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Abstract

In this article, we explore the construction of Hamiltonians with long-range interactions

and their corrections using the short-range behavior of the wave function. A key

aspect of our investigation is the examination of the one-particle potential, kept constant

in our previous work, and the effects of its optimization on the adiabatic connection.

Our methodology involves the use of a parameter-dependent potential dependent on a

single parameter to facilitate practical computations. We analyze the energy errors and

densities in a two-electron system (harmonium) under various conditions, employing dif-

ferent confinement potentials and interaction parameters. The study reveals that while

the mean-field potential improves the expectation value of the physical Hamiltonian, it

does not necessarily improve the energy of the system within the bounds of chemical

accuracy. We also delve into the impact of density variations in adiabatic connections,

challenging the common assumption that a mean field improves results. Our findings

indicate that as long as energy errors remain within chemical accuracy, the mean field

does not significantly outperform a bare potential. This observation is attributed to the

effectiveness of corrections based on the short-range behavior of the wave function, a

universal characteristic that diminishes the distinction between using a mean field or not.
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1 | MOTIVATION

In a series of articles (the most recent being Reference 1), we utilized

the short-range behavior of the wave function along an adiabatic con-

nection to construct corrections to the energies obtained with Hamilto-

nians featuring long-range interactions. This approach is dedicated to the

application of range-separation methods where the short-range contribu-

tion of the electron-electron interaction is approximated. The method

does not involve any empirical or fitted parameters and is applicable to

both ground and excited states. However, the correction fails when the

interaction in the Hamiltonian operates only at very large distances.

Until now, the one-particle local (external) potential was kept

unchanged, diverging from the common practice of initiating corrections

from mean-field potentials. In this paper, we explore whether optimizing

the potential could be beneficial in improving our approach. A change in

the potential can introduce a new term in the adiabatic connection.

Although we have exact expressions for short-range interactions, the

need for such corrections raises the question of how to handle the new

term in the adiabatic connection.

Another motivation for this study is density functional theory

(DFT), based upon the theorem of Hohenberg and Kohn.2 While the

construction of an accurate universal density functional, applicable to

all electronic systems, is feasible (as shown, e.g., in Reference 3), its

practical realization is exceedingly challenging. The Hohenberg-Kohn

theorem, however, does not provide a methodology for developing

simple approximations. Commonly, approximations are based on some

assumptions about the density functional, which, owing to the univer-

sality of the exact functional, are then applied to various systems.
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The adiabatic connection is a critical component in the construction

of density functionals (see, e.g., References 4–6), typically involving

changes only in the two-particle density.7

Recently, it has been repeatedly highlighted that while density func-

tional approximations can yield reasonably accurate energies, they can

result in densities of poor quality. 8–11 In this paper, in contrast to density

functional theory, we are not interested in obtaining the correct density

from model calculations, but only the energy (for the ground and excited

states). The method we use can be extended to obtain expectation

values of one-particle operators,12 by using the Hellmann-Feynman the-

orem. We do not deal with this subject in the present paper. In fact, the

density of our models are far from the exact density.

It is also noteworthy that the hypothetical case of having an exact

density for the Kohn-Sham system does ensure density invariance

along the adiabatic connection.13 If the adiabatic connection includes

a new term that is density-dependent, it necessitates the develop-

ment of new approximations. The results presented in this paper were

obtained with Mathematica.14

2 | METHOD

2.1 | Schrödinger equation

In this paper, we will consider Hamiltonians characterized by the fol-

lowing form

Hðv,λ,μÞ¼ TþVðλ,μÞþWðμÞþλWðμÞ: ð1Þ

Here, T represents the kinetic energy operator. The term

Vðλ,μÞ¼PN
i¼1vðri;λ,μÞ denotes a local one-particle potential, which

notably depends on the parameters λ and μ. The symbol N refers to

the number of electrons within the system. The specific formulations

for vðr,λ,μÞ will be detailed subsequently. At this stage, it is essential

to understand that when λ¼1, vðr,λ,μÞ is the external potential of

interest (the “physical” one).
The electron-electron interaction is divided into two distinct com-

ponents:WðμÞ and WðμÞ. These are defined as follows:

WðμÞ ¼PN
i¼2

Pi�1

j¼1
wðrij,μÞ, ð2Þ

WðμÞ ¼PN
i¼2

Pi�1

j¼1
wðrij,μÞ, ð3Þ

where the individual interaction terms are given by

wðr,μÞ ¼ erfðμrÞ
r

, ð4Þ

wðr,μÞ ¼ erfcðμrÞ
r

: ð5Þ

In these equations, rij represents the distance between electrons i and

j, and μ is a parameter that characterizes the interaction.

It is important to note that for any finite value of μ, WðμÞ does

not represent the physical (Coulomb) interaction potential. Instead, it

is a model interaction, defined by the parameter μ. However, the sum

of wðr,μÞ and wðr,μÞ, which equals 1=r, corresponds to the Coulomb

interaction. Here, w represents the long-range part of the interaction,

while w accounts for the short-range component. Consequently,

when λ¼1, the potential vðr,λ,μÞ becomes v1ðrÞ, and the Hamiltonian

Hðv,λ¼1,μÞ becomes H1ðv1Þ, independent of the value of μ. The

range of the interaction is characterized by 1=μ.

The process of turning on the parameter λ from 0 to 1 serves to

transform the model into the physical system. In this context, λ func-

tions as an adiabatic connection constant.

The Schrödinger equation is

Hðv,λ,μÞΨðv,λ,μÞ¼Eðv,λ,μÞΨðv,λ,μÞ ð6Þ

When λ¼1, we have E1ðv1Þ¼ Eðv1,λ¼1,μÞ, independently of μ.

2.2 | Adiabatic connection

We do not attribute any physical significance to Eðv,λ,μÞ except when

λ¼1. However, we consider that the Schrödinger equation for λ¼0

and a chosen model (μ) is accessible. They are related through the

adiabatic connection formula,

E1ðv1Þ¼ Eðv,λ¼0,μÞþ
ð1
0
dλ ∂λEðv,λ,μÞ ð7Þ

for any μ≥0. The advantage of using the adiabatic connection appears

when applying the Hellmann-Feynman theorem. Recalling that v is a

function of λ and μ,

∂λEðv,λ,μÞ¼ hΨðv,λ,μÞj∂λVðλ,μÞjΨðv,λ,μÞiþhΨðv,λ,μÞjWðμÞjΨðv,λ,μÞi
ð8Þ

We rewrite Equation (7) using H1,

E1 ¼hΨðv,λ¼0,μÞjH1ðv1ÞjΨðv,λ¼0,μÞi

þ
ð1
0
dλ hΨðv,λ,μÞj∂λVðλ,μÞjΨðv,λ,μÞi½

�hΨðv,λ¼0,μÞj∂λVðλ,μÞjΨðv,λ¼0,μÞi�

þ
ð1
0
dλ hΨðv,λ,μÞjWðμÞjΨðv,λ,μÞi�

�hΨðv,λ¼0,μÞjWðμÞjΨðv,λ¼0,μÞi�
ð9Þ

The first term on the r.h.s is accessible through Equation (6), the sec-

ond term depends on the evolution of the local potential, and the

third term, on that of the interaction.

Apparently, Equation (8) is useless, because we do not know

Ψðv,λ,μÞ except for λ¼0. It was shown (e.g., in References 15 or 1)

that, for large μ, the last term on the r.h.s. can be easily approximated

by expressions using the behavior of the wave function for small

2 SCEMAMA AND SAVIN

 1096987x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27378 by B

ibliothèque de Sorbonne U
niversité, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



jr1� r2j and the expectation value of W with Ψðv,λ¼0,μÞ.
We still have to deal with the second term on the r.h.s. of

Equation (8).

