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Abstract. Computational chemistry has become an important comple-
ment to experimental measurements. In order to choose among the
multitude of the existing approximations, it is common to use bench-
mark data sets, and to issue recommendations based on numbers such
as mean absolute errors. We argue, using as an example bandgaps
calculated with density functional approximations, that a more careful

Introduction

Dirac’s 1929 statement:[1]

“The underlying physical laws necessary for the mathemati-
cal theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechan-
ics should be developed, which can lead to an explanation of
the main features of complex atomic systems without too much
computation.”
is still valid. To assert the validity of an approximate method,
typically a density functional approximation, validation
through reference data is needed. However, the required
accuracy depends on the user and the application. Furthermore,
the reference data are not exempt of errors. These limits are
important, but often ignored, both for the reference data, and
the requirements put on an approximation. Or, by convenience,
some standard is set. For example, one sets a “chemical accu-
racy” for thermochemistry to 1 kcal·mol–1, but the accuracy of
the reference data, or the one required in computational chem-
istry, may be larger or smaller.

Nowadays, a large amount of data is generated, and statisti-
cal methods are used to replace personal experience. Bench-
marks are produced to recommend one or several specific
approximations. We present in this paper some aspects of the
impact of uncertainty on these benchmarks. We would like to
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study of the benchmark data is needed, stressing that the user’s require-
ments play a role in the choice of an appropriate method. We also
appeal to those who measure data capable of being used as a reference,
to publish error estimates. We show how the latter can affect the judg-
ment of approximations used in computational chemistry.

stress that the aim of this paper is solely to exemplify this
latter point, and by no means to recommend or to denigrate
any density functional or benchmark.

Results and Discussion

Example and Notations

To exemplify our opinions, we select a benchmarking of
bandgaps presented by Borlido et al.[2]. From the fifteen
approximations tested in this paper, we select only two:

(i) LDA, the local density approximation, notorious for
underestimating bandgaps,[3] and

(ii) HSE06, the more expensive approximation by Heyd,
Scuseria, and Ernzerhof[4] re-parameterized in 2006[5], that has
become a standard for more reliable bandgaps.

Figure 1 presents the errors in the calculated bandgaps for
the 471 systems of the benchmark set. It confirms what we
already know: LDA gaps are too small, while HSE06 values
are much better.

Figure 1. Calculated minus experimental bandgap (LDA black points,
HSE06 red points) for the 471 systems of the benchmark of Borlido
et al.[2]
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Let us introduce some notation. The number of systems
studied is N = 471. Let the error for system i in method m be
em,i. The mean error for method m is estimated by Equa-
tion (1):

μm = 1/N ∑
i=1,N

em,i (1)

The standard deviation is estimated by Equation (2):

σm = {1/(N – 1) ∑
i=1,N

[em,i – μm ]2}1/2 (2)

The mean of the errors synthesizes what is seen in Figure 1:
μLDA = –1.2 eV, μHSE06 = –0.1 eV. However, we also notice in
Figure 1 that the spread of errors is not so different. This is
confirmed by σLDA = 1.1 eV and σHSE06 = 0.8 eV.

Systematic Errors Correction

In many cases, one does not need to know the exact value
of a property, but how this value changes from one system to
another. For example, measurements exist for a given system,
and one needs to know what happens if this system is modi-
fied. Or one needs only to know how the quantity of interest
varies in a class of systems (to follow a trend). In such cases,
a systematic error is not important. Shifting the error sets by a
constant does not change these observations.

Let us thus shift the calculated values by the mean error for
the corresponding method (cf. Figure 2). Now both methods
have zero mean error, so-called centered errors. The difference
between the methods is less important now, because the spread
of the errors is comparable. This is reflected on the values of
σ given above, both of the order of 1 eV. The maximal errors
within the test set are in both cases of the order of 3 eV.

Figure 2. Calculated minus experimental bandgap (LDA black points,
HSE06 red points) for the 471 systems of the benchmark of Borlido
et al.[2]. Centered errors.

A warning should be issued for the case of shifting the er-
rors, as this can bring some unwanted effects. If the shift re-
duces the bandgaps by a constant, it is possible that those
smaller than the shift become negative (that is absurd). In the
examples above, the bandgaps were shifted upwards. However,
this case also deforms the results, e.g., transforming a metal
into a semiconductor. In order to get around these problems,
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one could exclude systems with small bandgaps from the shift.
Or, instead of shifting, one could use the benchmark data to
produce scaling factors.

Cumulative Distribution Functions

As the errors can become quite large, it is necessary to quan-
tify how likely it is to obtain such large errors. For this, let us
look at the cumulative distribution functions (CDFs). In prob-
ability theory, the CDF is defined as the probability that a vari-
able X takes a value smaller than x. For us this can be de-
scribed by the fraction of systems having an error smaller than
x. We consider from now on only absolute values of the errors
|em,i| = X, and some acceptable upper limit of the error, that
has to be defined by the user. Multiplying this number by 100
gives the percentage of systems having errors smaller than x.
Figure 3 shows the CDFs for LDA and HSE06.

