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ABSTRACT
The adiabatic connection formalism, usually based on the first-order perturbation theory, has been generalized to an arbitrary order. The gen-
eralization stems from the observation that the formalism can be derived from a properly arranged Taylor expansion. The second-order theory
is developed in detail and applied to the description of two electrons in a parabolic confinement (harmonium). A significant improvement
relative to the first-order theory has been obtained.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0167851

I. INTRODUCTION

The adiabatic connection is used in quantum mechanics to
express corrections to models by progressively approaching the sys-
tem of interest.7 Usually, this is formally obtained by using for each
infinitesimal step first-order perturbation theory. This paper gen-
eralizes the idea of the adiabatic connection (as used in quantum
mechanics) by applying it at higher orders of perturbation theory
[see Eq. (28)]. Mathematically, it corresponds to using the integral
remainder in Taylor’s formula. We thus expect improvement by
going to higher orders.

The advantage of such an approach originates from using oper-
ators that require reduced information about the wave function. In
our case, we exploit the short-range behavior of the wave function.17

As the short-range behavior has features independent of a specific
(electronic) systems, it can be applied “universally,” that is, in a
system-independent way, in the spirit of density functional theory
(DFT). The approach retains the fundamental role of the adiabatic
connection in DFT where it was used not only for explaining what
the exchange-correlation density functional should do,6,8,13,21 but
also as a guide in constructing density functional approximations

(see, e.g., Refs. 1 and 2). As in DFT, we need to complement by infor-
mation provided by the model system. Our approach avoids certain
of the limitations present in density functional theory: it is valid for
any state, and it needs no fitting to systems such as the uniform elec-
tron gas. No use of the Hohenberg–Kohn theorem,9 is made. Thus,
the method presented here is not restricted to ground states.

Although generally applicable, we illustrate our method by
applying it to a system of two electrons in a parabolic confinement
(harmonium), as it is sufficient to illustrate the aspects mentioned
above.

II. THEORY
A. Adiabatic connection

Mathematically, the idea of adiabatic connection relies on the
equation

f (b) = f (a) + ∫
b

a
dλ f ′(λ) (1)

where f ′(λ) is the first derivative of the function f (λ). In quan-
tum mechanics, the function f (λ) is often associated to an energy.
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For this, let us consider some model Hamiltonian, H(μ), and the
corresponding Schrödinger equation,

H(μ)Ψ(μ) = E(μ)Ψ(μ). (2)

Note that to simplify the notation, we drop the designations of
coordinates and quantum numbers whenever this does not lead to
misunderstandings. The quantity of interest is not the energy of the
model system, E(μ), but E, the energy produced by the Schrödinger
equation of the physical Hamiltonian, H. We write

H(λ, μ) = H(μ) + λ(H −H(μ)) (3)

and

H(λ, μ)Ψ(λ, μ) = E(λ, μ)Ψ(λ, μ). (4)

Note that for λ = 0 we have the model system, and for λ = 1 the
physical system. Furthermore (by first-order perturbation theory,
the Hellmann–Feynman theorem),

∂λE(λ, μ) = ⟨Ψ(λ, μ)∣H −H(μ)∣Ψ(λ, μ)⟩ (5)

Applying Eq. (1), we have an expression for E(λ, μ),

E(λ, μ) = E(μ) + ∫
λ

0
d λ ⟨Ψ( λ, μ)∣H −H(μ)∣Ψ( λ, μ)⟩. (6)

In particular, for λ = 1, we have the correction that added to E(μ)
produces the physical energy, E

E(μ) = E − E(μ) (7)

= ∫

1

0
dλ ⟨Ψ(λ, μ)∣H −H(μ)∣Ψ(λ, μ)⟩ (8)

Equation (8) seems useless, as it requires the knowledge of the wave
function for λ ∈ [0, 1]. However, one can exploit Eq. (8), if the behav-
ior of these wave functions is known for the specific domain probed
by the operator H −H(μ). In this paper we consider