2.3 | The evolution of the local potential in the
adiabatic connection

In our previous works, we made the choice to keep v independent of

λ and μ. Specifically, we set vðr,λ,μÞ¼ v1ðr1Þ which is the “physical” or
“bare” potential. This choice ensures that we recover the correct

result when λ¼1:

vbareðrÞ¼ v1ðrÞ: ð10Þ

The condition ∂λvðr,λ,μÞ¼0 leads to the elimination of the sec-

ond term on the right-hand side of Equation (9). Consequently, only

the electron-electron interaction term varies along the adiabatic

connection.

The choice to keep the potential constant with respect to λ and μ

may seem unorthodox at first glance, especially considering that a

system characterized by a weak interaction could significantly

diverge from the actual physical system. However, this approach is

balanced by applying a specific correction. The correction employed

for the short-range electron-electron interaction is based on the

short-range behavior of the wave function. This aspect is universal,

implying that the influence of the external potential is negligible in

this context.

Formally, there are alternative ways to eliminate the term depen-

dent on the evolution of the local potential. In DFT, the adiabatic con-

nection typically maintains a constant density ρðr,v,λ,μÞ, generated by

Ψðv,λ,μÞ, which does not vary with λ (and thus is also independent of

μ): ρðr,v,λ,μÞ¼ ρðr,v1,λ¼1,μÞ� ρ1ðr,v1Þ. This necessitates an appro-

priate choice of v,16

vDFTðλ,μÞ¼ argmax
~v

Eð~v,λ,μÞ�
ð
ℝ3
dr ρ1ðr,v1Þ~vðrÞ

� �
, ð11Þ

Such an approach was recently used for harmonium, the system

studied in this paper, in Reference 17. Although this approach is, in

principle, exact, we do not adopt this DFT-inspired approach in the

present paper for two reasons. Firstly, it demands significant compu-

tational effort. Secondly, it is not necessary as we are only interested

in obtaining the energy, not the density. Indeed, if v depends on a

parameter ω, we can limit the search to

ωoptðλ,μÞ¼ argmax
ω,

EðvðωÞ,λ,μÞ�
ð
ℝ3
dr ρ1 r,vðω1Þð Þvðr,ω,λ,μÞ

� �
: ð12Þ

Here, ω1 is the value of ω that recovers v1. The optimal potential

voptðλ,μÞ is obtained with ωopt. Applying the Hellmann-Feynman theo-

rem, we obtain

ð
ℝ3
dr ρðr,v,λ,μÞ∂ωvðω,r,λ,μÞ�

ð
ℝ3
dr ρ1ðrÞ∂ωvðω,r,λ,μÞ

� �
ω¼ωopt

¼0

ð13Þ

For the adiabatic connection, the parameter ω depends on λ. Multiply-

ing Equation (13) by the derivative of ω with respect to λ, we find that

the integrand of the second term on the right-hand side of

Equation (9) vanishes for all λ. Therefore, it is not necessary to pro-

duce ρ for 0 < λ<1. However, knowledge of ρ at λ¼1 is still required,

as it determines, through Equation (12), voptðλ¼0,μÞ, that is, the

model system. Also with this choice, only the interaction term varies

along the adiabatic connection.

In order to deal with a practically accessible potential, we con-

sider, as above, a potential that depends on a parameter, ω. However,

the determination of ω is now guided by the following criterion:

ωOEPðλ¼0,μÞ¼ argmin
ω

hΨ vðωÞ,λ¼0,μð ÞjH1jΨ vðωÞ,λ¼0,μð Þi: ð14Þ

This is analogous to the definition of the optimized effective poten-

tial.18 For values of λ greater than zero, we employ a linear interpola-

tion of the potentials: 13

vOEPðr,λ,μÞ¼ ð1�λÞvOEP r,ωOEPðλ¼0,μÞð Þþλv1ðrÞ ð15Þ

In this framework, the evolution of the potential along the adia-

batic connection contributes to the potential-dependent term in

Equation (9).

