical model in the VM
framework to estimate the uncertainty on a
property value predicted by a DFA. Calculat-
ing an uncertainty required us to correct the
DFA results for systematic errors. We have seen
that for the solids properties studied here, a
linear correction was generally su�cient. The
residual errors of a corrected DFA are the basis
for estimating its prediction uncertainty, which

also includes a part due to the linear correc-
tion model. The calibration/prediction proce-
dure uses standard statistical tools (WLS re-
gression, uncertainty propagation by combina-
tion of variances) and is simple to implement.
The essential contribution of the present

derivation is to introduce a method inadequacy
error term in the calibration model to acknowl-
edge the fact that a corrected DFA is typi-
cally unable to reproduce reference data within
their uncertainty range. This additional error
term, modeled by a stochastic variable, ensures
the statistical consistency of the calibration and
prediction stages. We has shown that it is gen-
erally the major contribution to prediction un-
certainty.
We want to address here a few points regard-

ing the assumptions and limits of this approach.
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Figure 10: E�ect of linear calibration on er-
rors distribution per system for bulk modulus.
Above/blue: before; below/red: after.

5.1 Weigted least-squares regres-
sion

The WLS regression formulae rely on few as-
sumptions: the errors have to arise from dis-
tributions of mean zero and �nite variance and
they have to be uncorrelated. There is there-
fore no constraint on the speci�c shape of the
errors distributions. Nevertheless, two sensitive
points of the method should be considered:

• Dependence on the reference data uncer-
tainty. If the reference data uncertainty is
not negligible before method inadequacy
errors, it might play a signi�cant role
through the weights in the WLS proce-
dure. The present study was based on
the assumption of uniform uncertainty

Figure 11: E�ect of linear calibration on er-
rors distribution per system for lattice constant.
Above/blue: before; below/red: after.

for each property. We have seen in this
case that the prediction uncertainty has
a non-negligible dependence on the ref-
erence data uncertainty value. A more
detailed budget of reference data uncer-
tainties has to be established, notably by
prioritizing the outlier systems identi�ed
in Sec. 4.6.

• Sensitivity to outliers. Least-squares pro-
cedures are well-known to be sensitive to
outliers, i.e. points with much larger
weighted residual errors than the other
points in the set. Outliers can be dealt
with at di�erent levels: they can be
rejected from the reference set, maybe
on the basis of an heterogeneity in ex-
perimental methods or physico-chemical
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properties, or they can be given less im-
portance by using robust regression meth-
ods. A preliminary study using a rank-
based robust method (package R�t82) re-
vealed only non-signi�cative di�erences
with the least-squares results, but this has
to be further explored.

5.2 Calibration model

The calibration model is based on two choices:

• The correction function fm. It is strik-
ing that the observed trend in the errors
of most DFAs is linear. In the present
study, this might result from the small
sample size, i.e. a lack of information for
selecting more complex trends. Note how-
ever that the linear trend is also observed
for very large sets of harmonic vibrational
frequencies, albeit following the discrim-
ination of low frequency from high fre-
quency modes30, and for large sets of el-
emental solids23. If necessary, more com-
plex correction functions, such higher or-
der polynomials could be considered while
preserving the WLS regression method.

• The method inadequacy stochastic model
δm. We have chosen to describe method
inadequacy errors by a random variable
with a uniform standard deviation across
the calibration range. However, we noted
from Fig. 1(b) that, for some DFAs, the
dispersion of residual errors seems to in-
creases with the calculated value of the
property. We have considered this as a
secondary order e�ect, but a property-
value-dependent model could be directly
inserted in the WLS procedure and its
parameters optimized iteratively. One
would then have to deal explicitly with
property-value-dependent prediction er-
rors, more complex to communicate to
the end users. Here again, larger samples
would be necessary to assess the necessity
of this re�nement.

5.3 From standard uncertainty to
enlarged uncertainty

It is recommended by Ruscic11, following the de
facto standard in thermochemical data tabula-
tions, that computed data should be provided
with an enlarged uncertainty, u95, enabling to
de�ne a 95% con�dence interval for the true
value. A major di�culty we evidenced in the
present study is that converting a standard un-
certainty, such as up, to a con�dence interval
requires the knowledge of the errors distribu-
tion. For instance, for a normal distribution,
one would have u95 ' 2 ∗ up, whereas for a uni-
form distribution u95 ' 1.65 ∗ up. Consider-
ing the varied and non-standard shapes of the
errors distributions observed for the calibrated
DFAs (Figs. 4-6), the estimation of u95 cannot
be done as simply as for standard distributions.
A numerical estimation of a con�dence interval
based on the 2.5% and 97.5% quantiles could
be done, but one is facing again the problem of
small sample size, even more sharply for the es-
timation of extreme quantiles than for the stan-
dard deviation (for a 28 points sample, there is
in average less than one point in each of the
2.5% external intervals).
We would like also to stress out that there

is no reason why we should expect errors pro-
duced by (calibrated) DFAs to follow nor-
mal distributions. Model discrepancy gener-
ates property-dependent systematic errors with
no predictable distribution. Normality is only
to be expected as a limit case for methods
with null inadequacy errors, when the errors
are dominated by assumed normal reference
data uncertainties. Moreover, the small sample
size and the selection process of reference data
might also play a role in the observed deviance
from normality.

