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To get an idea of the qualitative behavior of an optimal Jastrow factor we have considered a
Hylleraas-type wave function of very high accuracy for the helium atom. Owing to the lack of nodes
this wave function can be easily interpreted as a general type of Jastrow factor. As a result we
obtained a simple parameter dependent ansatz for a Jastrow factor, which incorporates the essential
features of the observed behavior. We have optimized the parameters with respect to the variance of
the local energy, using variational Monte Carlo techniques, for the atoms He through Ne and for the
simple molecules H2, LiH, and Li2. Finally, we compare our approach with other types of Jastrow
factors discussed in the literature. ©1995 American Institute of Physics.
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I. INTRODUCTION

It is long known in many body theory,1–3 that exponen-
tial correlation factors, so-called Jastrow factors, which
pend explicitly on interparticle distances, provide a power
tool to handle particle correlations. For atomic and molecu
systems this approach was put forward by Boys and Han4

In recent years there has been increasing interest in fin
new forms for Jastrow factors,5–11 because they show som
nice features which distinguish them from other approac
to the electron correlation problem. Through their expli
dependence on electron–electron distances it is easily
sible to take care of the electron–electron cusp,12 which is
not feasible for wave functions based on simple linear co
binations of Slater determinants like configuration inter
tion methods. Another, also very appealing advantage is
very compact form of Jastrow factors in contrast to config
ration interaction wave functions.8,10 The main disadvantag
which inhibited their broader application to atomic and m
lecular many body problems for a long time lies in the hi
dimensionality of the occurring integrals. This can be ov
come by application of Monte Carlo methods which are p
fectly suited for this kind of wave functions and allow
strictly variational treatment. Furthermore, Monte Ca
techniques offer an efficient way to optimize parameters
Jastrow factors, as could be demonstrated by Umrigar
co-workers.7,8 The commonly employed ansatz for Jastro
factors based on rational polynomials of the electron–nuc
and electron–electron distances7,8,10,11 is flexible enough to
yield very good results when all coefficients are optimize
Moreover, this ansatz enables the inclusion of electro
electron–nuclear correlation, the significance of which w
shown by Schmidt and Moskowitz,10,11at least for atoms. We
have followed a different course starting with a simple mo
for which a nearly exact Jastrow factor is known. Such
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model is given by the He atom where almost exact solution
of the nonrelativistic Schro¨dinger equation can be
obtained.13–16We took the Hylleraas-type wave function of
Freund and co-workers16 which at present is the most accu-
rate solution available. Due to the absence of nodes in th
spatial part of the ground state wave function of helium
~which can be expressed in terms of the electron–nuclearr 1 ,
r 2 and electron–electronr 12 distances!, we can define a gen-
eral Jastrow factor by equating the spatial parts of a Jastro
type,

CJ5eUG~r1 ,r2 ,r12!CHF~r 1 ,r 2! ^CJuCJ&51, ~1!

and a very accurate Hylleraas-type wave functionCHyl ,

UG5 lnuCHylu2 lnuCHFu ^CHyluCHyl&51. ~2!

The Hartree–Fock partCHF has been taken from Clementi
and Roetti.17

II. NEARLY EXACT JASTROW FACTOR FOR HELIUM

From Eq.~2! it is easy to calculateUG at every point in
space. On the other hand we can expect to be faced with
rather complex behavior ofUG in three dimensions. It would
then be a cumbersome task to extract qualitative principle
which can be generalized to more complicated system
Therefore we have inserted an intermediate step in order
reduce the complexity of the problem. We have based ou
approach on the assumption that Jastrow factors are esp
cially suited for the description of short range correlations
To be more precise, we have tried to describe the short ran
behavior, which characterizes Jastrow factors in the case
small interparticle distances, as accurate as possible. In ord
to treat this problem, let us consider the conventional ansa
for the Jastrow factor18 in the case of the He atom,

eU2~r12! U25
1

2

r 12
11br12

2
1

2b
, ~3!

where we have subtracted the asymptotic value forr 12→`
in order to get

ires
e
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692 H.-J. Flad and A. Savin: Jastrow factor for atoms and molecules
lim
r12→`

U2~r 12!50. ~4!