An illustrative example of this approach is provided in Appendix

A. In this example, both ωopt and ωOEP are calculated for a system of

two electrons in a harmonic confinement at λ¼ μ¼0.

2.4 | The evolution of the interaction in the
adiabatic connection

In addressing the variation of the interaction within the adiabatic con-

nection, specifically the last term on the right-hand side of

Equation (9), we adopt the procedure outlined in our previous publica-

tions. 12 This approach is based on the observation that for large

values of μ, the short-range behavior of the wave function becomes

predominantly significant. To derive corrections to the model, we

focus on the behavior of the wave function at short range (as r!0) in

the context of large μ values, as detailed in Reference 19. This consid-

eration leads us to the following expression:

ð1
0
dλ hΨðv,λ,μÞjWðμÞjΨðv,λ,μÞi�
�hΨðv,λ¼0,μÞjWðμÞjΨðv,λ¼0,μÞi�

¼ αðμÞhΨðv,λ¼0,μÞjWðμÞjΨðv,λ¼0,μÞi

ð16Þ

where α is a simple function of μ, and its specific form is provided in

Reference 1.

SCEMAMA AND SAVIN 3
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2.5 | The system studied

To illustrate our approach, we use data from a two-electron system

known as harmonium. The rationale behind choosing this system lies

in the ease of obtaining accurate data, which in turn allows for a pre-

cise evaluation of the errors introduced by various approximations. In

the case of harmonium, the external potential is defined as:

v1ðrÞ¼1
2
ω2
1r

2: ð17Þ

The corresponding electron density for this system is either analyti-

cally known (for ω1 ¼1=2) 20 or can be numerically generated. For

cases where λ≠1, we adopt the potential vðr,λ,μÞ¼ 1
2ωðλ,μÞ2r2 and

determine ω using the three variants previously discussed: ωbare, ωopt,

and ωOEP.

While this method is applicable to excited states as well

(as discussed in, e.g., Reference 12), in this paper, we focus on the

ground state of the harmonium system. We give results for an excited

state of harmonium only in Appendix B.

Harmonium has special features, that are not present in

atomic or molecular systems. Electrons cannot escape its infinite

confinement. The energy level ordering is different from that in

atoms, and their spacing is different. However, we are interested

in (a part of ) the correlation energy, and this is very close in

harmonium to that in the He series. Therefore, we do not expect

the difference in the ordering of the energy levels to have an

impact on our conclusions.

We cannot expect Equation (16) to be effective for small values

of μ because the prefactor αðμÞ is determined for μ!∞. Specifically,

when μ¼0, the energy of the model system, Eðv,λ,μÞ, deviates signifi-
cantly from the physical energy, which is defined by ω1. For instance,

with ω1 ¼1=2, the energy difference is 0.5 hartree below the exact

result of 2 hartree. It also happens to be the error of the exact Kohn-

Sham system.

As μ increases, the energy of the model system gradually

converges towards the exact energy. We know that for large μ, the

error in the energy decreases at a rate proportional to μ�4. 12

Figure 1 illustrates in the left panel that the confining parameter

ωopt, as defined in Equation (12), tends to decrease in systems with

weaker repulsion. This trend is logical, considering that the aim here is

to approximate the exact density, which becomes more dispersed due

to repulsion. The most pronounced effect is observed in the system

with no interaction (λ¼0, μ¼0).

In the right panel of Figure 1, we observe that the confining

parameter determined through the OEP scheme, as per Equations (14)

and (15), aligns closely with the parameter that cancels out the

one-body term in the adiabatic connection.

F IGURE 1 The difference between
the optimized potential parameter ωopt

and ω1 ¼0:5 (a.u., left panel) and between
ωOEP and ωopt (a.u., right panel); see
Equations (12), (14), and (15).

