A new Jastrow factor for atoms and molecules, using two-electron systems
as a guiding principle
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To get an idea of the qualitative behavior of an optimal Jastrow factor we have considered a
Hylleraas-type wave function of very high accuracy for the helium atom. Owing to the lack of nodes
this wave function can be easily interpreted as a general type of Jastrow factor. As a result we
obtained a simple parameter dependent ansatz for a Jastrow factor, which incorporates the essential
features of the observed behavior. We have optimized the parameters with respect to the variance of
the local energy, using variational Monte Carlo techniques, for the atoms He through Ne and for the
simple molecules K LiH, and Li,. Finally, we compare our approach with other types of Jastrow
factors discussed in the literature. 895 American Institute of Physics.

I. INTRODUCTION model is given by the He atom where almost exact solutions

of the nonrelativistic Schidinger equation can be

; ; -3
_Itis long known in many body theory” that EXPONeN- ~isinedt3-16 We took the Hylleraas-type wave function of
tial correlation factors, so-called Jastrow factors, which de- . .

" . ) : . Freund and co-workef$which at present is the most accu-
pend explicitly on interparticle distances, provide a powerful

. i . rate solution available. Due to the absence of nodes in the
tool to handle particle correlations. For atomic and molecular__ ".. X :
spatial part of the ground state wave function of helium

systems this approach was put fgrward b y prs anq Héfmd.y. which can be expressed in terms of the electron—nuclgar
In recent years there has been increasing interest in findin . '
5> and electron—electran, , distanceys we can define a gen-

new forms for Jastrow factofs.” because they show some eral Jastrow factor by equating the spatial parts of a Jastrow
nice features which distinguish them from other approache yeq 9 P P

to the electron correlation problem. Through their explicit ’

dependence on electron—electron distances it is easily pos- W =eYc(112"12W (r 1) (V,|¥;)=1, 1)
sible to take care of the electron—electron c%fsw,hich IS .nda very accurate Hylleraas-type wave functiby,
not feasible for wave functions based on simple linear com-
binations of Slater determinants like configuration interac-  Ug=In|Wy[—In|W e (¥ [Ph)=1. 2
tion methods. Another, also very appqaling advantage i; th‘?he Hartree—Fock pat,= has been taken from Clementi
very compact form of Jastrow factors in contrast to conflgu—and Roettit’

ration interaction wave functiorfs:® The main disadvantage

which inhibited their broader application to atomic and mo-

lecular many body problems for a long time lies in the high

dimensionality of the occurring integrals. This can be over!- NEARLY EXACT JASTROW FACTOR FOR HELIUM

come by application of Monte Carlo methods which are per-

fectly suited for this kind of wave functions and allow a space. On the other hand we can expect to be faced with a
strictly variational treatment. Furthermore, Monte Carlorather complex behavior & in three dimensions. It would
techniques offer an efficient way to optimize parameters ifpen he a cumbersome task to extract qualitative principles
Jastrow fagté)rs, as could be demonstrated by Umrigar angpich can be generalized to more complicated systems.
co-workers.” The CF’mmO”'y employed ansatz for JastrowW therefore we have inserted an intermediate step in order to
factors based on rational polynomials of the electron—nucleglyq,,ce the complexity of the problem. We have based our
and electron—electron distané8s®*"is flexible enough to approach on the assumption that Jastrow factors are espe-
yield very good results when all coefficients are optimized..ja )y syited for the description of short range correlations.
Moreover, this ansatz enables the inclusion of electron—rq e more precise, we have tried to describe the short range

electron—nuclear correlation, thﬂefignmcance of which Wag,enavior, which characterizes Jastrow factors in the case of
shown by Schmidt and Moskowitz;™"at least for atoms. We - | interparticle distances, as accurate as possible. In order

have followed a different course starting with a simple modely, 4t this problem, let us consider the conventional ansatz
for which a nearly exact Jastrow factor is known. Such &g ihe jastrow factdf in the case of the He atom

From Eg.(2) it is easy to calculaté ; at every point in
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lim U,(ry,)=0. (4) The short range behavior &f 54 is strongly influenced
rip— by the electron—electron cusp condition for electrons with