This makes it meaningful to compare the absolute value
different Jastrow factors at the electron–electron cusp.
b5const. the action of the Jastrow factor on the electron
not changed. If we generalize ansatz~3! to allow for a posi-
tion dependent behavior at the electron–electron cusp
have to introduce the functionU20(r 1 ,r 2), which determines
the value ofU2 at r 1250, by substituting

2
1

2b
→U20~r 1 ,r 2!, ~5!

which applied to Eq.~3! yields

U2~r 12,r 1 ,r 2!5
U20~r 1 ,r 2!

12r 12/@2U20~r 1 ,r 2!#
. ~6!

It is interesting to note, that we have obtained in a natu
way a coupling between the electrons and the nucl
through the denominator in Eq.~6!, which resembles the
averaged backflow correlation of Schmidt and Moskowitz10

Turning back to Eq.~2!, we are now able to refine ou
ansatz for the Jastrow factor so that the short range beha
can be separated. This can be achieved by the general a

exp$UG@UG0~r 1 ,r 2 ,r 12!,r 12#%

UG5
UG01c1r 12

11@~c12
1
2!/UG0#r 121c2r 12

2
1NG ,

~7!

which is a modified version of Eq.~6!. In Eq. ~7! we have
assumed thatUG0 depends additionally onr 12, which is nec-
essary forUG to satisfy Eq.~2!. We will analyze in the fol-
lowing the effect of eliminating this dependence. We thus
to have a situation analogous to Eq.~6!. However, we now
refine the dependence ofUG on r 12 by introducing two
supplementary terms depending onr 12 @with arbitrary coef-
ficientsc1 andc2 ; for c15c250 we have Eq.~6!#. For rea-
sons discussed below, it is also appropriate to introduce
normalization constantNG . Next we have to solve Eq.~2!
with respect toUG0,

UG0~UG ,r 12!5 1
2P2@ 1

4P
21~c12

1
2!ŪGr 12#

1/2,

P5ŪG~11c2r 12
2 !2c1r 12,

~8!
ŪG5UG~r 1 ,r 2 ,r 12!2NG ,

c1<
1
2, 0<c2 , 0<NG .

The Jastrow factor lowers the probability for electrons
occupy the same part of space, which means thatUG must be
negative for small interparticle distances@UG is uniquely de-
termined through Eq.~2! and the normalization conditions i
Eqs.~1! and~2!#. This circumstance enables us to fix the si
in Eq. ~8!, which is the solution of a quadratic polynomial
UG0. The value ofNG is, of course, immaterial for the ca
culation of the energy. In order to evaluate the effect of
proximations onUG , we will make comparisons with the
exactUG . Thus, the specific value ofNG is needed.
J. Chem. Phys., Vol. 10Downloaded¬04¬Dec¬2001¬to¬134.157.90.89.¬Redistribution¬subject¬to¬
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The short range behavior ofUG0 is strongly influenced
by the electron–electron cusp condition for electrons w
antiparallel spin,12,18

]UG

]r 12
U
r1250

5
1

2
. ~9!

ThereforeUG0 has a vanishing first derivative with respect t
r 12,

]UG0

]r 12
U
r1250

50. ~10!

As a consequence, for small interparticle distances we ge
most a second order dependence onr 12. This leads to a
significant simplification for our analysis of the functionUG0
which can be treated in the important regions of configu
tion space, at least in a first approximation as independen
r 12.

III. A SIMPLE MODEL FOR UG0

In the following section we will try to find an explicit
parameter dependent model forUG0 which exhibits most of
the significant features. Obviously the optimal choice of t
remaining free parametersc1 , c2 , andNG depend on it. For-
tunately, the qualitative behavior ofUG0 is rather insensitive
with respect to the choice of the parameters in Eq.~8!. Fig-
ures 1~a! and 1~c! show the behavior ofUG0 with appropri-
ately chosen parameters~Table I! for two opposite situations.
Both electrons are on a straight line through the nucleus
Fig. 1~a!, the electrons are at the same side whereas in F
1~c! they are on opposite sides with respect to the nucle
Both contour maps exhibit a rather similar behavior not on
qualitatively but also quantitatively. To complete our consi
erations Fig. 1~b! shows the behavior ofUG0 when the elec-
trons are situated on perpendicular straight lines through
nucleus. The functionUG0 is nearly constant when both elec
trons are in the inner region around the nucleus and falls
increasingly fast when one or both electrons depart from
nucleus. We thus conclude thatUG0 is not only nearly inde-
pendent ofr 12 for r 12→0 @cf. Eq. ~10!#, but also, within a
good approximation, for allr 12.

