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Short-time fared-node pure diffusion quantum Monte Carlo (PDMC) calculations with pseudopotentials for the group III 
elements B, Al, Ga and In have been carried out in order to study the capability of multireference trial wavefunctions to reduce 
the fured-node and localization error. For this purpose PDMC energies for the ‘P and 4P states of the neutral atoms and for the 
‘S state of the positive ions have been compared with the results of MRCI calculations. For these simple systems, we demonstrate 
the possibility of a systematic reduction of these errors by adding supplementary configurations to the trial wavefunction. 

1. Intruduction 

Pseudopotentials represent an efficent way to 
overcome the limitations concerning the number of 
particles in quantum Monte Carlo methods. Unfor- 
tunately, the semi-local Ansatz to pseudopotentials 
introduces an additional approximation in quantum 
Monte Carlo calculations which originates from the 
necessary localization of the non-local part [ 11. The 
localization can be achieved through an auxiliary 
wavefunction, so that the localized and non-local 
pseudopotentials are equivalent with respect to the 
energy expectation value of the auxiliary wavefunc- 
tion. With regard to the fured-node approximation it 
is necessary that the nodal surfaces of the auxiliary 
and trial wavefunction agree [ 2 1. Therefore, the trial 
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wavefunction [ 2,3] or its antisymmetric part [ 1,4] 
are common choices for the auxiliary wavefunction. 
We have chosen as in a previous paper [ 41 the anti- 
symmetric part, not only for technical reasons, but 
also with respect to the fact that pseudopotentials are 
adjusted on the basis of independent particle models, 
such as Hartree-Fock (HF) and Dirac-Fock, or on 
experimental results for one-particle valence states 
[ 5 1. The inclusion of a correlation factor in the aux- 
iliary wavefunction does not necessarily result in an 
improvement of the localized pseudopotential. In 
some cases it is essential to go beyond HF because 
otherwise one would lose important parts of the 
pseudopotential [ 6 1. We will discuss this point in de- 
tail in the following sections. 

The fmed-node approximation is, as already men- 
tioned, closely related to the localization problem. 
Multiconfiguration self-consistent field (MCSCF) 
wavefunctions offer a way for a controllable and sys- 
tematic improvement of both approximations. To 
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study this possibility we have chosen the group III 
elements for which we expect sensitive reactions with 
regard to improvements of the auxiliary and trial 
wavefunctions. Schmidt and Moskowitz [ 71 found 
in the case of the B atom (‘P) a large discrepancy 
between the correlation energy obtained with a HF 
wavefunction multiplied by an optimized symmetric 
correlation function and the exact correlation energy. 
This error is comparable to that observed for the Be 
atom (‘S) where it is well known [ 81 that the nodes 
of the HF wavefunction are rather poor approxima- 
tions due to near-degeneracy effects. There is no frxed- 
node approximation for the Be atom in Monte Carlo 
calculations with pseudopotentials but these effects 
also strongly influence the localization of the pseu- 
dopotential [ 61. Therefore, we expected a rather 
similar behaviour of the group III elements with re- 
spect to both approximations in Monte Carlo calcu- 
lations with pseudopotentials. 

Another important reason for considering three 
electron systems is the possibility of carrying out 
multireference configuration interaction (MRCI) 
calculations with higher accuracy than the expected 
statistical error in the Monte Carlo calculations. 

This enables a quantitative estimate for the sum of 
the fixed-node and localization error for each partic- 
ular Monte Carlo calculation. Without these refer- 
ence energies it would be necessary to consider en- 
ergy differences between various states and compare 
these differences with experimental results. Such 
comparisons would imply an additional source of er- 
ror as the pseudopotential approach itself is naturally 
just an approximation. We will discuss this point in 
detail in section 4. 