6 Conclusions

Benchmarks have their limitations, but are a
condensate of numerical experience, and are
thus useful. They can provide information, but
it should be treated with care.
We tested in this study the applicability of
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the Virtual Measurement framework to Density
Functional Approximations for the estimation
of various properties of solids. In this approach,
each computational result has to be quali�ed
by an uncertainty or con�dence interval. In-
formed of the prediction uncertainty of various
methods, users should be able to choose a suit-
able method, in terms of accuracy, availability
and costs, which is not necessarily the �best�
method highlighted by standard performance
statistics. Users would also be able to assess
the contribution of each calculation in an uncer-
tainty budget, for instance in DFT-based multi-
scale simulations.
We have shown that the measures of perfor-

mance commonly used in computational chem-
istry benchmarks do not provide directly the
prediction uncertainty for a method, mostly
because they do not disambiguate the pre-
dictable/systematic components of the errors
from their unpredictable/random component.
In fact, statistical analysis of the benchmark er-
ror sets reveals notable systematic components,
presenting a regular trend as function of the
property value, which needs to be corrected in
order to get reliable uncertainty estimates. In
the present study, a linear correction of the cal-
culated values was found su�cient to reach this
goal.
Pernot and Cailliez9 have shown that for large

benchmark sets the prediction uncertainty can
be safely derived from the standard deviation of
the errors of the scaled properties. We treated
here reference sets with about 30 values, and
we observed that this approximation underesti-
mates prediction uncertainty. A corrected value
of prediction uncertainty has been proposed
and validated on an external set of reference
data.
As usual performance statistics do not ac-

count for reference data uncertainty, their use
requires high quality (meaning negligible uncer-
tainty) reference data. In contrast, the statisti-
cal models of the virtual measurement approach
can deal with reference data presenting uncer-
tainties of the same order as model prediction
uncertainty. They o�er also a practical cor-
rection method for those cases where the cal-
culated property does not exactly correspond

to the experimental one, such as for band gap
(Section 2.4). The a posteriori calibration mod-
els are therefore of very general applicability, at
the additional cost of a reliable estimation of
reference data uncertainty, which is not a mi-
nor issue.
Another di�culty identi�ed in this study for

the successful application of the VM approach
is the estimation of reliable con�dence intervals.
We have shown that the estimation of a predic-
tion uncertainty is rather straightforward, but
the estimation of an enlarged uncertainty to
de�ne a 95% con�dence interval is made di�-
cult by the small sample sizes and the arbitrary
shape of the errors distributions.
A drawback of the a posteriori calibration

approach is the lack of generalizability: it is
not possible to estimate the prediction uncer-
tainty of a DFA for a property against which
the DFA has not been calibrated. On the other
hand, there is no evidence in the conventional
approach that a DFA with good performance
statistics will perform as well for untested prop-
erties, hence the need of exhaustive benchmark
tests24.
On the positive side, we have shown that

methods rejected on their MAE or RMSE per-
formance because of large systematic errors can,
after calibration, become competitive with the
�best� benchmark performers in terms of pre-
diction uncertainty. This considerably widens
the choice of methods for the end users. Low-
cost calibrated methods with well characterized
prediction uncertainty could be promising for
high-throughput studies.
It is too early to suggest that the correc-

tion parameters provided here for the band
gaps, bulk moduli and lattice constants of crys-
tals with cubic symmetry should be used con-
�dently. The database still needs to grow and
to be groomed, including a better assessment of
reference data uncertainties. Nevertheless, the
methodology to estimate the calibration param-
eters and prediction uncertainties can easily be
applied to any other benchmark set, and we
consider that it would be a very valuable com-
plement to the usual performance statistics.
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A Estimation of the calibra-

tion parameters

We provide below the expressions of the opti-
mal parameters, their uncertainty and covari-
ance for the problem of weighted least squares
linear regression with a stochastic method inad-
equacy contribution (Eq. 18). The derivation
of the basic formulae can be found in data anal-
ysis textbooks36, although most of them do not
provide the covariance formula, which is essen-
tial for uncertainty propagation83,84. The main
di�erence of our derivation resides in the inter-
pretation and management of the variance con-
tributions, and the need for an iterative proce-
dure (Iteratively Reweighted Least Squares).

A.1 Calibration

We �rst treat the general case of linear regres-
sion of reference data with known uncertainty,
(os ± us, s = 1, Ns), and then we consider the
particular case of negligible reference data un-
certainty. We do not address the case of cor-
related reference data, because such correlation
information is practically never available in ref-
erence data sets. We remove the method index
m in the equations for concision.
Let us assume, in a �rst stage, that reference

data uncertainty is the sole source of dispersion
of the points around the regression line. The
optimal parameters for Weighted Least Squares
(WLS) linear regression have closed-form ex-
pressions

b̂ =

∑
w
∑
wco−

∑
wc
∑
wo

∆
(29)

â =

∑
wo∑
w
− b̂
∑
wc∑
w

(30)

∆ =
∑

w
∑

wc2 − (
∑

wc)2, (31)

where all sums run over s = 1, Ns (i.e.
∑
wx ≡∑

s=1,Ns
wsxs), and the weights are de�ned as

ws = 1/u2
s.

If this regression model is valid, one should
have

χ2 =
∑

w(o− â− b̂c)2 ' Ns − 2. (32)

If this is the case, the residuals variance is fully
explained by the reference data uncertainty,
and there is no need to consider method inade-
quacy: the calibrated method is able to predict
reference data within their error bars.
For many approximated methods, this sce-

nario is unlikely and would occur for reference
sets of very uncertain data, improper to evalu-
ate model prediction uncertainty. Similarly, if
χ2 � Ns − 2, the reference data uncertainty
have probably been overestimated and are also
improper for our purpose.
The case which interests us here is when

χ2 � Ns−2, i.e. when the residuals variance is
signi�cantly larger than what is expected from
reference data uncertainty. In the hypothesis
where the weighted residuals are randomly dis-
tributed, one can estimate the variance due to
method inadequacy as the di�erence between
the residuals variance and the mean reference
variance

d2 =
1

Ns − 2

∑
s

(os − â− b̂cs)2

− 1

Ns

∑
s

u2
s, (33)

which cannot be negative if χ2 � Ns−2. Know-
ing d, one is now able to specify the full calibra-
tion model (Eq. 18). We solve it by rede�ning
the weights as

ws = 1/(u2
s + d2) (34)

and inserting them in the formulae giving ∆, â
and b̂ (Eqn. 29-31).
For uniform reference data uncertainty (us =

const.), this reweighting will not change the val-
ues of â and b̂, and one can proceed directly to
the evaluation of the variance-covariance of the
parameters with the updated value for ∆. Oth-
erwise, a few iterations of the reweighting pro-
cedure (Eqn. 29-31, 33, 34) will be necessary to
reach convergence.
The chi-square test (Eq. 32) is veri�ed by con-

struction, and we can derive the parameters un-
certainty and covariance by the standard WLS
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formulae

u2(b) =

∑
w

∆
(35)

u2(a) =

∑
wc2

∆
(36)

u2(a, b) = −
∑
wc∑
w
u2(b) (37)