H(μ) = T + V +W(μ) (9)

where T is the kinetic energy operator, V = ∑N
i=1 v(ri), and

W(μ) = ∑i<j w(∣ri − rj∣, μ) are one- and two-particle potential
energy operators. Note that only the two-particle operator is model-
dependent. We choose w(r; μ) as a long-range operator, in order
to have

W(μ) = H −H(μ), (10)

a short-range operator to show up in Eq. (8), and exploit the short-
range properties of the wave function. All the numerical examples
below are produced with

w(r; μ) =
erf(μr)

r
, (11)

w(r; μ) =
erfc(μr)

r
. (12)

B. Second-order adiabatic connection
Equation (1) is only a particular case of the Taylor’s expansion

with the integral form of the remainder,

f (b) = (
K−1

∑
k=0

1
k!
(b − a)k f (k)(a))

+ ∫

b

a
dλ

1
(K − 1)!

(b − λ)K−1 f (K)(λ) (13)

where f (k) is the kth derivative of f ; Eq. (1) is obtained for K = 1. We
consider below the case K = 2,

E = E(μ) + ∂λE(λ, μ)∣λ=0 + ∫

1

0
dλ (1 − λ) ∂2

λ E(λ, μ). (14)

In order to make the distinction between the variants of adiabatic
connection, we call the usual one, Eq. (8) first-order adiabatic con-
nection, AC1, and that given by Eq. (14) second-order adiabatic
connection, AC2. Using higher-order adiabatic connections is pos-
sible, but they are not explored in this paper. We would like to stress
that Eqs. (8) and (14) are both rigorous, as long as the derivatives
exist.

Note that neglecting the integral on the right-hand side
of Eq. (14) gives the first-order perturbation theory expression,
and making the approximation ∂2

λ E(λ, μ) ≈ ∂2
λ E(λ, μ)∣λ=0 gives the

second-order perturbation theory expression,

E ≈ E(μ) + ∂λE(λ, μ)∣λ=0 +
1
2
∂2

λ E(λ, μ)∣
λ=0

(15)

Using ∂λE(λ, μ)∣λ=0 in Eq. (14) requires only using Eq. (5) at λ = 0,
that is, the model wave function, Ψ(μ),

∂λE(λ, μ) = ⟨Ψ(μ)∣W(μ)∣Ψ(μ)⟩ (16)

For obtaining the second-derivative in Eq. (14), we use Eq. (6),

∂2
λ E(λ, μ) = ∂λ⟨Ψ(λ, μ)∣W(μ)∣Ψ(λ, μ)⟩ (17)

C. Exploiting the short-range behavior
of the wave function

In order to avoid the need of knowing Ψ for all λ in Eqs. (16)
and (17), we use a short-range operator W, and exploit the
“universal” features of the wave function. The behavior of the model
wave function approaching the physical system can be analyzed by
considering the limit of large μ.3 In this limit, the difference between
the model and physical wave function is dominated by the behav-
ior at short electron–electron distances [as w(r; μ) differs from the
Coulomb potential only in this domain]. For r = ∣r1 − r2∣→ 0,

Ψ(λ, μ) =∑
ℓ

N ℓ φℓ(r; λ, μ), (18)

where ℓ is an angular quantum number related to r1 − r2, and N ℓ

depends on all variables except r.
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Below, we use φℓ(r; λ, μ) that is correct to order μ−1. It
satisfies the generalization of Kato’s cusp condition to w(r; μ)
+ λw(r; μ).10,11,15,19 Its explicit form is derived in the Appendix:

φℓ(r; λ, μ)∝ rℓ
⎡
⎢
⎢
⎢
⎢
⎣

1 +
λ r

2ℓ + 2
+

1 − λ
2ℓ + 2

⎛

⎝
r erf(μr) +

2ℓ + 2
2ℓ + 1

e−μ2r2

μ
√

π

+
Γ(ℓ + 3/2) − Γ(ℓ + 3/2, μ2r2

)
√

π(2ℓ + 1)μ2ℓ+2r2ℓ+1
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(19)

where the incomplete Γ function is

Γ(a, z) = ∫
∞

z
dt ta−1e−t

and Γ(a) = Γ(a, 0).
In most quantum-chemical methods one considers the natu-

ral singlet and triplet pairing, corresponding to ℓ = 0, and ℓ = 1,
respectively. The non-natural singlets and triplets, as they are called
by Kutzelnigg and Morgan,12 correspond to ℓ > 1. If ℓ > 1 then the
centrifugal force keeps electrons apart. As a consequence, for r → 0
the prefactor rℓ in Eq. (19) decreases with increasing ℓ. Conse-
quently, the terms with small ℓ dominate in expansion (18). For
the system treated in this paper (harmonium), due to separabil-
ity, the sum is exactly reduced to one term and, in principle, one
can study the behavior of the wave function corresponding to an
arbitrary ℓ. In the remaining part of this section the ℓ-dependence
is marked explicitly: Ψ(λ, μ) is denoted as Ψℓ(λ, μ), and E(λ, μ)
- as Eℓ(λ, μ).

D. The model system
All numerical results presented hereafter are obtained for

a system of two electrons in a parabolic confinement (harmo-
nium) with v = 1

2 ω2r2. If not specified otherwise, ω = 1/2 a.u. The
interaction between electrons is generalized to w, Eq. (11). The
Schrödinger equation is separable, and we have to consider only the
one-dimensional radial equation

(−∂2
r −

2
r
∂r +

ℓ(ℓ + 1)
r2 +

1
4

ω2r2
+w(r; μ)

+ λw(r; μ) − Eℓ(λ, μ))φℓ(r; λ, μ) = 0. (20)

It can be solved to arbitrary accuracy, and this allows us to judge
the errors made to approximations. Furthermore, there is no need to
take into account the other coordinates in the prefactor N ℓ showing
up in Eq. (18).

E. Working equations
In first-order adiabatic connection we approximate

∂λEℓ(λ, μ) = ⟨Ψ(λ, μ)∣W(μ)∣Ψ(λ, μ)⟩ ≈ cℓ I (1)ℓ (λ, μ), (21)

where cℓ = N 2
ℓ and

I (1)ℓ (λ, μ) = ∫
∞

0
dr r2

∣φℓ(r; λ, μ)∣2w(r; μ). (22)

TABLE I. Constants in Eqs. (25) and (26) rounded up to five decimals.

k 1 2 3 4 5

ak 0.752 25 0.623 19 0.187 50 0.193 31 0.107 00
bk 0.601 80 0.073 01 0.104 17 0.016 47 0.001 98

In second-order adiabatic connection we approximate

∂2
λ Eℓ(λ, μ) ≈ cℓ I (2)ℓ (λ, μ) (23)

where

I (2)ℓ (λ, μ) = ∂λ I (1)ℓ (λ, μ). (24)

As φℓ(r; λ, μ) is explicitly known (in the given limit: r → 0, μ→∞),
the integrals IK

ℓ are computed to be (for ℓ = 0 and ℓ = 1),

I (1)ℓ=0 ∝
1
μ2 +

a1 + a2(1 − λ)
μ3 +

a3 + a4(1 − λ) + a5(1 − λ)2

μ4 , (25)

I (1)ℓ=1 ∝
1
μ4 +

b1 + b2(1 − λ)
μ5 +

b3 + b4(1 − λ) + b5(1 − λ)2

μ6 , (26)

where the constants ak and bk are collected in Table I.
The proportionality constant, c, is related to the physical system

and can be determined by using Eqs. (21) and (23) for the model
system (at λ = 0). We thus get the following working equations:

Eℓ ≈ Eℓ(μ) + α(1)ℓ (μ)∂λEℓ(λ, μ)∣λ=0 (27)

and

Eℓ ≈ Eℓ(μ) + ∂λEℓ(λ, μ)∣λ=0 + α(2)ℓ (μ)∂
2
λ Eℓ(λ, μ)∣λ=0

(28)

with

α(K)ℓ (μ) =
∫

1
0 dλ (1 − λ)(K−1) I (K)ℓ (λ, μ)