. . . ntiparallel spirt?8
This makes it meaningful to compare the absolute values o? P P

different Jastrow factors at the electron—electron cusp. For dUg
b=const. the action of the Jastrow factor on the electrons is (9f_12
not changed. If we generalize ans&z to allow for a posi-

tion dependent behavior at the electron—electron cusp we&hereforeU s, has a vanishing first derivative with respect to
have to introduce the functidd,q(r,r,), which determines r,,
the value ofU, atr,,=0, by substituting

1
=5 9)

ri,=0

U
% =o. (10)
1 Izl _o
~5p " Y20(r1.12), ©) f2”
As a consequence, for small interparticle distances we get at
which applied to Eq(3) yields most a second order dependencergp. This leads to a
significant simplification for our analysis of the functibhy,
_ Uzo(1.2) which can be treated in the important regions of configura-
Uy(ryp,ry,rp)= — . (6) . . . . . .
1—r15/[2U50(r1,r2)] tion space, at least in a first approximation as independent of

It is interesting to note, that we have obtained in a natura[lz'

way a coupling between the electrons and the nucleus

through the denominator in Ed6), which resembles the ||I. A SIMPLE MODEL FOR Uy,

averaged backflow correlation of Schmidt and Moskowftz. ) ) ) ] o
Turning back to Eq(2), we are now able to refine our In the following section we will tr_y to fm_d.an explicit

ansatz for the Jastrow factor so that the short range behavi@@rameter dependent model 1dg, which exhibits most of

can be separated. This can be achieved by the general anstits significant features. Obviously the optimal choice of the
remaining free parametecs, ¢,, andNg depend on it. For-

exp{Ug[Ugo(ri,r2,r12),rol} tunately, the qualitative behavior bf is rather insensitive
(7)  with respect to the choice of the parameters in &. Fig-
Ug UgotCili2 +Ng. ures 1a) and Xc) show the behavior o) 5, with appropri-

ately chosen parametefBable |) for two opposite situations.
Both electrons are on a straight line through the nucleus. In
which is a modified version of Ed6). In Eqg. (7) we have  Fig. 1(a), the electrons are at the same side whereas in Fig.
assumed thatl 5o depends additionally om,, which is nec-  1(c) they are on opposite sides with respect to the nucleus.
essary forlUg to satisfy Eq.(2). We will analyze in the fol-  Both contour maps exhibit a rather similar behavior not only
lowing the effect of eliminating this dependence. We thus tryqualitatively but also quantitatively. To complete our consid-
to have a situation analogous to E). However, we now erations Fig. b) shows the behavior df 5, when the elec-
refine the dependence & on r;, by introducing two trons are situated on perpendicular straight lines through the
supplementary terms depending of [with arbitrary coef-  nucleus. The functiotl 5 is nearly constant when both elec-
ficientsc; andc,; for c;=c,=0 we have Eq(6)]. For rea-  trons are in the inner region around the nucleus and falls off
sons discussed below, it is also appropriate to introduce thiacreasingly fast when one or both electrons depart from the
normalization constani. Next we have to solve Eq2)  nucleus. We thus conclude thdt, is not only nearly inde-

1+[(c1—3)/Ugolria+cCord,

with respect tdJ g, pendent ofr,, for r;,—0 [cf. Eqg. (10)], but also, within a
_ good approximation, for all;,.
Ugo(Ug.r12)=3P—[1P?+(ci— 3 Uqgr12]"% As a basic approximation we have neclectedrthede-
— 5 pendence ol ;4 which seems justifiable due to the observed
P=Ug(1+cCarip) —Ciria, behavior. As we can see, this has an important consequence
— (8 on the contour maps of Fig. 1. Because of the electron—
Us=Uqg(r1,r2,r12)~Ne, nuclear cusp conditiot?,
c;<3, 0=c,, 0=Ng. 1 9V,

=-7 i=1,2 V¥;=eVoV¥ (11
ri=0

The Jastrow factor lowers the probability for electrons to Wy

occupy the same part of space, which meanslthamust be
negative for small interparticle distanddsg is uniquely de-
termined through Eq2) and the normalization conditions in
Egs.(1) and(2)]. This circumstance enables us to fix the sign ~ dUgo(r1.r2.r12) .