To summarize, in the general case where we
have nonuniform reference data uncertainties,
one must apply an Iteratively Reweighted Least
Squares procedure to determine (1) the excess
variance d2 attributed to method inadequacy
errors; and (2) the optimal parameters of the
calibration function, their uncertainty and co-
variance. If the reference data uncertainty are
uniform, only one step of the reweighting pro-
cedure is necessary.
If the reference data uncertainty is negligible

before the �t residuals, one recovers the ordi-
nary least squares method36, but where the full
residuals variance is explained by method inad-
equacy, i.e.

d2 =
1

Ns − 2

∑
s

(os − â− b̂cs)2. (38)

A.2 Prediction

For the estimation of a new value of a property
knowing a calculated value c∗ (i.e. for a system
not in the benchmark set), the prediction model
and prediction variance are

p(c∗) = â+ b̂c∗ + δ̂ (39)

u2
p(c∗) = d̂2 + u2(a) + c∗2u2(b)

+2c∗u2(a, b), (40)

where δ̂ ≡ 0 has been left in the prediction
equation as a reminder of the occurrence of d2

in the prediction variance. The expression of
u2

p is obtained by combination of variances ap-
plied to p3,38. The uncertainty on d2 has been
shown to be of secondary importance8, and has
not be considered here. u2

p accounts for uncer-
tainties linked to model calibration and method
inadequacy errors.
Note that for the comparison of a model pre-

diction with reference data (as in cross- or ex-

ternal validation procedures), or the prediction
of an experimental result, this variance has to
be further combined with the corresponding ref-
erence/experimental data uncertainty

u2 = u2
p + u2

s. (41)
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We provide here tables of all the data used in the companion paper and tables of the

coe�cients to estimate the corrected values and prediction uncertainties of the studied

methods.

Validation data. Tables 1-6.

Reference data were collected for the following crystals (Strukturbericht designation1

in parentheses): 22 semiconductors, also present in the SC40 data set2, namely : C(A4),

Si(A4), Ge(A4), SiC(B3), BN(B3), BP(B3), BAs(B3), AlP(B3), AlAs(B3), AlSb(B3),

GaN(B3), GaN(B4), GaP(B3), GaAs(B3), GaSb((B3), InP(B3), InAs(B3), InSb(B3),

ZnS(B3), ZnSe(B3), ZnTe(B3), CdTe(B3), MgS(B1); 4 alkali halides: LiF(B1), LiCl(B1),

NaF(B1) and NaCl(B1); and, two oxides: MgO(B1), SrTiO3(E21).

The reference dataset includes: experimental lattice constant values corrected for the

zero-point anharmonic expansion, as reported in Ref.3; experimental bulk modulus values,

taken from Refs.4�7, and low temperature (below 77K) experimental (fundamental) band

gap values2,5,8,9.

For bulk modulus, we referred to low temperature data4�6, if available, and, when

possible, the zero-point anharmonic expansion correction has been included from Ref6.

The band gaps considered cover two orders of magnitude, between ≈0.2 and ≈12 eV.

Validation data. Tables 7-10.

A set of 9 system has been set aside for validation purpose. These systems have

been chosen on the basis that we did �nd reference values for band gaps and lattice con-

stants, but none for bulk moduli: AlN(B3), CdS(B3), CdSe(B3), MgSe(B1), MgTe(B1),

BaS(B1), BaSe(B1), BaTe(B1), and LiH(B1).

Propriety and uncertainty prediction. Tables 11-13.

For the estimation of a new value of a property knowing a calculated value cs (for a

system not in the benchmark set), the prediction model and prediction variance corre-
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sponding to the chosen DFA are10

p(cs) = a + bcs (1)

u2
p(cs) = u2

f (cs) + d2 (2)

u2
fm

(cs) = u2(a) + u2(b)c2
s + 2u(a, b)cs. (3)

For the comparison of a model prediction with reference data, or the prediction of an

experimental result, this variance has to be further combined with the corresponding

reference/experimental data uncertainty

u2(cs) = u2
p(cs) + u2

s. (4)
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Table 1: Reference data for lattice constants (Å).