Figure 3. CDFs (fraction of systems having absolute errors having an
error smaller than some preset upper limit; LDA in black, HSE06 in
red) based upon the 471 systems of the benchmark of Borlido et al.:[2]

(a) errors; (b) centered errors.

Let us suppose that an acceptable absolute error is of 0.5 eV.
We see in Figure 3a that for LDA, only a quarter of the sys-
tems of the benchmark set satisfy this condition, while for
HSE06 about 2/3 of the systems satisfy it.

Let us now use the mean errors to correct the computed
values (as done for studying trends). The LDA curve gets
much closer to the HSE06 curve (Figure 3b).
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Figure 4. CDFs (fraction of systems having Δi = |eHSE06,i| – |eLDA,i| smaller than some prescribed value, Δ), based upon the benchmark of
Borlido, et al.:[2] (a) errors; (b) centered errors. The yellow area marks the “acceptable” error margin of 0.5 eV.

Using, as above, an upper limit for the acceptable error at
0.5 eV, we see that the percentage of systems where the error
is acceptable is practically unchanged with HSE06, while it
increases to about 50% with LDA after correcting for system-
atic errors. If we increase the tolerance to 1 eV, the “unaccept-
able” results are about 20% of the cases, both for LDA and
HSE06.

Of course, one does not know a priori what an acceptable
error is. The benchmark does not specify it, but the user. Or
seen differently, the user has to define a risk: in which percen-
tage of his future calculations can he accept to be wrong?

Pairwise Comparison

From the comparison of the CDFs, one might get the im-
pression that HSE06 is always better than LDA, even after
making the shift. However, this must not be the case: the
curves above show only an overall behavior, not that for a
specific system.

For this, let us consider the differences of the absolute errors
of the two methods, system by system [Equation (3)]:
Δi = |eHSE06,i| – |eLDA,i| (3)

For systems where the difference is negative, HSE06 is bet-
ter than LDA. If it is positive, LDA is better than HSE06.
The fraction of systems having negative difference gives the
systematic improvement probability (SIP)[6] of HSE06 over
LDA. Please notice that SIP = 0.5 would mean that there is
equal probability of improvement or worsening by changing
from LDA to HSE06.

In Figure 4a one can see this fraction of systems having Δi

smaller than some prescribed value, Δ. From its value at Δ =
0, we obtain the SIP. It is close to 0.8. Thus HSE06 is superior
to LDA in 80 per cent of the cases, not always. One can look
at different values of Δ. If one accepts that differences below
0.5 eV are not significant, HSE06 is superior to LDA in about
60 per cent of the cases, and inferior in about 100–90 = 10 per
cent of the cases.

We can consider what happens after eliminating the system-
atic errors (after correction by the mean). We see in Figure 4b
that HSE06 is now superior to LDA in about 2/3 of the cases.

If one considers that differences smaller than 0.5 eV are not
significant, after the correction for systematic errors, only one
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system in 6 yields superior results when HSE06 is used, and
the chance that LDA is superior to HSE06 is three times
smaller; in almost 80 per cent of the cases, the difference is
considered irrelevant.

Importance of Reference Data Uncertainty

Up to now, it was assumed that the reference data have no
uncertainty. Let us now assume that they have one, identical
for all systems, characterized by a standard deviation σ.

Introducing this uncertainty, the SIP spreads out. This effect
is seen in Figure 5, where the distribution of SIP due to ran-

Figure 5. Distribution of the systematic improvement probability (SIP)
for different uncertainties of the reference data (full curve: σ = 0.1,
dashed curve: σ = 0.5, dotted curve, σ = 1.0 eV): (a) errors; (b) cen-
tered errors.
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dom reference data errors is shown. (It is estimated from gen-
erated sets of data produced by adding to the reference data
randomly generated errors coming from a normal distribution
centered around 0 with different values for standard deviation
σ.)

The reason for the displacement of the SIP distribution to
lower values after increasing σ is due to the definition of SIP:
we are looking at absolute errors. As σ in the reference data
increases, the difference between LDA and HSE06 fades off.
In fact, it can be shown that as long as σ � em,i, there is no
distinction of the methods, the error staying determined by the
uncertainty of the reference. The displacement would not have
been present if we had considered signed errors.

Conclusions

Benchmarks data for testing functionals are very useful.
However, the usual measures provided, such that mean abso-
lute errors, are not sufficient, and a more detailed study of the
data sets is needed. In particular, the user should be able to
input the expectations he has from the method, find out what
the risks are, and decide whether he is willing to take them. A
wider set of examples illustrating these points is presented in
reference[7].

But also experimental data need to be provided with more
care. In order to produce a reliable benchmark, reliable refer-
ence data are required, and for experimental data this means
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that error bars should be given, and estimates of errors from
other sources (e.g., coming from the models used in the treat-
ment of the raw data).
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