in Eg. (8), which is the solution of a quadratic polynomial in | =0 =12 (12
Ugo- The value ofNg is, of course, immaterial for the cal- =0
culation of the energy. In order to evaluate the effect of ap-Considering the situation depicted in Figal, the total de-
proximations onUs, we will make comparisons with the rivative along a straight line withr;=const. and
exactUg. Thus, the specific value s is needed. ri,=|r;—r,| atthe pointr,=0 is

for the total wave functionl’ ;, which is already satisfied by
the Hartree—Fock pat¥-, we must have
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FIG. 1. (a), (b), (c) show contour maps of the functidihg, for He calculated from a Hylleraas-type wave functigtef. 16 through Eq.(8). (a), (b), (c)
correspond to fixed electron—nucleus—electron angles of 0°, 90°, 180°. The pararpei®ysandNg are in agreement with the optimized parameters of
Table I. (d) shows the contour map of our moddl;, for He defined through Eq17). The parameter values are listed in Table I. The contour lines are
calculated for equidistant values starting witfd.7, —0.75,—-0.8, ... .

dUgo(r1,r2,112))| Ugo(r1,r2,r12) tigated the behavior of Jastrow factors near the electron—
dr, |r1:const._ _T r,=const.’ electron cusp for the _homoge_neous electron gas, where we
r,=0 r,=0 got for U, an approximately linear dependenceran
(13) 1 /4 —(1/3)

In the case of our intended approximation, this means, that ro=— (§ 7Tp) (19
the contour lines should approach at right angles to the axes. 0
A similar situation with reversed sign occurs in Figcll We  (a, is the Bohr radiusp is the electron densijyfrom Fermi-
have found a strong bending of the contour lines near théypernetted chain calculatioA.Therefore we treated the
axes in Fig. 8 and a much weaker one in Fig(cL The  problem in a similar manner as discussed above. We define a
angles deviate considerably from 90° in both cases. Despiteew functiong, through the following relation:
of these discrepancies we maintained the approximation for
our model, because we were interested mainly in the short Uco(r.r)=—[37go(r)]~*" (15
range behavior near the electron—electron cusp and in thig, \yhich we can easily obtain numerical values from the
case the appro?(lmatllon rests on H4O). Moreover, OUr  pvileraas-type wave function,
model forU g, will satisfy the electron—nuclear cusp condi-
tion (12) and therefore it provides a reasonable behavior near vl 3
the axes. 9o (N=——=—""""—.

The dimensionality of the problem can be further re- 4mUco(r.r,0)
duced by considering situations where the electrons occuplyigure 2 shows the functiogl'gy' for the He atom. In view of
the same part of space. As we have already mentioned, thtke strong resemblance to a Gaussian function it seemed rea-
part of configuration space is of special interest with respecsonable to look for a model which is based on such func-
to electron correlation. In an earlier papewe have inves- tions. Summarizing, we have looked for a model which

(16)
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shows the general behavior of Figgajl 1(b), 1(c), and is
especially close to the exact behavior in the vincinity of the

H.-J. Flad and A. Savin: Jastrow factor for atoms and molecules

TABLE |. Parameters of the Jastrow factors for the atoms He to Ne together with variational eriangjes
(statistical errors are given in parenthesasd standard deviations of the local enetgfjE|). The parameters
where optimized with respect @%(E,).

He? Li Be B C
E —2.902 42) ~7.473 16) ~14.63119) —24.609 §10) —37.793 016)
o(E) 0.111 0.208 0.348 0.528 0.686
¢ 0.111 0.254 0.243 0.032 0.083
c, 0.001 0.253 0.366 0.003 0.010
a 1.719 8.724 11.59 9.297 18.41
a 0.4470 2.293 2.951 1.415 2.136
a 0.087 15 0.2540 0.2710 0.3980
d, 0.910 7 1.593 1.974 0.2189 0.153 2
d, 9.030 16.69 19.84 17.04 25.99
d, - 192.9 156.4 132.1 154.0
N o} F Ne
E —54.5352) —74.9882) —99.6482) —128.83%2)
o(E) 0.864 1.078 1.333 1.578
¢ 0.073 0.142 0.129 0.163
Cs 0.000 4 0.723 0.001 0.679
@ 23.14 38.12 28.43 12.68
a 2.912 4.183 4.386 3.476
a 0.7271 1.090 1.033 1.149
a 0.020 08 0.020 78 0.034 01 0.030 75
d, 0.1277 0.407 4 0.477 2 12.89
d, 16.63 50.96 41.72 74.01
ds 129.9 118.1 160.9 105.6
d, 581.9 2436 278.3 124.9
Ng=0.4228.