I (K)ℓ (λ = 0, μ)
. (29)

The integrals over λ are trivial, and not shown. Equation (27) cor-
responds to the first-order adiabatic connection, while Eq. (28)
corresponds to the second-order adiabatic connection. Note that
expressions (27) and (28) require the same effort as first- and
second-order perturbation theory, respectively, namely computing
∂λEℓ(λ, μ)λ=0 and ∂2

λ Eℓ(λ, μ)∣λ=0. Only the weight of the last term is
changed by α(K)ℓ , K = 1 or 2.

Two more remarks on these equations. First, note that by
squaring φℓ in Eq. (22) we introduce terms in μ−2, although a fur-
ther term to this order may be present in an exact theory, because φℓ

is constructed to order μ−1 only. Second, higher orders in the adia-
batic connection do not improve over perturbation theory with the
present form of φℓ: in our first-order expression in 1/μ, only terms
linear in λ show up. The second derivative is just a constant, and
α(3)ℓ = 1.

Equation (27) can be rewritten as

Eℓ ≈ ⟨Ψ(μ)∣H∣Ψ(μ)⟩ + (α
(1)
ℓ (μ) − 1)∂λEℓ(λ, μ)∣λ=0. (30)
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The last term on the r.h.s. appears as approximation for the
correlation energy. One can also write Eq. (28), as

Eℓ ≈ ⟨Ψ(μ)∣H∣Ψ(μ)⟩ + E(2)ℓ (μ) + (α(2)ℓ (μ) −
1
2
)∂2

λ Eℓ(λ, μ)∣λ=0

(31)
where E(2)ℓ (μ) = 1/2 ∂2

λ Eℓ(λ, μ)∣λ=0 is the second-order energy cor-
rection to Eℓ(μ). The last term on the r.h.s. appears as approxima-
tion for the remaining correlation energy.

III. NUMERICAL RESULTS
A. General considerations

By construction, the approximations leading to the working
equations (27) and (28) become exact in the limit of the model sys-
tem approaching the physical system (μ→∞). However, the cost of
performing the calculation of the model system also increases with μ.
We are thus interested to use models with small μ, ideally even totally
turn off the interaction (μ = 0). The derivation does not tell us how
well the approximations used work for small μ. The figures shown
in this paper present the errors of the approximation (the difference
between the energy obtained using it and that of the physical system)
for different models μ. As μ can vary continuously, the plots of the
errors show up as curves. We consider μ ∈ [0, 3], as E(μ) approaches
anyhow the physical energy E for large μ.

With these approximations, we aim to reach the so-called chem-
ical accuracy, i.e., 1 kcal/mol.16 The region of chemical accuracy is
marked in the plots by horizontal dashed lines.

B. Discussion of the figures
Figure 1 shows the general trends of the approximations. One

can see, that by the choice of using the bare field, v, for all values of μ,
cf. Eq. (9), the error of the model in the limit of small μ is catastrophic
(0.5 hartree). First-order perturbation theory leads to the expecta-
tion value of the physical Hamiltonian, and thus gives an upper
bound to the exact energy. In spite of using a bad wave function,
the improvement is important: the error is decreased by an order of
magnitude to ≈0.06 hartree. Hartree–Fock, the best value that can be

FIG. 1. Errors of different approximations for the two-electron harmonium
(ω = 1/2). The full black curve indicates the error of the model, E(μ).
Blue curves correspond to first-order: dashed curve for perturbation theory,
⟨Ψ(μ)∣H∣Ψ(μ)⟩, full curve for first-order adiabatic connection, Eq. (27). Green
curves correspond to second-order: dashed curve for perturbation theory, Eq. (15),
full curve for second-order adiabatic connection, Eq. (28).

obtained for the non-interacting wave function, is in error by ≈0.04
hartree. The second-order perturbation theory further improves
the result.