2. Methods of calculation 

For our quantum Monte Carlo calculations we used 
the PDMC method developed by Caffarel and 
Claverie [9] in the way described in ref. [4]. The 
semi-local pseudopotentials from Igel-Mann et al. [ 5 ] 
were first brought into a form where the projection 
occurs on Cartesian Gaussian-type functions (GTFs) 
[ 4 1. To take care of core polarization effects which 
are of increasing importance in the row B, Al, Ga and 
In, the pseudopotentials were supplemented by an ef- 
fective polarization potential, 

Vpo,=-faDE2, E= T 5 C(ri, 6) 3 
I 

C(r,p)=l-exp(-6r2). (1) 

The analytic form is due to Milller et al. [ lo] and 
was first applied in connection with pseudopoten- 
tials by Fuentealba et al. [ 111. In Eq. ( 1) the param- 
eter (Y,, represents the static dipole polarizability of 
the atomic core. V,, contains a cut-off function C( r, 
6) with parameter 6 in order to restrict the sphere of 
action to the valence region. 

Both parameters o!D and 6 were taken from Igel- 
Mann et al. [ 5 1. Because of its local form there is no 
difficulty in incorporating the core polarization po- 
tential in Monte Carlo calculations. 

The determination of the HF and MCSCF wave- 
functions used within the PDMC calculations, as well 
as the calculations of MRCI reference energies, were 
carried out with the program MOLPRO [ 12 ] which 
was extended to allow for a self-consistent treatment 
of polarization potentials by one of us (AN). In our 
Monte Carlo calculations we used 4s4p GTF basis sets 
[ 13 ] supplemented, when necessary, by d-type GTFs. 
To take care of the electron-electron cusp, the trial 
wavefunctions &, 

f(i,i)=exp[ari/l(l+rii)l, (2) 

were composed of a HF or MCSCF wavefunction Y 
and a Jastrow factorfwith (Y = 0.5 for antiparallel and 
(Y = 0.25 for parallel spins [ 14 1. 

The MRCI calculations were carried out with 
12s12p6d4t2g even tempered GTF basis sets where 
the underlying parameters originate from Chakra- 
vorty et al. [ 151. In the case of neutral atoms the 
MRCI calculations were based on CASSCF (com- 
plete active space SCF) calculations, where the va- 
lence shell together with the next higher s, p and d 
shells formed the active space. It is a matter of course 
that for the positive ions a single-double CI based on 
the HF configuration was sufficient. 

PDMC calculations were carried with time steps 
ranging from 0.005 h-’ for B up to 0.02 h-’ for In. 
Taking into account detailed balance [ 16 ] for each 
step of the simulation, we observed no time-step de- 
pendence within the statistical error bars. 
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3. Selection of the trial wavefunctions 

Our intention was to study the ‘P ground and 4P 
excited states of the atoms and the ‘S ground state of 
the positive ions for the elements B, Al, Ga and In. 
For the ‘P ground state it is reasonable to expect that 
the nodes of the HF wavefunctions are not sufficient 
to reproduce the MRCI energies. Therefore, it seems 
natural in analogy to the Be atom to extend the trial 
wavefunction by s+p double excitations. As will be 
shown in section 4 this results indeed in a considera- 
ble improvement but there still remains a significant 
discrepancy. CASSCF calculations for the B atom 
show that a large improvement with respect to the 
correlation energy is feasible through the inclusion of 
the 3d shell in the active space. To allow for excita- 
tions into d orbitals within the MCSCF wavefunc- 
tions used in the Monte Carlo calculations seems 
promising for two reasons. First it enters a qualita- 
tive new feature into the trial wavefunctions with 
possibly significant influence on the nodal structure. 
In the second place it is important with respect to the 
auxiliary wavefunctions used for the localization of 
the pseudopotential because the d orbitals are needed 
for the localization of the d projectors which become 
of increasing importance with ascending atomic 
number. The most important configurations are rep- 
resented by single and double excitations from the 
doubly occupied s orbital and the singly occupied pZ 
orbital into the d shell and the pX or py orbitals. Since 
the configurations are eigenfunctions to the angular 
momentum operator, they are easily generated by an- 
gular momentum coupling of the p and d orbitals to 
an eigenfunction with l= 1 and m = 0 [ 17 1. In view 
of their application in quantum Monte Carlo calcu- 
lations it is necessary to have the correct permutation 
symmetry for the particles. This can be achieved by 
applying the appropriate Young diagram, 

in two different ways to the angular momentum ei- 
genfunctions [ 17 1. Each way represents a specific 
spin-coupling as can be seen by combining the spatial 
parts of the wavefunction with appropriate spinfunc- 

tions [ 18 1. Summing up we have used three different 
types of trial respectively auxiliary wavefunctions for 
the ‘P state in the course of our Monte Carlo 
calculations, 