where we have the variational parameteyandd, .
In order to get an idea of the correctness of our argu-

electron—electron cusp. Both conditions can be fulfilled byments we have optimized the parameters in the anda)z
together withc, andc, for the He atom. This can be done in

an ansatz termed g of the general form,

Ugo(ri,ro)
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FIG. 2. Functiong, (——-) for the He atom calculated with the optimized
parameters of Table I, together with the functig§¥' (—), g5 (----) and
g% (-+) obtained from the Hylleraas-type wave functigref. 16 through

Egs.(16) and(198).

1.20 1.60
r

a very efficient way by the method of Umrigar and
co-workeré® which is based on the minimization of the vari-
ance of the local energy. The resulting parameters together

17

with the expectation value of the energy and the standard

deviation of the local energy are listed in Table I. After hav-
ing fixed all free parameters it is easy to calculate the nor-
malization constanNg from the normalization condition in
Eqg. (1). This has been done numerically as described in Ref.
19. Before we discuss the properties of our model it is worth

mentioning that we have recovered 97% of the correlation
energy. First we will look at the behavior near the electron
cusp. Figure 2 shows the functigg for the ansat£17) with
optimized parameters together wigy”' and the functions

as8', o'k,

(A I—
” 4mUg(r,r,\2r)%
(19
3
gr¥o(r) =

© 4mUg(r,r,2r)3

where the electrons are separated with fixed electron—
nuclear—electron angle. In accordance with our assumption
Fig. 2 shows a close agreement between the curves at least
for distances above 0.5 bohr. The small discrepancies close
to the nucleus are probably due to the three body cusp which
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is insufficiently described within our model. The general be-TABLE . Comparison of correlation energié%) for the atoms He to Ne
havior of our modelJ 54 is shown in Fig. 1d) which exhib-  obtained with various types of Jastrow factors.

its a reasonably close agreement to results obtained from the
nearly exact Hylleraas-type wave function.

Ug? 7-tern? 9-tern? 17-tern? Padé

He 97 90 98 100 100
Li 89 92 89 97
Be 62 56 64 68 76
IV. APPLICATION TO ATOMS AND MOLECULES B 64 52 66 69
C 67 53 68 72
We have applied our ansatz given by E¢8.and(17) to N 71 54 73 77
systems with more than two electrons in a straightforward © 69 53 78 80
manner, by neglecting three-electron and higher correlations " ;j g% gg gg e

as well as spatial anisotropy due to a nhonvanishing total an-
gular momentum of the wave function. The total wave func-3Present workrreference energies from Ref. 26

tion ¥, is composed of a Jastrow factor and a HF wave’Reference 10.
function ‘Reference 8.

v,=]1 eUslri 1j TP (199  scribed by this type of wave function. Therefore we can say
i<j that our ansatz works satisfactorily also for systems with

more than two electrons.
At first we have considered the ground states of the atoms Li  Next we have applied our Jastrow factor to small mol-

to Ne. For the HF part we used the very accurate wave funcecules like H, LiH, Li,. Before doing this, we have to make
tions of Clementi and Roett!. The parameters,, c;, a, d; a slight modification in the definition o), for systems
were optimized as already mentioned with respect to th&yith more than one nucleus. This can be done in a straight-

variance of the local energy. Results are listed in Table Iforward way by taking into account Gaussian functions at
Computational details concerning the course of the optimigifferent centers
zation will be discussed in the next section. It is now inter- a2

esting to compare the correlation energies obtained for our O (rF)=— 2_77 2 E d il

ansatz with those obtained for other forms of Jastrow factors GO 3T M

reported in the literature. Of special interest are the Jastrow —1/3)

factors of Schmidt and MoskowitZdue to their partitioning X(efamrii_'_efa“rkj) } , (20)

of different contributions to electron correlation.