The range of chemical accuracy cannot be distinguished on the
scale of the plot shown in Fig. 1. In order to discuss the suitabil-
ity of the results, we have to zoom in (see Fig. 2, top). We notice
that for the ground state (a singlet state, ℓ = 0), the model does
not reach chemical accuracy for the whole range of μ shown in the
plot. The result of first-order perturbation theory is improved by
using the correction established for μ→∞, Eq. (27). Surprisingly,
in spite of using an expansion in 1/μ, the error remains negligible
even for some range of μ < 1 bohr−1 (to ≈0.5 bohr−1). However, at

FIG. 2. Errors of different approximations for the two-electron harmonium
(ω = 1/2). The full black curve indicates the error of the model, E(μ).
Blue curves correspond to first-order: dashed curve for perturbation theory,
⟨Ψ(μ)∣H∣Ψ(μ)⟩, full curve for first-order adiabatic connection, Eq. (27). Green
curves correspond to second-order: dashed curve for perturbation theory, Eq. (15),
full curve for second-order adiabatic connection, Eq. (28). Top panel: ground state;
middle panel: first excited state with ℓ = 1; bottom panel: first excited state with
ℓ = 0.
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smaller μ it worsens dramatically. Going over to second-order per-
turbation theory improves over first-order perturbation theory. Cor-
recting asymptotically, Eq. (28) improves the result over the whole
range of values. However, chemical accuracy is not yet reached for
all models.

Let us now apply the method to excited states. The model works
much better for first triplet excited state (ℓ = 1), see Fig. 2 (middle
panel). This improves the results for all approximations.

Considering the first singlet excited state with ℓ = 0, Fig. 2 (bot-
tom), we notice that the quality of the model is worse than for the
ground state. The corresponding curve does not even show up in
the plot. However, the approximations show a behavior that roughly
follows that of the ground state. We would like to stress that the
corrections for the ground state and for the first excited state with
ℓ = 0 use the same factors α(K)ℓ , Eq. (29). The corrections are, of
course, different, as the system-specific information enters through
the model-specific quantities, ∂K Eℓ(λ, μ)∣λ=0.

IV. CONCLUSION
The integral form of the remainder in Taylor’s expansion,

Eq. (13) provides a formula that generalizes the adiabatic connec-
tion. We use it to construct approximations to correct energies pro-
duced by model Hamiltonians with long range interaction, Eqs. (27)
and (28). They are inspired by approximations used in density
functional theory. However, they do not use the Hohenberg–Kohn
theorem, and are valid for the ground and excited states. Instead,
they are constructed to be valid for the short-range interaction, as
one approaches the physical system.

Results are shown only for harmonium. One can notice
an improvement with increasing order of the adiabatic connec-
tion. No comparison is made with analogous density functional
approximations. These can be found in Ref. 17.

Of course, one would like to apply the method not only to har-
monium. In other systems the sum in Eq. (18) is extended over all
values of ℓ. An explicit treatment of the higher terms is difficult, may
be too expensive computationally, and is maybe not needed – as it
was already discussed, these terms are usually much smaller than the
leading one. Thus, techniques such as described in Refs. 14 and 20
could be applied.

A strength of the method presented here is the stability of
the result for large μ. Once the stability is lost, it may indicate a
worsening of the approximation.

A weakness of the method presented here is that it does
not work sufficiently well (within chemical accuracy) for the non-
interacting system (μ = 0). This makes the method more expensive.
This feature is also present in range-separated density functional
methods which possess a striking similarity with the one presented
here. One may wonder if the experience gained by constructing
density functional approximations cannot be exploited here, too.
In particular, a properly constructed effective one-body potential in
the model Hamiltonian can reduce the energy error of the physical
(interacting) system (see, e.g., Figs. 11 and 12 in Ref. 17). Alterna-
tively, the method presented here could be used to improve density
functional approximations.