F IGURE 2 Densities obtained for the
non-interacting system (λ¼0,μ¼0) with
the bare potential, ωbare ¼ω1 ¼1=2,
represented by the full blue curve, and the
optimized potential, ωopt as per
Equation (12), shown with a full orange
curve. The densities obtained with these
potentials for the model systems with
μ¼1 are shown as dashed curves. These
are compared to the exact density,
depicted by the full purple curve, and the
Hartree-Fock and PBE densities, illustrated
with dot-dashed green and red curves.

4 SCEMAMA AND SAVIN
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3 | RESULTS

3.1 | Densities

We first would like to point out that the densities in our description

can experience significant changes, as illustrated in Figure 2. For com-

parison, we have juxtaposed the exact density with the density pro-

duced by the Hartree-Fock and Perdew-Burke-Ernzerhof (PBE)21

approximations. Notably, these two densities exhibit a close resem-

blance. Thus, the density effect we are observing here is stronger than

that used in density-corrected DFT.9–11

However, completely neglecting the electron-electron interac-

tion (by using ωbare at λ¼0,μ¼0) leads to a substantial deviation.

The optimization of ω partially rectifies this discrepancy, but

since the potential has not been fully optimized, as indicated by

the comparison between Equations (11) and (12), the exact

density is not recovered. Despite these significant effects on

the density, it is interesting to note that the second term on the

right-hand side of Equation (9) still vanishes. The density obtained

using ωOEP is not depicted in the figure, as it is nearly indistinguish-

able from that obtained with ωopt on the scale of the plot. We

also see in Figure 2 that while approaching the exact system, for

example, at μ¼1 the densities can still show a noticeable difference

from the true one.

3.2 | Energy errors

In this section, we examine the impact of employing a “mean-field”
potential. We consider three different settings for v1 in Equation (17),

choosing ω1 ¼ 1/4, 1/2, and 1. For the one-particle potential

vðr,ω,λ,μÞ, Figure 3 presents results obtained using the bare potential (full

curves) and those obtained with vOEP. Those obtained with vopt are not

shown in this figure, as they are very close to those obtained with

vOEP. The largest difference observed was for ω1 ¼1 and μ≈0:5 and

is ≈0:2 mhartree.

Three approximations are employed to calculate the energy.

Firstly, we simply use Hðv,λ¼0,μÞ as defined in Equation (1). Sec-

ondly, we compute the expectation value of the physical Hamiltonian,

Hðv1Þ, using Ψðv,λ¼0,μÞ (see Equation 6). Thirdly, we apply the adia-

batic correction that becomes exact for large μ, as per Equation (16).

The corresponding energy errors are depicted in Figure 3 as gray,

black, and blue curves, respectively.

Figure 3 illustrates how the energy errors evolve as the interac-

tion in the model is progressively increased (i.e., as μ increases). Gen-

erally, we anticipate that approximations will be more cost-effective

for smaller values of μ. Therefore, our focus is on achieving accurate

results at lower μ values, balancing computational efficiency with the

precision of the model.

The first observation from our analysis is that the model ener-

gies exhibit substantial errors. Replacing v1 with a mean field poten-

tial (vOEP) does not lead to an improvement in these energies. It's

important to note that the purpose of the mean field is to improve the

expectation value of the physical Hamiltonian, rather than directly

improving the energy of the model.

Indeed, the expectation value of the physical Hamiltonian is con-

sistently improved by the mean field across all cases. This results are

in error of about 0.04 hartree. For a two-electron system, this is

approximately the magnitude of the correlation energy.