They considered three different types of correlations,nerek runs over all nuclei. The parameters were optimized
that is electron—electronet-e), electron—nuclegr &n), in the same way as for the atoms and are listed in Table lIl,
and electron_—el_ectron—nucleae—(e—n) correlaﬂ_on. The _together with total energies and standard deviations of the
e-n correlation is needed to restore the density which i§,cq| energies. HF wave functions fop ind LiH were taken
disturbed by that part of the Jastrow factor which describeg;q, Refs 22 and 23 respectively. In the case of Wi
the e—e correlation?® With increasing nuclear charge the have used the @ Sla{ter-type basis set of Clementi and
e—e-n correlation becomes more and more significant. Thisg 567 supplemented by p polarization functions. All cal-
is of particular importance because we have not taken it it ations were done for the ground states at equilibrium dis-
account explicitly when constructing our ansatz. Neverthetances_ For Li we obtain a very small exponent i
lesse—e—n correlation occurs in a natural way in E)
through the coupling ol 5o andr;; . Schmidt and Moskow-
itz discussed three different types of Jastrow factors. Thei'l"ABLE IIl. Parameters of the Jastrow factors for the moleculgs HH,
7-term Jastrow factor includes onb~e ande—n correla-  Li, together with variational energiga.u) (statistical errors are given in
tion, whereas the 9-term and 17-term Jastrow factors addparenthesgsand standard deviations of the local eneug§,). The param-
tively containe—e—n correlation in an increasingly complex ©ters where optimized with respectad(E,).
manner. In Table Il we have compared our results with cor-

relation energies reported for these Jastrow factors. For He to . HA He

N we obtained approximately the same results as Schmidt E —117233)  —8.049810 —14.9612)
and Moskowitz's 9-term factor, for O, F, Ne our results are (B g'ggz 8'38‘51 8%;

slightly worse. In all cases however our results are signifi- C; 0.000 2 0.282 0264

cantly better than those for the 7-term factor. This seems to _

indicate that we have recovered a substantial portion of the L H

e—e—n correlation. It is worth mentioning that the function 4, 0.5230 13.36 3.942 8.255
Ugg is responsible for botle—e—n and e—n correlations. a 0.1160 3.382 0.2899 1.732
These are not separated in our Jastrow factor in contrast to @ 0.5225 0.000 04
Ref. 10. Besides this we have listed in Table Il some results 31 g'ggig lé'igl 73'222 47 252'13755
of Umrigar and co-worker§® Their Jastrow factors probably dz L 58.67 6978 % 10°

represent the limit for electron correlation that can be de
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TABLE IV. Correlation energieg%) for some small molecules obtained replaced by a multiconfiguration wave function. We have
with various types of Jastrow factors. neglected higher order terms in the expansiorugf, with

respect ta ,,. However the necessity of such terms to get a
quantitative agreement for points in configuration space,

Og? Ref. 27 Ref. 29 Ref. 30 Ref. 9

H, 95 95 80 where one electron is close to the nucleus, can be seen from
Li, 72 68 70 58 Eq.(13) and Fig. 1a). This can be achieved by adding a term
LiH 5 84 i 83 of the general form,

aIEirze(ssg; ;/;})Jr.k[reference energies for ,H(Ref. 31, LiH (Ref. 32, Ugé(rl,rz)rfz (21)

*See also Ref. 28. to Ugo which will improve the description oé—e—n corre-

lation. The behavior obJ{%) can be analyzed by the methods
which avoids the occurrence of too negative values for thidiscussed above. It would also be of interest to repeat the
function when both electrons are far away from the nucleiVhole procedure for a very accuratg Wave function and to.
This may be important due to the covalent nature of the bongOMPare it with our Jastrow factor for this molecule. This
and the rather large bond distance. In Table IV we haveVill be the subject of further studies. Another point which is

compared our results with other Jastrow factors for thes?urren_tly under |fnves_t|gat|or_1 r']s the comfb|nat|on of mulncon(-j
molecules described in the literature. Fop Bnd Li, our iguration wave functions with Jastrow factors. Umrigar an

results are as good as the best values cited in the Iiteraturﬁ(.)'worker§ obtained impressive results for the Be atom by

Only for LiH we obtained a slightly worse correlation en- taking care of near-degeneracy effects. These are also impor-
ergy. tant for the atoms B and C and cannot be described by Ja-

strow factors®
V. COMPUTATIONAL DETAILS

The variational Monte Carlo calculations were carried
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