System Symmetry Exp. HF LDA PBE PBEsol B97 B3LYP PBE0 PBEsol0 HSE06

C A4 3.555 3.555 3.534 3.575 3.557 3.577 3.573 3.549 3.537 3.549

Si A4 5.422 5.501 5.410 5.479 5.442 5.494 5.495 5.443 5.420 5.448

Ge A4 5.644 5.736 5.639 5.778 5.696 5.764 5.790 5.694 5.644 5.702

SiC B3 4.348 4.390 4.357 4.406 4.383 4.395 4.403 4.375 4.361 4.377

BN B3 3.592 3.598 3.579 3.623 3.604 3.613 3.617 3.595 3.583 3.596

BP B3 4.527 4.591 4.508 4.564 4.537 4.584 4.579 4.538 4.521 4.539

BAs B3 4.764 4.833 4.745 4.823 4.782 4.833 4.838 4.784 4.758 4.787

AlP B3 5.450 5.521 5.429 5.503 5.465 5.504 5.514 5.468 5.443 5.471

AlAs B3 5.649 5.734 5.623 5.722 5.670 5.713 5.731 5.677 5.643 5.681

AlSb B3 6.126 6.237 6.092 6.205 6.141 6.198 6.225 6.155 6.113 6.161

GaN B3 4.523 4.513 4.477 4.569 4.520 4.547 4.559 4.514 4.483 4.517

GaP B3 5.441 5.560 5.428 5.540 5.476 5.547 5.561 5.490 5.449 5.495

GaAs B3 5.641 5.762 5.626 5.770 5.687 5.762 5.786 5.701 5.648 5.708

GaSb B3 6.086 6.217 6.043 6.210 6.109 6.201 6.231 6.132 6.071 6.141

InP B3 5.858 5.988 5.845 5.972 5.894 5.971 5.999 5.909 5.860 5.915

InAs B3 6.048 6.178 6.039 6.196 6.100 6.179 6.215 6.111 6.051 6.120

InSb B3 6.473 6.611 6.433 6.610 6.502 6.597 6.638 6.523 6.454 6.533

ZnS B3 5.399 5.578 5.338 5.484 5.402 5.509 5.520 5.449 5.393 5.452

ZnSe B3 5.658 5.852 5.593 5.758 5.665 5.775 5.799 5.713 5.648 5.718

ZnTe B3 6.079 6.340 6.023 6.206 6.100 6.231 6.264 6.161 6.091 6.167

CdTe B3 6.470 6.755 6.422 6.625 6.500 6.644 6.681 6.564 6.481 6.571

MgS B1 5.612 5.734 5.600 5.702 5.656 5.703 5.709 5.667 5.635 5.669

LiF B1 3.974 3.996 3.906 4.060 4.000 4.044 4.023 4.004 3.960 4.005

LiCl B1 5.072 5.271 4.977 5.158 5.076 5.187 5.190 5.120 5.063 5.124

NaF B1 4.570 4.615 4.486 4.673 4.605 4.649 4.631 4.620 4.568 4.621

NaCl B1 5.565 5.781 5.481 5.703 5.613 5.703 5.708 5.658 5.591 5.660

MgO B1 4.188 4.184 4.162 4.256 4.218 4.241 4.232 4.207 4.177 4.209

SrTiO3 E21 3.900 3.911 3.865 3.946 3.902 3.931 3.937 3.902 3.830 3.904
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Table 2: Reference data for lattice constants (Å), continued.

System Symmetry Exp. HSEsol HISS RSHXLDA wB97 wB97X LC-wPBE LC-wPBEsol M06-L M06

C A4 3.555 3.538 3.529 3.531 3.565 3.560 3.538 3.512 3.554 3.548

Si A4 5.422 5.424 5.424 5.404 5.427 5.436 5.392 5.373 5.426 5.453

Ge A4 5.644 5.650 5.655 5.587 5.648 5.671 5.588 5.532 5.751 5.709

SiC B3 4.348 4.361 4.352 4.348 4.381 4.378 4.352 4.322 4.353 4.365

BN B3 3.592 3.583 3.578 3.581 3.620 3.610 3.589 3.563 3.598 3.600

BP B3 4.527 4.522 4.517 4.514 4.548 4.550 4.509 4.485 4.532 4.549

BAs B3 4.764 4.760 4.758 4.738 4.786 4.793 4.735 4.703 4.799 4.796

AlP B3 5.450 5.445 5.446 5.432 5.447 5.461 5.422 5.393 5.441 5.477

AlAs B3 5.649 5.646 5.652 5.618 5.664 5.674 5.616 5.578 5.685 5.676

AlSb B3 6.126 6.118 6.128 6.087 6.134 6.148 6.072 6.035 6.182 6.171

GaN B3 4.523 4.485 4.481 4.460 4.518 4.517 4.471 4.422 4.540 4.508

GaP B3 5.441 5.453 5.460 5.420 5.449 5.476 5.415 5.374 5.506 5.503

GaAs B3 5.641 5.654 5.664 5.600 5.659 5.683 5.602 5.547 5.750 5.705

GaSb B3 6.086 6.077 6.094 6.019 6.079 6.107 6.012 5.958 6.210 6.149

InP B3 5.858 5.865 5.872 5.830 5.849 5.885 5.812 5.769 5.948 5.931

InAs B3 6.048 6.058 6.069 6.005 6.057 6.086 5.991 5.936 6.201 6.134

InSb B3 6.473 6.462 6.479 6.402 6.453 6.489 6.384 6.327 6.646 6.563

ZnS B3 5.399 5.396 5.428 5.385 5.430 5.449 5.385 5.345 5.462 5.438

ZnSe B3 5.658 5.655 5.688 5.633 5.704 5.717 5.631 5.583 5.759 5.708

ZnTe B3 6.079 6.095 6.135 6.073 6.149 6.171 6.055 6.011 6.239 6.187

CdTe B3 6.470 6.487 6.529 6.469 6.539 6.565 6.448 6.396 6.703 6.600

MgS B1 5.612 5.637 5.648 5.642 5.656 5.670 5.631 5.597 4.188 4.228

LiF B1 3.974 3.961 3.991 4.004 4.038 4.042 4.021 3.958 5.616 5.652

LiCl B1 5.072 5.065 5.103 5.151 5.156 5.206 5.090 5.053 3.981 4.051

NaF B1 4.570 4.570 4.608 4.605 4.600 4.610 4.636 4.561 5.174 5.244

NaCl B1 5.565 5.595 5.637 5.659 5.626 5.666 5.629 5.566 4.608 4.608

MgO B1 4.188 4.178 4.190 4.183 4.240 4.228 4.201 4.153 5.699 5.757

SrTiO3 E21 3.900 3.874 3.884 3.888 3.927 3.920 3.889 3.853 3.930 3.915
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Table 3: Reference data for bulk modulus (GPa).