As a basic approximation we have neclected ther 12 de-
pendence ofUG0 which seems justifiable due to the observe
behavior. As we can see, this has an important conseque
on the contour maps of Fig. 1. Because of the electro
nuclear cusp condition,12

1

CJ

]CJ

]r i
U
r i50

52Z i51,2 CJ5eUGCHF ~11!

for the total wave functionCJ , which is already satisfied by
the Hartree–Fock partCHF, we must have

]UG0~r 1 ,r 2 ,r 12!

]r i
U
r i50

50 i51,2. ~12!

Considering the situation depicted in Fig. 1~a!, the total de-
rivative along a straight line with r 15const. and
r 125ur 12r 2u at the pointr 250 is
3, No. 2, 8 July 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. ~a!, ~b!, ~c! show contour maps of the functionUG0 for He calculated from a Hylleraas-type wave function~Ref. 16! through Eq.~8!. ~a!, ~b!, ~c!
correspond to fixed electron–nucleus–electron angles of 0°, 90°, 180°. The parametersc1 , c2 , andNG are in agreement with the optimized parameters
Table I. ~d! shows the contour map of our modelŨG0 for He defined through Eq.~17!. The parameter values are listed in Table I. The contour lines
calculated for equidistant values starting with20.7,20.75,20.8, ... .
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dUG0~r 1 ,r 2 ,r 12!

dr2
U r15const.

r250

52
]UG0~r 1 ,r 2 ,r 12!

]r 12
U r15const.

r250

.

~13!

In the case of our intended approximation, this means, t
the contour lines should approach at right angles to the a
A similar situation with reversed sign occurs in Fig. 1~c!. We
have found a strong bending of the contour lines near
axes in Fig. 1~a! and a much weaker one in Fig. 1~c!. The
angles deviate considerably from 90° in both cases. Des
of these discrepancies we maintained the approximation
our model, because we were interested mainly in the sh
range behavior near the electron–electron cusp and in
case the approximation rests on Eq.~10!. Moreover, our
model forUG0 will satisfy the electron–nuclear cusp cond
tion ~12! and therefore it provides a reasonable behavior n
the axes.

The dimensionality of the problem can be further r
duced by considering situations where the electrons occ
the same part of space. As we have already mentioned,
part of configuration space is of special interest with resp
to electron correlation. In an earlier paper19 we have inves-
J. Chem. Phys., Vol. 10Downloaded¬04¬Dec¬2001¬to¬134.157.90.89.¬Redistribution¬subject¬to¬
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tigated the behavior of Jastrow factors near the electron
electron cusp for the homogeneous electron gas, where
got for UG0 an approximately linear dependence onr s ,

r s5
1

a0
S 43 pr D 2~1/3!

~14!

~a0 is the Bohr radius,r is the electron density! from Fermi-
hypernetted chain calculations.20 Therefore we treated the
problem in a similar manner as discussed above. We defin
new functiong0 through the following relation:

UG0~r ,r !52@ 4
3pg0~r !#2~1/3! ~15!

for which we can easily obtain numerical values from th
Hylleraas-type wave function,

g0
Hyl~r !52

3

4pŪG0~r ,r ,0!3
. ~16!

Figure 2 shows the functiong0
Hyl for the He atom. In view of

the strong resemblance to a Gaussian function it seemed r
sonable to look for a model which is based on such fun
tions. Summarizing, we have looked for a model whic
3, No. 2, 8 July 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded¬04¬De
TABLE I. Parameters of the Jastrow factors for the atoms He to Ne together with variational energies~a.u.!
~statistical errors are given in parentheses! and standard deviations of the local energys(El). The parameters
where optimized with respect tos2(El).

