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Abstract. Characteristic properties as well as possible differences in bonding of small group 12 clusters
Mn (M = Zn, Cd, Hg; n = 2, . . . , 6) have been investigated by quantum chemical ab initio methods,
i.e., relativistic large-core pseudopotentials, core-polarization potentials and coupled-cluster correlation
treatments. A comparison of cohesive energies and spectroscopic properties like ionization potentials, elec-
tron affinities, and vibrational frequencies reveals a close similarity between the clusters of Cd and Hg.
For Zn clusters we observed an exceptional increase in stability between Zn3 and Zn4. In order to get a
more qualitative picture of the covalent contributions to bonding we have calculated the electron localiza-
tion function (ELF). The ELF analysis is in accordance with the calculated spectroscopic properties and
shows predominant van der Waals interactions with weak covalent contributions for all the cluster sizes
considered.

PACS. 36.40.-c Atomic and molecular clusters

1 Introduction

The clusters of group 12 elements (Zn, Cd, Hg) deserve
special attention among the elemental clusters since they
cover the whole spectrum from van der Waals interaction
to covalent and finally metallic types of chemical bond-
ing. The changes in bonding with increasing cluster size
are mainly associated to the closing of the gap between
the molecular orbitals resulting from the atomic s- and
p-type valence orbitals. The size dependence of this tran-
sition for neutral clusters has been studied experimentally
for Cd [1–3] and Hg [4–16] clusters. The most important
accessible property indicating this transition is the ioniza-
tion potential (IP) which can be measured by photoioniza-
tion [1,6] or electron-impact ionization [4,10] mass spec-
troscopy. Furthermore photoelectron [2,13], inner-shell au-
toionization spectra [5,7] and optical-absorption cross-
sections [14] have been reported in the literature. The
interpretation of the experimental results concerning the
exact onset of covalent and metallic bonding is still con-
troversial [6,10], however, there is an agreement that the
transition between covalent and metallic bonding takes
place between 13 and 90 atoms.

Due to the availability of numerous experimental re-
sults for mHg clusters these systems have also attracted
considerable interest from the theoretical point of view [17–
20]. Most of the work is based on model Hamiltonians [17–
19] which have the advantage to permit calculations over
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a large range of cluster sizes. The severe problem of this
approach is that it requires some a priori knowledge of
the system in order to determine the interaction terms
of the model and the effective parameters belonging to
it. Due to changes in the character of the bonding the
model also has to change in order to reproduce the ex-
perimental results [18]. Other first principles approaches
based on uncorrelated wave functions [20] or density func-
tional theory [21] (DFT) are problematic due to different
reasons. It is well known that electron correlation is very
important for a reasonable description of systems inter-
acting predominantly via van der Waals forces and has to
be included in ab initio calculations. Although DFT ac-
counts for electron correlation, it encounters problems for
van der Waals type interactions. Depending on the cho-
sen functional and system it may over- or under-estimate
the binding energy [22]. A good starting point for a sys-
tematic discussion of the performance of various ab ini-
tio methods are the group 12 dimers. Previous work [23–
26] suggests a combination of large-core relativistic pseu-
dopotentials (PP) including a core-polarization potential
(CPP) together with a size-extensive high-quality correla-
tion treatment using large and flexible valence basis sets.
The application of large-core PPs deserves some care, es-
pecially in the case of strong covalent or ionic interac-
tions which have significant influence on the underlying d
shell. In the present application the interactions are still
rather weak and the core-valence correlation is reasonably
well described by the polarization potential. Since the PPs
have been adjusted to reproduce the splitting between the
s and p valence orbitals, we would expect that the results
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are reasonable even for much larger clusters. Currently
the limitations are mainly due to the required large basis
sets restricting the calculations to clusters with up to 15
atoms.