System Symmetry Exp. HF LDA PBE PBEsol B97 B3LYP PBE0 PBEsol0 HSE06

C A4 455.9 498.5 467.5 431.8 449.2 439.7 440.7 469.6 480.2 468.2

Si A4 101.3 108.6 99.4 90.0 95.1 90.7 90.9 100.9 104.1 99.6

Ge A4 79.4 85.2 74.8 61.5 65.6 66.9 61.5 75.4 80.9 73.5

SiC B3 229.1 247.8 231.7 214.9 224.5 225.8 219.0 234.8 240.6 233.3

BN B3 410.2 436.4 408.9 377.7 391.3 396.0 390.4 409.6 418.4 408.7

BP B3 168.0 182.1 180.0 165.5 173.4 164.8 164.7 179.5 184.3 178.4

BAs B3 151.1 151.6 148.0 132.1 141.0 134.3 132.7 147.0 152.7 145.7

AlP B3 87.4 100.0 94.2 85.6 90.5 91.4 87.2 95.1 98.1 94.3

AlAs B3 75.0 88.0 82.8 73.3 78.7 78.7 75.1 82.8 86.2 81.9

AlSb B3 58.2 65.9 62.9 54.8 59.6 59.1 55.7 62.2 65.5 61.3

GaN B3 213.7 215.8 197.4 166.9 182.8 180.9 177.7 194.4 205.5 193.0

GaP B3 92.3 94.5 91.5 77.9 85.9 83.4 78.7 90.1 95.2 88.8

GaAs B3 78.0 80.1 74.5 62.2 69.5 66.7 62.4 73.7 78.9 72.2

GaSb B3 57.9 62.5 60.4 46.4 54.5 52.5 49.3 57.9 62.7 57.9

InP B3 72.0 76.1 73.0 60.7 68.2 66.8 61.7 71.8 76.6 70.6

InAs B3 58.6 66.0 61.4 49.5 56.7 54.7 49.1 60.2 65.3 58.9

InSb B3 46.1 53.4 50.7 40.3 46.1 45.2 39.2 48.7 53.0 47.5

ZnS B3 75.0 71.6 86.3 70.7 79.1 71.0 69.8 77.6 83.4 77.0

ZnSe B3 65.9 59.0 72.8 58.1 66.7 60.3 56.6 65.0 70.4 64.3

ZnTe B3 52.8 44.0 56.6 44.1 51.6 44.6 42.4 49.9 54.9 49.2

CdTe B3 45.0 37.1 47.4 35.9 42.3 38.1 35.3 41.0 45.7 40.4

MgS B1 78.9 61.8 64.9 58.0 60.9 60.9 59.1 62.4 64.2 62.2

LiF B1 76.3 78.4 90.2 70.4 75.7 73.7 75.7 76.5 81.2 76.4

LiCl B1 38.2 30.0 41.8 32.4 36.1 32.1 32.0 34.6 37.5 34.5

NaF B1 53.1 53.4 68.5 51.6 55.2 53.2 54.4 54.5 57.5 54.5

NaCl B1 27.6 22.7 33.8 24.6 26.9 24.5 24.5 26.0 27.9 25.9

MgO B1 169.8 183.4 179.2 158.5 165.0 159.6 165.9 173.2 178.6 172.9

SrTiO3 E21 179.0 215.9 203.8 171.3 187.2 185.8 184.5 196.0 208.0 195.3
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Table 4: Reference data for bulk modulus (GPa), continued.

System Symmetry Exp. HSEsol HISS RSHXLDA wB97 wB97X LC-wPBE LC-wPBEsol M06-L M06

C A4 455.9 479.3 498.3 488.8 464.6 461.6 493.3 528.1 452.9 459.0

Si A4 101.3 102.9 106.8 113.2 113.6 109.5 118.3 126.0 101.4 98.4

Ge A4 79.4 79.1 81.7 92.7 92.6 87.2 97.8 107.7 62.9 68.7

SiC B3 229.1 239.4 248.9 249.9 239.6 240.3 255.9 272.4 227.5 228.4

BN B3 410.2 417.9 431.9 422.9 394.6 401.3 426.7 453.7 395.8 397.2

BP B3 168.0 183.4 189.1 189.4 184.9 179.4 196.3 205.9 177.0 171.6

BAs B3 151.1 151.7 156.3 161.4 155.5 151.3 167.4 178.3 137.2 139.3

AlP B3 87.4 97.4 100.8 105.1 107.6 103.4 109.5 114.7 95.1 93.4

AlAs B3 75.0 85.4 87.6 93.0 93.5 90.5 96.0 102.9 81.5 85.8

AlSb B3 58.2 64.6 65.9 71.2 72.5 69.5 74.2 79.3 59.2 63.7

GaN B3 213.7 204.1 212.3 220.6 199.2 197.5 219.9 243.1 177.6 197.4

GaP B3 92.3 94.0 96.6 104.1 106.2 101.2 107.8 116.7 87.2 90.2

GaAs B3 78.0 77.6 79.7 88.3 88.0 84.3 92.3 101.1 66.9 75.2

GaSb B3 57.9 56.1 56.6 71.1 71.6 66.9 54.3 52.9 53.1 60.5

InP B3 72.0 75.5 77.3 84.8 87.4 81.9 89.0 96.3 71.3 74.8

InAs B3 58.6 64.0 65.3 73.7 74.9 70.6 77.9 85.2 52.4 62.8

InSb B3 46.1 51.8 52.4 60.9 62.6 58.1 64.0 70.1 40.2 51.2

ZnS B3 75.0 82.7 81.7 86.6 84.1 83.2 88.4 95.2 76.9 85.4

ZnSe B3 65.9 70.4 68.8 74.3 71.6 69.1 76.8 82.4 61.6 68.6

ZnTe B3 52.8 54.3 52.6 58.4 56.2 53.4 60.7 65.0 43.4 51.7

CdTe B3 45.0 45.1 43.6 48.6 48.2 45.3 50.7 55.1 36.3 45.2

MgS B1 78.9 64.0 64.8 65.3 66.8 64.4 67.1 70.6 67.5 63.7

LiF B1 76.3 81.1 79.3 74.8 74.0 69.5 74.9 83.3 69.2 73.6

LiCl B1 38.2 37.4 36.1 32.6 38.5 33.1 36.8 39.9 35.6 30.7

NaF B1 53.1 57.4 55.6 54.5 67.2 59.5 53.5 58.5 54.8 45.9

NaCl B1 27.6 27.8 27.0 25.3 32.0 29.4 27.0 29.7 27.2 29.8

MgO B1 169.8 178.5 182.9 177.7 167.6 170.4 179.6 193.2 176.4 150.7

SrTiO3 E21 179.0 207.4 209.1 206.3 190.0 192.0 205.9 229.9 183.9 206.2
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Table 5: Reference data for band gaps (eV).