Hea Li Be B C

E 22.902 4~2! 27.473 1~6! 214.631 1~8! 224.609 5~10! 237.793 0~16!
s(El) 0.111 0.208 0.348 0.528 0.686
c1 0.111 0.254 0.243 0.032 0.083
c2 0.001 0.253 0.366 0.003 0.010
a1 1.719 8.724 11.59 9.297 18.41
a2 0.447 0 2.293 2.951 1.415 2.136
a3 ••• 0.087 15 0.254 0 0.271 0 0.398 0
d1 0.910 7 1.593 1.974 0.218 9 0.153 2
d2 9.030 16.69 19.84 17.04 25.99
d3 ••• 192.9 156.4 132.1 154.0

N O F Ne

E 254.535~2! 274.988~2! 299.648~2! 2128.835~2!
s(El) 0.864 1.078 1.333 1.578
c1 0.073 0.142 0.129 0.163
c2 0.000 4 0.723 0.001 0.679
a1 23.14 38.12 28.43 12.68
a2 2.912 4.183 4.386 3.476
a3 0.727 1 1.090 1.033 1.149
a4 0.020 08 0.020 78 0.034 01 0.030 75
d1 0.127 7 0.407 4 0.477 2 12.89
d2 16.63 50.96 41.72 74.01
d3 129.9 118.1 160.9 105.6
d4 581.9 243.6 278.3 124.9

aNG50.4228.
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shows the general behavior of Figs. 1~a!, 1~b!, 1~c!, and is
especially close to the exact behavior in the vincinity of t
electron–electron cusp. Both conditions can be fulfilled
an ansatz termedŨG0 of the general form,

ŨG0~r 1 ,r 2!

52F23 p(
l
dl S a l

p D 3/2~e2a l r1
2
1e2a l r2

2
!G2~1/3!

, ~17!

FIG. 2. Functiong0 ~–––! for the He atom calculated with the optimize
parameters of Table I, together with the functionsg0

Hyl ~—!, g90
Hyl ~–••–! and

g180
Hyl ~•••! obtained from the Hylleraas-type wave function~Ref. 16! through
Eqs.~16! and ~18!.
J. Chem. Phys., Vol. 1c¬2001¬to¬134.157.90.89.¬Redistribution¬subject¬to
he
by

where we have the variational parametersal anddl .
In order to get an idea of the correctness of our argu

ments we have optimized the parameters in the ansatz~17!
together withc1 andc2 for the He atom. This can be done in
a very efficient way by the method of Umrigar and
co-workers7,8 which is based on the minimization of the vari-
ance of the local energy. The resulting parameters togeth
with the expectation value of the energy and the standa
deviation of the local energy are listed in Table I. After hav
ing fixed all free parameters it is easy to calculate the no
malization constantNG from the normalization condition in
Eq. ~1!. This has been done numerically as described in Re
19. Before we discuss the properties of our model it is wort
mentioning that we have recovered 97% of the correlatio
energy. First we will look at the behavior near the electro
cusp. Figure 2 shows the functiong0 for the ansatz~17! with
optimized parameters together withg0

Hyl and the functions
g90
Hyl , g180

Hyl ,

g90
Hyl~r !52

3

4pŪG~r ,r ,A2r !3
,

~18!

g180
Hyl ~r !52

3

4pŪG~r ,r ,2r !3
,

where the electrons are separated with fixed electron
nuclear–electron angle. In accordance with our assumpti
Fig. 2 shows a close agreement between the curves at le
for distances above 0.5 bohr. The small discrepancies clo
to the nucleus are probably due to the three body cusp whi
03, No. 2, 8 July 1995¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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695H.-J. Flad and A. Savin: Jastrow factor for atoms and molecules
is insufficiently described within our model. The general b
havior of our modelŨG0 is shown in Fig. 1~d! which exhib-
its a reasonably close agreement to results obtained from
nearly exact Hylleraas-type wave function.

IV. APPLICATION TO ATOMS AND MOLECULES

We have applied our ansatz given by Eqs.~7! and~17! to
systems with more than two electrons in a straightforwa
manner, by neglecting three-electron and higher correlati
as well as spatial anisotropy due to a nonvanishing total
gular momentum of the wave function. The total wave fun
tion CJ is composed of a Jastrow factor and a HF wa
function,

CJ5)
i, j

eŨG~r i ,r j ,r i j !CHF. ~19!