~~,(1,213)=1~(1)~,(2)1~(3), 

IY2CSF(1,213)=C,y~F(lr213)+C2(Y-p(1,213), 

%CSF(l, 2i3)=cl %F(l, 2i3)+c2%,(1, 213) 

+ c3 ~~pp,* (1,213)+~4ylffp-p,d(1,213) 

~u,,,(1,2~3)=~~,(l)~,(2)~~,(3) 

+IP,~~~P~~~~IP,~~~~ 

YA s.p+p,d(l~ w=fi 

x(Is(1)Px(2)ld,(3)+ls(l)d,,(2)IPx(3) 

+ls(l)~,(2)ld,,(3)+ls(l)d,,(2)lp,(3)) 

+& Is(l b,(2) lb-x+d3) 

+Is(l)d~=~-Xz-y2(2)l~=(3)) > 

YB s,p-p,d(iv 2i3)=fi 

x(I~,(l)d,,(2)ls(3)+ls(l)d,(2)l~,(3) 

+I~,(l)d,,(2)ls(3)+ls(l)d,,(2)Ip,(3)) 

+~(ls(l)d~=~-X2-y2(2)1~=(3) 

+Ip=(l)d~=z-X2-y2(2)I~(3)). (4) 

In the case of the Al atom d excitations were already 
considered by Christiansen [ 191 without specifying 
the utilized configurations. 

As an example for a high-spin system we consid- 
ered the 4P state. The electron correlation in these 
states is dominated by the Pauli repulsion which is 
already present in the HF wavefunction. Therefore, 
it was no surprise that we got reasonable results for 
HF nodal surfaces within our Monte Carlo 
calculations. 

In the case of the positive ions we expected a situ- 
ation similar to that found for the alkaline earth at- 
oms. Therefore, we used as trial respectively auxil- 
iary wavefunctions, beside HF, MCSCF wavefunc- 
tions which take care of the s, p near-degeneracy [ 41. 



H.-J. Flad et al. /Chemical Physics Letters 222 (1994) 274-280 271 

4. Results and discussion 

The results of the PDMC calculations can be dis- 
cussed in various ways. As the first step it is impor- 
tant to get an idea of the absolute error of the total 
energy due to the fixed-node approximation and the 
localization of the pseudopotential. Unfortunately, it 
is impossible to separate these errors in a strict sense. 
Therefore, we will confine ourselves to a quantitative 
discussion of the net effect and to some qualitative 
arguments concerning the partition with respect to the 
different errors. To be more precise we are interested 
in the discrepancy between the eigenvalues of the 
model Hamilton operator including the semi-local 
pseudopotential and the PDMC energies obtained 
within the discussed approximations. The eigenval- 
ues can be approximated with sufficient accuracy by 
the energies obtained from MRCI calculations. Table 
1 shows the obtained energy differences for the var- 
ious elements and states. The localization procedure, 
as already mentioned, leads to the elimination of the 
non-local d potential from the pseudopotential for all 
auxiliary wavefunctions without d orbitals. There- 
fore, it is useful to compare not only with MRCI cal- 
culations obtained with the complete semi-local 
pseudopotential, but also with MRCI energies ob- 
tained for the semi-local pseudopotential without the 
d potential. In order to estimate the significance of 

the d potential it is necessary to consider two differ- 
ent factors. The first factor applies to the absolute 
values of the pseudopotential parameters, keeping in 
mind that they are determined from a one-particle 
model where electron correlation is absent. Another 
important factor descends from the relative weights 
of the CSFs including d excitations in the auxiliary 
wavefunction. Both factors are not necessarily re- 
lated, e.g. in the case of the B atom there exists a sig- 
nificant contribution of d excitations to the correla- 
tion energy; on the other hand, the coefficient of the 
d potential is too small [ 5 ] for a perceptible effect on 
the energy. 