System Symmetry Exp. HF LDA PBE PBEsol B97 B3LYP PBE0 PBEsol0 HSE06

C A4 5.49 12.37 4.20 4.14 4.05 5.74 5.91 6.00 5.94 5.35

Si A4 1.17 6.26 0.55 0.72 0.58 1.75 1.84 1.82 1.72 1.25

Ge A4 0.74 5.53 0.01 0.00 0.01 0.37 0.00 1.05 1.24 0.64

SiC B3 2.42 8.51 1.38 1.46 1.32 2.80 3.00 2.94 2.85 2.30

BN B3 6.36 13.60 4.42 4.49 4.32 6.36 6.51 6.53 6.42 5.84

BP B3 2.40 7.79 1.31 1.39 1.27 2.63 2.76 2.73 2.65 2.10

BAs B3 1.46 7.17 1.13 1.24 1.12 2.38 2.46 2.47 2.38 1.88

AlP B3 2.49 8.07 1.57 1.84 1.63 3.10 3.18 3.16 3.01 2.51

AlAs B3 2.23 7.78 2.24 1.75 1.56 2.95 3.01 3.01 2.87 2.38

AlSb B3 1.69 6.73 1.20 1.31 1.25 2.36 2.23 2.50 2.40 1.92

GaN B3 3.30 10.39 1.92 1.55 1.70 3.24 3.11 3.62 3.73 2.99

GaP B3 2.35 7.65 1.57 1.67 1.66 2.83 2.53 3.08 2.91 2.46

GaAs B3 1.52 6.61 0.43 0.19 0.42 1.25 0.82 1.73 1.87 1.27

GaSb B3 0.81 5.73 0.09 0.00 0.06 0.68 0.28 1.22 1.39 0.79

InP B3 1.42 7.04 0.81 0.67 0.82 1.72 1.38 2.18 2.25 1.66

InAs B3 0.41 5.59 0.00 0.00 0.00 0.45 0.00 0.86 0.94 0.45

InSb B3 0.23 5.21 0.00 0.00 0.00 0.28 0.00 0.75 0.88 0.35

ZnS B3 3.84 9.75 2.20 2.12 2.18 3.60 3.38 4.00 4.02 3.39

ZnSe B3 2.82 8.41 1.21 1.18 1.24 2.58 2.25 2.91 2.93 2.35

ZnTe B3 2.39 7.93 1.27 1.12 1.26 2.36 2.01 2.77 2.86 2.22

CdTe B3 1.61 6.85 0.61 0.62 0.67 1.69 1.42 2.03 2.04 1.57

MgS B1 5.40 11.33 3.85 3.90 3.85 5.48 5.35 5.89 5.75 5.11

LiF B1 14.20 22.46 9.97 9.26 9.44 12.05 12.04 12.67 12.83 11.89

LiCl B1 9.40 15.06 6.75 6.48 6.55 8.31 8.17 8.75 8.79 8.00

NaF B1 11.50 21.22 8.51 8.60 8.59 11.23 11.02 11.74 11.73 10.96

NaCl B1 8.97 14.56 5.57 5.73 5.67 7.58 7.37 7.95 7.89 7.20

MgO B1 7.80 15.79 5.05 4.45 4.61 6.74 6.80 7.20 7.37 6.51

SrTiO3 E21 3.25 11.76 1.73 1.72 1.73 3.46 3.35 3.82 3.95 3.96

10



Table 6: Reference data for band gaps (eV), continued.