Finally, we would like to point out that Eq. (28) can be seen as
a theoretical justification for spin-component-scaled methods.5
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APPENDIX: A DERIVATION OF EQ. (19)

We generalize for an arbitrary ℓ the results obtained for ℓ = 0
in Sec. III of Ref. 3, and in the Appendix of Ref. 18. We consider the
behavior at the limit of large μ of the radial wave function φ(r; λ, μ)
which is a solution of the radial Schrödinger equation (20)

[tℓ(r) + vint(r; λ, μ) + R(r)]φℓ(r; λ, μ) = 0, (A1)

where

tℓ(r) = −∂
2
r −

2
r
∂r +

ℓ(ℓ + 1)
r2 , (A2)

is the radial part of the kinetic energy operator corresponding to a
given ℓ,

vint(r; λ, μ) = w(r; μ) + λw(r; μ) =
(1 − λ) erf(μ r) + λ

r
, (A3)

is the interaction potential, and R(r) is finite at r = 0.
After changing variable r to x = μr and defining

uℓ(x; λ, μ) = φℓ(x/μ; λ, μ). (A4)

Equation (A1) becomes

tℓ(x) uℓ(x; λ, μ) = [
1
μ
vint(x; λ, 1) + O(μ−2

)] uℓ(x; λ, μ). (A5)

To solve Eq. (A5) we use the first-order perturbation theory with
perturbation parameter 1/μ. We set

uℓ(x; λ, μ) = u(0)ℓ (x) +
1
μ

u(1)ℓ (x; λ) + O(μ−2
), (A6)
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where u(0)ℓ (x) and u(1)ℓ (x; λ) are solutions of the zeroth and the first
order perturbation equations:

tℓ(x) u(0)ℓ (x) = 0, (A7)

tℓ(x) u(1)ℓ (x; λ) = F(x; λ), (A8)

and

F(x; λ) = vint(x; λ, 1) u(0)ℓ (x). (A9)

The general solution of the second-order homogeneous differen-
tial equation (A7) is a linear combination of its two independent
solutions: f1(x) = xℓ, and f2(x) = x−(l+1):

u(0)ℓ (x) = A(1)ℓ f1(x) + A(2)ℓ f2(x). (A10)

The inhomogeneous equation (A8) is solved in quadratures:

u(1)ℓ (x; λ) = f1(x) [B(1)ℓ (λ) − ∫
f2(x)
W(x)

F(x; λ) dx]

+ f2(x) [B(2)ℓ (λ) + ∫
f1(x)
W(x)

F(x; λ) dx], (A11)

where

W(x) = f1(x)
d f2(x)

dx
− f2(x)

d f1(x)
dx

= −
2ℓ + 1

x2

is the Wronskian of solutions of the homogeneous equation.
According to Eqs. (A3) and (A9),

F(x; λ) = (1 − λ) F(x; 0) + λ F(x; 1). (A12)

Consequently, from Eq. (A11) we have

u(1)ℓ (x; λ) = (1 − λ) u(1)ℓ (x; 0) + λ u(1)ℓ (x; 1). (A13)

Notice that also

B(i)ℓ (λ) = (1 − λ) B(i)ℓ (0) + λ B(i)ℓ (1), i = 1, 2, (A14)

where B(i)ℓ (0) and B(i)ℓ (1) depend on neither λ nor μ.
The integration constants A(i)ℓ and B(i)ℓ , i = 1, 2, are deter-

mined from the requirement that the wave function fulfills the coa-
lescence conditions.11,18 In particular, neither u(0)ℓ (x) nor u(1)ℓ (x; λ)
can be singular at x = 0. The last requirement implies that A(2) = 0.