At first we have considered the ground states of the atoms
to Ne. For the HF part we used the very accurate wave fu
tions of Clementi and Roetti.17 The parametersc1 , c2 , al , dl
were optimized as already mentioned with respect to
variance of the local energy. Results are listed in Table
Computational details concerning the course of the optim
zation will be discussed in the next section. It is now inte
esting to compare the correlation energies obtained for
ansatz with those obtained for other forms of Jastrow fact
reported in the literature. Of special interest are the Jast
factors of Schmidt and Moskowitz10 due to their partitioning
of different contributions to electron correlation.

They considered three different types of correlation
that is electron–electron (e–e), electron–nuclear (e–n),
and electron–electron–nuclear (e–e–n) correlation. The
e–n correlation is needed to restore the density which
disturbed by that part of the Jastrow factor which describ
the e–e correlation.21 With increasing nuclear charge th
e–e–n correlation becomes more and more significant. T
is of particular importance because we have not taken it i
account explicitly when constructing our ansatz. Neverth
lesse–e–n correlation occurs in a natural way in Eq.~7!
through the coupling ofUG0 andr i j . Schmidt and Moskow-
itz discussed three different types of Jastrow factors. Th
7-term Jastrow factor includes onlye–e and e–n correla-
tion, whereas the 9-term and 17-term Jastrow factors ad
tively containe–e–n correlation in an increasingly complex
manner. In Table II we have compared our results with c
relation energies reported for these Jastrow factors. For H
N we obtained approximately the same results as Schm
and Moskowitz’s 9-term factor, for O, F, Ne our results a
slightly worse. In all cases however our results are sign
cantly better than those for the 7-term factor. This seems
indicate that we have recovered a substantial portion of
e–e–n correlation. It is worth mentioning that the functio
UG0 is responsible for bothe–e–n and e–n correlations.
These are not separated in our Jastrow factor in contras
Ref. 10. Besides this we have listed in Table II some resu
of Umrigar and co-workers.7,8 Their Jastrow factors probably
represent the limit for electron correlation that can be d
J. Chem. Phys., Vol. 10Downloaded¬04¬Dec¬2001¬to¬134.157.90.89.¬Redistribution¬subject¬to¬
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scribed by this type of wave function. Therefore we can sa
that our ansatz works satisfactorily also for systems wit
more than two electrons.

Next we have applied our Jastrow factor to small mo
ecules like H2, LiH, Li 2. Before doing this, we have to make
a slight modification in the definition ofUG0 for systems
with more than one nucleus. This can be done in a straigh
forward way by taking into account Gaussian functions a
different centers

ŨG0~r i ,r j !52H 2p

3 F(
k

(
l
dklS akl

p D 3/2
3~e2aklr ki

2
1e2aklr k j

2
!G J 2~1/3!

, ~20!

wherek runs over all nuclei. The parameters were optimize
in the same way as for the atoms and are listed in Table I
together with total energies and standard deviations of t
local energies. HF wave functions for H2 and LiH were taken
from Refs. 22 and 23, respectively. In the case of Li2 we
have used the (6s) Slater-type basis set of Clementi and
Roetti17 supplemented by 2p polarization functions. All cal-
culations were done for the ground states at equilibrium di
tances. For Li2 we obtain a very small exponent inUG0

TABLE II. Comparison of correlation energies~%! for the atoms He to Ne
obtained with various types of Jastrow factors.

ŨG
a 7-termb 9-termb 17-termb Padec

He 97 90 98 100 100
Li 89 92 89 97 •••
Be 62 56 64 68 76
B 64 52 66 69 •••
C 67 53 68 72 •••
N 71 54 73 77 •••
O 69 53 78 80 •••
F 74 51 80 82 •••
Ne 74 57 85 85 86

aPresent work~reference energies from Ref. 26!.
bReference 10.
cReference 8.

TABLE III. Parameters of the Jastrow factors for the molecules H2, LiH,
Li2 together with variational energies~a.u.! ~statistical errors are given in
parentheses! and standard deviations of the local energys(El). The param-
eters where optimized with respect tos2(El).