For the ‘P ground state we observe a general trend 
for all types of wavefunctions that is a decrease of the 
energy differences (PDMC versus MRCI) in the se- 
quence B, Al, Ga and In. All wavefunctions exhibit a 
sign inversion in the energy differences within the 
above sequence. This behaviour results in part from 
a change of sign of the d potential which is attractive 
for Al but ascendingly repulsive for Ga and In. The 
HF wavefunctions yield rather large errors for B and 
In whereby in the first case the error is due to the 
fixed-node approximation and in the second case it 
is mainly due to the neglect of the d potential. In going 
from HF to 2CSF wavefunctions we find as expected 
a significant improvement for the B atom but for Al, 
Ga and In an increase in the energy of approximately 

Table 1 
Energy differences (&) between PDMC energies obtained with various trial respectively auxiliary wavefunctions and the MRCI refer- 
ence energies for the ‘P and ‘P states of the neutral atoms as well as the ‘S state of the positive ions. The values in parentheses refer to 
MRCI calculations without the non-local d potential in the pseudopotential. Statistical errors are given in parentheses behind the energy 
differences 

Y B Al Ga In 

2P 
HF 
2CSF 

4CSF 

4P 
HF 

0.017 (2) 0.0023 (12) 
0.0059 ( 11) 0.0044 (10) 

(0.0059) (0.0039) 
0.0033 (14) 0.0024 (9) 

0.0012 (IO) 
(0.0012) 

0.0015 (10) 
(0.0011) 

-0.0022 (12) -0.0059 (9) 
0.0002 (9) -0.0032 (9) 

(0.0021) (0.0002) 
-0.0002 (9) -0.0019 (8) 

-0.0005 (5) -0.0008 (7) 
(0.0005) (0.0006) 

‘S 
HF 
2CSF 

0.0243 (11) 0.0008 (10) -0.0017 (11) -0.0045 (5) 
0.0004 (9) 0.0005 ( 5 ) -0.0002 (6) -0.0011 (6) 

(0.0004) (0.0005 ) (0.0003) (0.0000) 
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2 ml?,, is observed. Presuming an improvement in the 
nodal surfaces in going from HF to 2CSF wavefunc- 
tions this result originates probably from changes in 
the localized p potential. It should be noticed that in 
contrast to the fixed-node error it is not possible to 
apply the variational principle to the localization er- 
ror; therefore, an improvement of the localized pseu- 
dopotential need not result in a decreasing energy. 

this reason the neglect of the d potential has no seri- 
ous consequences with respect to the energy. There- 
fore, we found for our PDMC calculations with HF 
wavefunctions only minor variations from the MRCI 
energies. 

It is justifiable to assume that a comparison with 
MRCI calculations without the d potential yields the 
remaining error caused by the fixed-node approxi- 
mation which decreases as expected in the sequence 
B, Al, Ga and In. We will consider our results ob- 
tained with the 4CSF wavefunctions where a slight 
improvement can be observed for B, Al and In. While 
for the first two elements the remaining error is prob- 
ably due to the fxed-node approximation, it seems 
to originate in the case of In from a still insufficient 
localization of the d potential. For the Ga atom the 
2CSF wavefunction already yields the desired result 
but it must be due to a compensation of errors be- 
cause the neglect of the repulsive d potential must re- 
sult in a lower energy which is compensated by the 
fixed-node error. The 4CSF wavefunction represents 
an improvement with respect to both errors which is 
why the energy undergoes no change. It should be no- 
ticed with respect to the discussion above that we are 
dealing with rather small effects whereby statistical 
errors are attached to the energy differences. Never- 
theless, we expect that the observed trends were not 
affected by statistical fluctuations. 

In addition to the neutral atoms, PDMC calcula- 
tions were carried out for the ‘S state of the positive 
ions which resemble strongly the alkaline earth at- 
oms. The HF wavefunction for B exhibits a signifi- 
cant error due to the neglect of the p potential. For 
the other ions the use of HF wavefunctions results in 
much smaller errors which are mainly due to the 
change of sign for the p potential which is attractive 
in the case of B but repulsive in the other cases with 
p shells in the core. PDMC calculations with the 2CSF 
wavefunctions yield good agreement with CI results 
whereby in all cases the neglect of the d potential had 
nearly no consequences. 