System Symmetry Exp. HSEsol HISS RSHXLDA wB97 wB97X LC-wPBE LC-wPBEsol M06-L M06

C A4 5.49 5.29 6.05 10.93 10.66 10.29 10.52 11.56 4.73 6.42

Si A4 1.17 1.16 1.50 5.52 5.48 5.21 5.14 5.63 1.08 2.12

Ge A4 0.74 0.76 1.12 4.56 4.67 4.10 4.74 5.27 0.16 0.47

SiC B3 2.42 2.21 2.73 7.35 7.45 6.98 6.87 7.67 1.66 3.08

BN B3 6.36 5.73 6.64 11.42 11.45 11.01 11.00 12.19 4.90 6.74

BP B3 2.40 2.02 2.44 6.87 6.77 6.47 6.47 7.10 1.79 3.08

BAs B3 1.46 1.79 2.15 6.36 6.31 6.01 6.00 6.55 1.52 2.57

AlP B3 2.49 2.36 2.78 7.23 7.25 6.91 6.83 7.34 2.18 3.16

AlAs B3 2.23 2.24 2.63 6.87 6.82 6.56 6.49 6.99 2.11 3.02

AlSb B3 1.69 1.81 2.12 6.14 5.89 5.67 5.79 6.21 1.52 2.25

GaN B3 3.30 3.09 4.06 8.80 8.17 7.69 8.40 10.00 1.90 3.72

GaP B3 2.35 2.30 2.70 6.86 6.89 6.60 6.60 7.03 2.20 2.71

GaAs B3 1.52 1.41 1.93 5.38 5.45 4.91 5.83 6.49 0.90 1.39

GaSb B3 0.81 0.96 1.37 4.66 4.72 4.22 5.08 5.63 0.30 0.85

InP B3 1.42 1.73 2.27 6.10 6.41 5.71 6.49 6.99 1.46 1.76

InAs B3 0.41 0.53 0.99 4.23 4.36 3.89 4.81 5.58 0.17 0.64

InSb B3 0.23 0.48 0.85 4.03 4.14 3.68 4.65 5.39 0.00 0.48

ZnS B3 3.84 3.42 4.14 8.34 8.27 7.74 8.38 9.42 2.81 3.67

ZnSe B3 2.82 2.37 3.00 6.81 6.74 6.38 7.00 7.95 1.83 2.74

ZnTe B3 2.39 2.31 2.81 6.50 6.38 6.02 6.88 7.60 1.49 2.39

CdTe B3 1.61 1.59 2.05 5.58 5.29 4.98 5.87 6.51 0.94 1.65

MgS B1 5.40 5.06 5.68 10.33 10.05 9.80 10.03 10.64 4.63 5.73

LiF B1 14.20 12.05 13.41 18.10 17.28 16.91 17.71 20.11 10.23 12.46

LiCl B1 9.40 8.04 8.93 13.68 13.43 12.82 13.68 14.92 7.50 8.55

NaF B1 11.50 10.96 12.38 16.98 16.52 16.19 17.00 18.94 10.10 11.83

NaCl B1 8.97 7.15 8.10 12.79 12.56 12.13 12.89 13.98 7.24 8.15

MgO B1 7.80 6.68 7.94 12.67 11.92 11.49 12.09 14.31 5.23 7.29

SrTiO3 E21 3.25 3.16 3.96 8.24 7.98 7.69 8.28 9.64 2.47 4.12
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Table 7: Validation data for lattice constants (Å).

System Symmetry Exp. HF LDA PBE PBEsol B97 B3LYP PBE0 PBEsol0 HSE06

AlN B3 4.368 4.371 4.349 4.408 4.382 4.391 4.396 4.371 4.354 4.373

CdS B3 5.808 6.043 5.767 5.948 5.844 5.961 5.986 5.898 5.830 5.903

CdSe B3 6.042 6.299 6.021 6.207 6.094 6.217 6.249 6.148 6.072 6.154

MgSe B1 5.375 5.566 5.397 5.512 5.455 5.519 5.529 5.470 5.432 5.474

MgTe B1 6.410 6.572 6.356 6.495 6.428 6.497 6.517 6.453 6.404 6.458

BaS B1 6.364 6.608 6.300 6.438 6.352 6.479 6.504 6.414 6.355 6.417

BaSe B1 6.570 6.866 6.515 6.673 6.576 6.713 6.745 6.650 6.583 6.654

BaTe B1 6.982 7.324 6.892 7.069 6.959 7.119 7.163 7.051 6.976 7.055

LiH B1 3.979 4.109 3.905 4.004 3.976 4.019 4.004 3.989 3.970 3.989

Table 8: Validation data for lattice constants (Å), continued.

System Symmetry Exp. HSEsol HISS RSHXLDA wB97 wB97X LC-wPBE LC-wPBEsol M06-L M06

AlN B3 4.368 4.355 4.351 4.350 4.392 4.381 4.358 4.322 4.349 4.359

CdS B3 5.808 5.833 5.866 5.830 5.865 5.892 5.819 5.768 5.944 5.897

CdSe B3 6.042 6.078 6.113 6.063 6.127 6.147 6.051 5.997 6.243 6.154

MgSe B1 5.375 5.435 5.452 5.428 5.508 5.507 5.414 5.384 5.492 5.509

MgTe B1 6.410 6.408 6.433 6.398 6.462 6.473 6.380 6.344 6.487 6.466

BaS B1 6.364 6.358 6.400 6.463 6.435 6.454 6.390 6.364 6.418 6.412

BaSe B1 6.570 6.586 6.638 6.694 6.708 6.712 6.621 6.591 6.701 6.652

BaTe B1 6.982 6.978 7.041 7.105 7.114 7.124 7.017 6.991 7.116 7.083

LiH B1 3.979 3.968 3.977 4.143 4.084 4.101 3.988 3.972 4.030 4.138

Table 9: Validation data for band gaps (eV).

System Symmetry Exp. HF LDA PBE PBEsol B97 B3LYP PBE0 PBEsol0 HSE06

AlN B3 5.34 12.14 3.37 3.45 3.31 5.22 5.35 5.39 5.30 4.70

CdS B3 2.58 8.26 1.02 1.10 1.08 2.46 2.24 2.79 2.72 2.17

CdSe B3 1.85 7.12 0.34 0.48 0.45 1.68 1.42 1.97 1.91 1.45

MgSe B1 2.47 8.59 1.64 1.71 1.71 3.07 2.98 3.33 3.32 2.62

MgTe B1 3.60 9.60 3.01 2.92 2.99 4.24 4.06 4.54 4.59 3.98

BaS B1 3.88 9.29 1.99 2.39 2.15 3.80 3.75 3.95 3.75 3.26

BaSe B1 3.58 8.67 1.69 2.05 1.83 3.42 3.36 3.51 3.33 2.85

BaTe B1 3.08 8.01 1.41 1.80 1.56 3.06 3.05 3.12 2.93 2.49

LiH B1 4.94 11.02 2.62 3.10 2.84 4.78 4.85 4.76 4.57 4.10
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Table 10: Validation data for band gaps (eV), continued.