H2 LiH Li 2

E 21.172 3~3! 28.049 8~10! 214.961~2!
s(El) 0.082 0.264 0.327
c1 0.002 0.305 0.267
c2 0.000 2 0.282 0.264

Li H

a1 0.523 0 13.36 3.942 8.255
a2 0.116 0 3.382 0.289 9 1.732
a3 ••• 0.522 5 ••• 0.000 04
d1 0.435 8 1.281 0.012 47 2.355
d2 3.634 16.10 78.52 25.17
d3 ••• 58.67 ••• 69783 103
3, No. 2, 8 July 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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696 H.-J. Flad and A. Savin: Jastrow factor for atoms and molecules
which avoids the occurrence of too negative values for t
function when both electrons are far away from the nucl
This may be important due to the covalent nature of the bo
and the rather large bond distance. In Table IV we ha
compared our results with other Jastrow factors for the
molecules described in the literature. For H2 and Li2 our
results are as good as the best values cited in the literat
Only for LiH we obtained a slightly worse correlation en
ergy.

V. COMPUTATIONAL DETAILS

The variational Monte Carlo calculations were carrie
out with a generalized Metropolis algorithm, which
equivalent to a diffusion Monte Carlo algorithm withou
branching.24 Parameter optimization of the Jastrow facto
can be done in an efficient way within the variational Mon
Carlo method7,8 which generates a distribution in configura
tion space proportional to the square of a given wave fu
tion. We have chosen 1000 statistically independent point
configuration space and optimized the parameters in orde
minimize the variance of the local energy. This was done
a simplex algorithm.25 After the optimization we have com-
puted new points in configuration space which were distr
uted with respect to the optimized set of parameters. Opti
zation and renewing steps were repeated until we co
observe no further improvement.

VI. CONCLUSIONS AND OUTLOOK

We have found a way to reduce the complexity of
nearly exact two-electron wave function by considering t
functionUG0 which can be defined with respect to this wav
function through Eqs.~2!, ~7!, and~8!. It could be shown that
it is possible, at least in an approximate way, to reduce
problem from three to two dimensions. This enabled us
obtain a simple model forUG0 which agrees almost quanti
tatively with the exact behavior in the neighborhood of th
electron–electron cusp. The model could be generalized
straightforward manner to other atoms and molecules.
comparing our results with those of Schmidt an
Moskowitz,10 we found that our model is capable of descri
ing e–e–n correlation to a certain extent. This is of mino
significance for the He atom but increasingly important f
the heavier systems.

At last we will discuss some possibilities to further im
prove our ansatz. Here we have to distinguish two lines
investigations. The first is based on a further improvemen
the Jastrow factor, while in the second case the HF par

TABLE IV. Correlation energies~%! for some small molecules obtained
with various types of Jastrow factors.

ŨG
a Ref. 27b Ref. 29 Ref. 30 Ref. 9

H2 95 95 ••• ••• 80
Li2 72 68 70 ••• 58
LiH 75 ••• 84 77 83

aPresent work @reference energies for H2 ~Ref. 31!, LiH ~Ref. 32!,
Li 2 ~Ref. 27!#.
bSee also Ref. 28.
J. Chem. Phys., Vol. 10Downloaded¬04¬Dec¬2001¬to¬134.157.90.89.¬Redistribution¬subject¬to¬
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replaced by a multiconfiguration wave function. We ha
neglected higher order terms in the expansion ofUG0 with
respect tor 12. However the necessity of such terms to get
quantitative agreement for points in configuration spa
where one electron is close to the nucleus, can be seen f
Eq. ~13! and Fig. 1~a!. This can be achieved by adding a ter
of the general form,

ŨG0
~2!~r 1 ,r 2!r 12

2 ~21!

to ŨG0 which will improve the description ofe–e–n corre-
lation. The behavior ofŨG0

(2) can be analyzed by the method
discussed above. It would also be of interest to repeat
whole procedure for a very accurate H2 wave function and to
compare it with our Jastrow factor for this molecule. Th
will be the subject of further studies. Another point which
currently under investigation is the combination of multico
figuration wave functions with Jastrow factors. Umrigar an
co-workers8 obtained impressive results for the Be atom b
taking care of near-degeneracy effects. These are also im
tant for the atoms B and C and cannot be described by
strow factors.10
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