F IGURE 3 Energy errors for a quadratic confinement potential, as
defined in Equation (17), with ω1 ¼ 1/4 (top panel), 1/2 (middle panel),
and 1 (bottom panel), plotted as functions of the parameter defining
the interaction in the model, μ, as per Equation (2). Full curves
represent results obtained with the bare potential, ωbare, and dashed
curves for those obtained with ωOEP. The model energies are shown
in gray, the expectation values of the Hamiltonian with the physical
potential (v1,1=r) in black, and those after correction using the
adiabatic connection and the asymptotic behavior of the wave
function, as per Equation (16), in blue. The inset displays the same
curves over a narrower energy range. Horizontal dashed lines indicate
the range of chemical accuracy (errors within 1 kcal/mol).

SCEMAMA AND SAVIN 5
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As expected, introducing some interaction into the model reduces

this error. Furthermore, applying the adiabatic correction, which is

valid for large values of μ, naturally improves the results for these

larger values. In our examples, μ can be considered “large enough”
already if greater than 1 bohr�1. As μ is an inverse distance, the sepa-

ration between short and long range occurs at an inter-electronic dis-

tance of 1=μ. Focusing on the region of chemical accuracy (errors

within �1 kcal/mol) as defined in Reference 22, we observe that the

adiabatic connection performs exceptionally well for large μ, yielding

relatively flat curves. However, as μ decreases, there is a noticeable

decline in accuracy. In every case we examined, applying the adiabatic

connection reduces the value of μ for which the absolute error

exceeds 1 kcal/mol. Yet, within the bounds of chemical accuracy, the

mean field does not demonstrate any significant beneficial effect.

One can notice a small peak in the error of our approximation

around μ≈0:4 bohr�1 for ω¼1=4 a.u. Such a bump occurs also for

the first excited state at ω¼0:5 a.u. We do not know how to predict

when such a bump occurs (see Appendix B). We believe it is related to

our asymptotic treatment of the wave function. It is related to an

expansion in powers of the inter-electronic distance that are not trea-

ted correctly in the approximation presented in this paper. When

higher powers of the inter-electronic distance, r, are taken into

account, the sign of the error changes when μ (as a measure of 1=rÞ
becomes small (see fig. 3 in Reference 23).*

4 | CONCLUSION

Intuitively, one might anticipate that changes in density would play a cru-

cial role in the adiabatic connection process. This expectation aligns with

the prevalent understanding that employing a mean field for the zeroth-

order Hamiltonian enhances the quality of the results. We found that as

long as the energy errors remained within the bounds of chemical accu-

racy, the use of a mean field did not demonstrate any advantage over a

bare field. A plausible explanation for this observation is that the most

accurate results in this region were achieved using a correction that

accounts for the short-range behavior of the wave function. Since this

behavior is universal, the choice between using a mean field or not does

not significantly alter the results. These results do not support the neces-

sity of applying a one-body correction to the adiabatic connection for

obtaining the energy, even when the density significantly deviates from

the exact one. This finding is somewhat disappointing, as it does not sug-

gest any improvement by employing a mean-field potential. However,

the study is numerical and focuses on a simple system, necessitating cau-

tion in generalizing these results.

Our methodology differs from density functional approximations

by the use of only exact, universal properties of the wave function.

The price to pay is that we have to keep a non-negligible interaction

between electrons. Of course, one can try to use our findings in con-

structing density functional approximations, or other approximations

that take into account the behavior for weak interactions, such

as what we have termed the second-order adiabatic correction.1

These might demonstrate a more important impact of the mean field.

The exploration of these potential effects and their implications

remains an open area for future research.

Another difference to density functional approximations is that

we do not aim to obtain accurate densities. Our densities are far from

the correct ones. We claim not having observed an effect of the mean

field on the energy approximations, as long as they are accurate, but

this does not preclude the utilization of mean fields. Furthermore,

properties can be obtained not through expectation values, but as

perturbations, and thus from energy expressions.