System Symmetry Exp. HSEsol HISS RSHXLDA wB97 wB97X LC-wPBE LC-wPBEsol M06-L M06

AlN B3 5.34 4.61 5.41 10.24 10.28 9.80 9.72 10.90 3.77 5.80

CdS B3 2.58 2.13 2.78 6.99 6.78 6.34 7.11 7.85 1.63 2.43

CdSe B3 1.85 1.41 1.98 5.71 5.75 4.96 5.93 6.77 0.98 1.74

MgSe B1 2.47 2.62 3.09 7.49 7.56 7.21 7.46 8.22 2.48 3.51

MgTe B1 3.60 4.03 4.56 8.53 8.34 7.98 8.55 9.30 3.78 4.71

BaS B1 3.88 3.08 3.66 8.21 7.92 7.68 8.07 8.55 2.61 3.71

BaSe B1 3.58 2.68 3.18 7.62 7.34 7.15 7.42 7.87 2.26 3.45

BaTe B1 3.08 2.30 2.75 7.10 6.76 6.60 6.83 7.19 1.88 2.95

LiH B1 4.94 3.90 4.67 9.30 9.51 9.16 8.86 9.71 4.09 5.83

Table 11: Calibration and prediction uncertainty parameters for lattice constants (Å).

a b d2 u2(a) u2(b) u(a, b)
HF 0.265844 0.930312 0.002249 0.002848 0.000098 -0.000522
LDA 0.030841 1.000760 0.000744 0.001030 0.000038 -0.000194
PBE 0.092315 0.965792 0.000557 0.000754 0.000026 -0.000139
PBEsol 0.017136 0.992155 0.000222 0.000310 0.000011 -0.000058
B97 0.115161 0.961603 0.000553 0.000742 0.000026 -0.000137
B3LYP 0.177782 0.947511 0.000573 0.000750 0.000026 -0.000138
PBE0 0.081523 0.977020 0.000343 0.000466 0.000017 -0.000087
PBEsol0 0.054438 0.990608 0.000285 0.000392 0.000014 -0.000074
HSE06 0.090796 0.974474 0.000329 0.000446 0.000016 -0.000083
HSEsol 0.046161 0.991261 0.000166 0.000230 0.000008 -0.000043
HISS 0.063423 0.985647 0.000441 0.000603 0.000022 -0.000113
RSHXLDA -0.033043 1.008890 0.001498 0.002125 0.000077 -0.000399
wB97 -0.045111 1.003750 0.000753 0.001073 0.000038 -0.000200
wB97X 0.014397 0.989527 0.000989 0.001378 0.000049 -0.000256
LC-wPBE -0.087521 1.020460 0.001154 0.001670 0.000061 -0.000314
LC-wPBEsol -0.068626 1.025370 0.001005 0.001444 0.000053 -0.000274
M06-L 0.225104 0.944739 0.001756 0.002258 0.000079 -0.000417
M06 0.101464 0.969896 0.001686 0.002274 0.000080 -0.000421
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Table 12: Calibration and prediction uncertainty parameters for bulk modulus (GPa).

a b d2 u2(a) u2(b) u(a, b)
HF 5.299730 0.907086 60.9892 5.14927 0.000184 -0.022823
LDA -2.879920 0.991786 69.1134 6.27555 0.000248 -0.030138
PBE 5.744720 1.056710 70.3462 5.86778 0.000286 -0.030320
PBEsol 1.259210 1.025550 61.0518 5.36143 0.000236 -0.026757
B97 4.004020 1.026530 56.3024 4.83764 0.000219 -0.024232
B3LYP 6.673300 1.023960 64.8168 5.38080 0.000249 -0.026957
PBE0 2.248060 0.976575 48.8665 4.31274 0.000173 -0.020508
PBEsol0 -0.829878 0.959953 50.2026 4.55636 0.000172 -0.021222
HSE06 2.902020 0.978135 49.6329 4.34764 0.000177 -0.020722
HSEsol 0.188090 0.959255 51.0952 4.58604 0.000174 -0.021372
HISS 2.367750 0.920349 44.2389 3.92973 0.000141 -0.017610
RSHXLDA -4.090890 0.948504 59.9397 5.55014 0.000198 -0.025438
wB97 -10.665400 1.025490 87.1653 8.44242 0.000331 -0.041432
wB97X -5.779100 1.009880 70.1773 6.54815 0.000261 -0.031886
LC-wPBE -5.247850 0.940126 78.2386 7.22576 0.000251 -0.032792
LC-wPBEsol -5.817900 0.878467 88.9413 8.21588 0.000248 -0.034823
M06-L 3.655850 1.006760 84.4851 7.13272 0.000310 -0.035067
M06 0.290985 1.005680 92.5850 8.04863 0.000337 -0.039392

Table 13: Calibration and prediction uncertainty parameters for band gaps (eV).

a b d2 u2(a) u2(b) u(a, b)
HF -3.772960 0.769666 0.491559 0.104197 0.000884 -0.008753
LDA 0.500446 1.346620 0.217512 0.015008 0.001173 -0.002913
PBE 0.502391 1.384660 0.322265 0.022307 0.001852 -0.004471
PBEsol 0.503246 1.385130 0.209227 0.014420 0.001193 -0.002878
B97 -0.476155 1.141850 0.275901 0.025245 0.001074 -0.004066
B3LYP -0.196524 1.107580 0.446166 0.037994 0.001656 -0.006044
PBE0 -0.818884 1.131900 0.163279 0.016354 0.000619 -0.002553
PBEsol0 -0.834921 1.133530 0.120907 0.012141 0.000459 -0.001894
HSE06 -0.292955 1.166900 0.189684 0.016416 0.000766 -0.002718
HSEsol -0.268050 1.167400 0.114798 0.009836 0.000462 -0.001627
HISS -0.593722 1.064800 0.136763 0.012853 0.000458 -0.001911
RSHXLDA -4.051670 0.947657 0.268522 0.059576 0.000720 -0.005998
wB97 -4.328140 0.998028 0.292030 0.068768 0.000870 -0.007123
wB97X -3.909350 0.995743 0.316932 0.068420 0.000941 -0.007332
LC-wPBE -4.312070 0.986559 0.182869 0.042622 0.000528 -0.004364
LC-wPBEsol -4.174930 0.871636 0.274368 0.062503 0.000622 -0.005727
M06-L 0.166347 1.240360 0.312359 0.023821 0.001439 -0.004269
M06 -0.567563 1.093080 0.319148 0.030024 0.001143 -0.004613
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