The evaluation of λ = 1 contribution is straightforward. We
have

u(1)ℓ (x; 1) =
1

2ℓ + 1

⎡
⎢
⎢
⎢
⎢
⎣

B(1)ℓ (1)x
ℓ
+

B(2)ℓ (1)
xℓ+1

⎤
⎥
⎥
⎥
⎥
⎦

+
A(1)ℓ xℓ+1

2ℓ + 2
. (A15)

On the other hand, according to Eq. (26) of Ref. 18,

u(1)ℓ (x; 1) ∝
rℓ+1

2ℓ + 2

(the Kato’s cusp condition10). Therefore, in order to recover the cor-
rect behavior of the Coulomb radial function at small x, we have to
set B(1)ℓ (1) = B(2)ℓ (1) = 0. Finally, according to Eqs. (A6), (A10),
and (A15),

uℓ(x; 1, μ) = A(1)ℓ xℓ [1 +
x

μ (2ℓ + 2)
] + O(μ−2

). (A16)

The second contribution, corresponding to λ = 0, is more diffi-
cult to calculate. At the limit of large μ, and for sufficiently large
r, φ(r; 0, μ)→ φ(r; 1, μ).3 To meet this condition we have to set
B(1)ℓ (0) = 0. By fixing

B(2)ℓ (0) = −A
(1)
ℓ

Γ(ℓ + 3/2)
(2ℓ + 2)

√
π

, (A17)

and using properties of the incomplete gamma function (see,
for example, Subsection 8.35 in Ref. 4, or https://functions.
wolfram.com/GammaBetaErf/Erf/21/01/02/01/01/01/) we get an
explicit, non-singular, expression

u(1)ℓ (x; 0) =
A(1)ℓ xℓ
√

π

⎡
⎢
⎢
⎢
⎢
⎣

√
π x erf(x)
2ℓ + 2

+
e−x2

(2ℓ + 1)

+
Γ(ℓ + 3/2) − Γ(ℓ + 3/2, x2

)

(2ℓ + 1)(2ℓ + 2)x2ℓ+1

⎤
⎥
⎥
⎥
⎥
⎦

. (A18)

By expanding the right-hand side of Eq. (A18) to a power series of x,
we get

u(1)ℓ (x; 0) =
A(1)ℓ xℓ
√

π ∑
n=0

(−1)n+1 x2n

(2n − 1)(2n + 2ℓ + 1) n!
. (A19)

Alternatively, Eq. (A19) can be obtained by the expansion of F(x, 0)
and subsequent evaluation of integrals in Eq. (A11). Notice, that the
integration constants in both approaches are different.

For ℓ = 0, 1, 2, . . . Eq. (A18) can be simplified using the
recurrence relation (Ref. 4, Subsection 8.35).

Γ(1/2, x2
) =
√
(π) (1 − erf(x)),

Γ(a + 1, x2
) = a Γ(a, x2

) + x2a e−x2

,
(A20)

u(1)0 (x; 0) =
A(1)ℓ

2

⎡
⎢
⎢
⎢
⎢
⎣

(x +
1

2 x
) erf(x) +

e−x2

√
π

⎤
⎥
⎥
⎥
⎥
⎦

, (A21)

u(1)1 (x; 0) =
A(1)ℓ x

4

⎡
⎢
⎢
⎢
⎢
⎣

(x +
1

4 x3 ) erf(x) +
e−x2

√
π
(1 −

1
2 x2 )

⎤
⎥
⎥
⎥
⎥
⎦

, (A22)

u(1)2 (x; 0) =
A(1)ℓ x2

6

⎡
⎢
⎢
⎢
⎢
⎣

(x +
3

8 x5 ) erf(x)

+
e−x2

√
π
(1 −

1
2 x2 −

3
4 x4 )

⎤
⎥
⎥
⎥
⎥
⎦

. (A23)

J. Chem. Phys. 159, 134107 (2023); doi: 10.1063/5.0167851 159, 134107-6

Published under an exclusive license by AIP Publishing

 19 O
ctober 2023 15:20:36

https://pubs.aip.org/aip/jcp
https://functions.wolfram.com/GammaBetaErf/Erf/21/01/02/01/01/01/
https://functions.wolfram.com/GammaBetaErf/Erf/21/01/02/01/01/01/


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Combining Eqs. (A6), (A10), (A13), (A15), and (A19) we get, at the
limit of r → 0,

φℓ(r; λ, μ) ∝ rℓ [1 +
1 − λ

μ
√

π(2ℓ + 1)
+

λ r
2ℓ + 2

]. (A24)
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