A problem known already with the introduction of range-

separation (see Ewald's paper 24), is also present in density functional

approximations,25 and in our paper. We did not treat it in this paper,

but it deserves to be mentioned. It is the question of choosing the cor-

rect range-separation parameter, μ, to find the balance the computa-

tional effort and the accuracy. Like with basis sets, experience can

decide about such a value. Typically, it seems that our μ should lie

between 0.5 and 1 bohr�1. However, the optimal value is system- and

state-dependent.26 We see this also in Figure 3 that our approxima-

tion starts to work well (the electrons are close) at different critical

values of μ≈0:3, 0.6 and 1.1 bohr�1, for increasing confinement

(ω¼0:25, 0.5 and 1 a.u., respectively). This parallels the expectation

values of 1=r12 that is, for the physical system, of ≈0:29, 0.45 and

0.67 hartree. However, choosing different values for different sys-

tems or states can produce problems with size-consistency. A pro-

posed solution was to define μ locally. Efficient algorithms are already

known 27 and being applied (see, e.g., Reference 28). It has been also

noticed that basis sets provide, in fact, a local μ. 29–32
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ENDNOTE

* As an analogy, consider cutting off the Taylor expansion of expð�xÞ at
small powers of x.
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APPENDIX A: ωopt AND ωOEP IN THE NON-INTERACTING

(λ¼0,μ¼0) LIMIT OF HARMONIUM

In the non-interacting limit, λ¼0, μ¼0, for a harmonic confinement

potential specified by ω, we have

Φðω,R,rÞ¼ΨðvðωÞ,0,0Þ¼ ðω=πÞ3=2e�ωðR2þr2=4Þ: ðA1Þ
where R¼ðr1þ r2Þ=2 is the center-of-mass coordinate, and r¼ r1� r2

is the relative coordinate; R¼ jRj, r¼ jrj. The Hamiltonian of the non-

interacting problem is:

H0 vðωÞð Þ¼�1
4

∂2Rþ
2
R
∂R

� �
þω2R2� ∂2r þ

2
r
∂r

� �
þ1
4
ω2r2: ðA2Þ

E vðωÞ,0,0ð Þ, showing up in Equation (12) is 3ω. The physical density

for ω1 ¼1=2 is analytically known,20

ρ1ðrÞ¼
2

πð5πþ8
ffiffiffi
π

p Þ e�r2 þ
ffiffiffiffiffiffi
2π

p

8
e�r2=2 7þ r2þ4ð1=rþ rÞerfðr=

ffiffiffi
2

p
Þ

	 
 !
:

ðA3Þ

The function to be maximized over ω in Equation (12) is

3ω�1
2
ω2
ð
ℝ3
dr ρ1ðrÞr2 ¼3ωþ 56þ36

ffiffiffi
π

p

2ð8þ5
ffiffiffiffiffi
πÞp ω2: ðA4Þ

It yields ωopt ≈0:4222.

In order to obtain ωOEP, Equation (14), we minimize over ω

hΦðωÞjH0 vðω1Þð Þþ1=rjΦðωÞi¼3
2
ωþ3

2
ω2
1

ω
þ

ffiffiffi
2
π

r ffiffiffiffi
ω

p ðA5Þ

It yields ωOEP ≈0:4211, very close to ωopt.

APPENDIX B: AN OPEN SHELL EXAMPLE

We consider the first excited state of harmonium. It is a triplet state,

dominated by an sp configuration. For triplet pairs, αðμÞ differs from

that used for the singlet pair in the main body of the paper. Electrons

are better kept apart in the triplet state, and the corrections to the

single Slater determinant are less important. Although we see in

Figure B1 at μ¼0 an improvement through the use of the OEP, its

advantage becomes minimal when the error reaches chemical accuracy.

This open-shell case is different from that appearing in the case

of near-degeneracy. In this situation, the interaction WðμÞ present in
the Hamiltonian is supposed to take care of the coupling between the

near-degenerate states.

F IGURE B1 Total energy errors for the first excited state of
harmonium, 3P, for ω¼0:5 a.u.; the description of the curves
corresponds to that in Figure 3.
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