5. Comparison with experiment 

The use of various trial respectively auxiliary 
wavefunctions within the PDMC calculations results 
in a noticeable spread of errors. To get an idea up to 
which magnitude an error can be tolerated, it is im- 
portant to determine the error inherent in the pseu- 
dopotential approach. Therefore, we have calculated 
ionization and excitation energies and compared 
them with experimental results. 

For the 4P states electron correlation is much less 
important because of the Pauli repulsion between all 
electrons which is already present at the HF level. For 

The ionization energies of the atoms with respect 
to the ground states are listed in Table 2. There is a 
satisfactory agreement between experimental and 
calculated results. Looking a little bit closer it turns 

Table 2 
Comparison of ionization energies (eV) obtained from PDMC and MRCI calculations with experimental values. MRCI results are listed 
with (pol.) and without (no pol.) polarization potential. The PDMC ionization energies with polarization potential refer to different 
combinations of trial respectively auxiliary wavefunctions. Statistical errors are given in parentheses 

PDMC (2P-‘S) MRCI 

HF ‘-HF 2CSF ‘-2CSF 4CSF .-2CSF no pol. pol. exp. b 

B 8.52 (8) 8.18 (5) 8.25 (6) 8.30 8.33 8.30 
Al 5.99 (6) 5.92 (4) 5.98 (4) 6.04 6.03 5.99 
Ga 5.88 (6) 5.85 (4) 5.86 (4) 5.88 5.86 6.00 
In 5.54 (4) 5.56 (4) 5.52 (4) 5.53 5.50 5.79 

’ Abbreviations refer to the wavefunctions Yin (4). b Ref. [ 201. 
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Table 3 
Comparison of *P+‘P excitation energies (eV) obtained from PDMC and MRCI calculations with experimental values. MRCI results 
are listed with (pol.) and without (no pol.) polarization potential. The PDMC excitation energies with polarization potential refer to 
different combinations of trial respectively auxiliary wavefunctions. Statistical errors are given in parentheses 

B 
Al 
Ga 
In 

PDMC (2P+4P) MRCI 

HF ‘+HF 2CSF ‘+HF 4CSF “+HF no pol. pol. exp. b 

3.17 (8) 3.48 (6) 3.55 (6) 3.61 3.60 3.58 
3.55 (6) 3.49 (5) 3.54 (5) 3.47 3.57 3.61 
4.72 (5) 4.65 (4) 4.66 (4) 4.3 1 4.67 4.78 
4.42 (4) 4.35 (4) 4.31 (4) 3.78 4.28 4.53 

’ Abbreviations refer to the wavefimctions Yin (4). b Ref. [ 2 11. 

out that the influence of the polarization potential on 
this property is nearly negligible. 

In nearly all cases we got energy differences be- 
tween the PDMC and MRCI results which are of the 
same order of magnitude or considerably smaller than 
the error inherent in the pseudopotential approach, 
represented by the differences between MRCI and 
experimental ionization energies. Only in the case of 
the B atom we observe for the PDMC calculations 
with HF wavefunctions a significant deviation. For 
Al we find a close agreement between our results and 
those obtained by Christiansen [ 19 1. 

Other interesting experimental properties which are 
within the reach of Monte Carlo methods are excita- 
tion energies into states with symmetries different 
from the ground state for which the ‘P into 4P exci- 
tation is a typical example (Table 3). In contrast to 
the ionization energies there is a strong influence of 
the core polarization on the excitation energies. As 
before, the localization and fixed-node error is of the 
same order of magnitude or considerable smaller than 
the error of the underlying semi-local pseudopoten- 
tial and polarization potential. 

6. Conclusions 

We have investigated in a systematic manner the 
interactions between the localization and fixed-node 
error both inherent in Monte Carlo calculations with 
pseudopotentials. Both errors are due to an inappro- 
priate choice of the trial respectively auxiliary 
wavefunction. 

Therefore, we tried to reduce these errors by utiliz- 

ing the MCSCF method which allowed for system- 
atic improvements by adding additional configura- 
tions. Our results show that at least for these simple 
systems a controllable improvement is possible. We 
could also demonstrate for the calculated properties 
that Monte Carlo specific errors are just of the same 
order of magnitude or considerable smaller than the 
error due to the semi-local pseudopotential 
approximation. 
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