In the present work we are mainly interested in the
transition between van der Waals and covalent bonding.
There is experimental evidence [3] that this transition oc-
curs faster for Cd than for Hg clusters. For this reason
we have performed a comparative study for small group
12 cluster with up to 6 atoms. The limitation with re-
spect to the number of atoms is due to the high demands
concerning the correlation method and the basis sets. The
necessity of size-extensivity suggests the application of the
coupled-cluster (CC) method including all single and dou-
ble excitations explicitly as well as a pertubative treat-
ment of the triple excitations (CCSD(T)). This method
has been applied sucessfully to group 12 dimers [23–26]
and Hg clusters [27]. In our previous work [27] we have
also employed the quantum Monte Carlo (QMC) method
which yields an excellent agreement with CC results for
the cluster sizes considered. Since we were interested in
the vibrational frequencies of the clusters, we decided to
use only the CC method. The required second derivatives
along nuclear displacement coordinates can be obtained
from CC calculations by straightforward numerical dif-
ferentiation using total energies from nearby coordinates.
QMC energies are always afflicted with statistical uncer-
tainties which make the evaluation of such derivatives
more complicated.

2 Results and discussion

2.1 Structures, cohesive energies and the electron
localization function

The accurate determination of equilibrium structures for
the clusters under consideration is a basic requirement
for the discussion of their properties and the variation of
the chemical bond with the cluster size. There may exist
various possible structures for a given number of atoms
which are rather close in energy. It is therefore important
to estimate the sensitivity of a given property with re-
spect to structural changes. Unfortunately no experimen-
tal information on the structure of small group 12 clusters
is available. Molecular beam experiments are performed
with hot clusters, as a consequence the measured prop-
erties do not reveal a resolution with respect to different
structures. Well-defined equilibrium structures cannot be
obtained from such experiments, a fact which should be
kept in mind when comparing the results of calculations
with experiment. New experimental developments for the
generation of cold clusters [28] may improve the situation
considerably.

Locating the equilibrium structure using ab initio quan-
tum chemistry methods requires a significant computa-
tional effort due to its strong dependence on electron cor-
relation. We restricted ourselves to highly symmetrical,
densely packed structures which seem to be the most nat-
ural ones for systems with predominantly van der Waals
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Fig. 1. Averaged bond length (Å) per nearest-neighbor inter-
action for Zn ©, Cd � and Hg 4. The filled symbols refer to
the bicapped tetrahedral structure of M6.
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Fig. 2. Cohesive energy per nearest-neighbor interaction for
Zn©, Cd � and Hg4. The filled symbols refer to the bicapped
tetrahedral structure of M6.

type of interactions. This includes equilateral triangular
(n = 3), tetrahedral (n = 4), trigonal bipyramidal (n =
5), and octahedral (n = 6) structures. In order to jugde
whether or not a given structure is a real minimum with
respect to unconstrained variations of the shape of the
structure, we have performed a normal coordinate analy-
sis. Any distortion of the minimum energy structure from
perfect symmetry would have been detected at this stage
since it leads to an imaginary frequency. Strictly speaking,
we proved that the structures represent local minima but
we cannot rule out the possibility that the global minima
corresponds to a different structure. Actually for n = 6
we have detected a bicapped tetrahedral structure lower
in energy, as it will be discussed below. For the clusters
with n = 3, 4, 5 our choices are the ones with the max-
imum number of nearest-neighbor interactions and the
densest packing of the atoms. In our opinion this is a
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Table 1. Bond lengths Re (Å), ionization potentials IP (eV),
electron affinities EA (eV), cohesive energies per atom CE
(eV), harmonic vibrational frequencies ωe (cm−1) for the equi-
lateral triangular structure obtained from coupled-cluster (CC)
calculations. The corresponding values obtained with the op-
timized model potentials (MP) are listed for comparison. The
averaged vibrational frequency ω is given for both cases.

Zn3 Cd3 Hg3

CC MP CC MP CC MP
Re 3.75 3.75 3.93 3.93 3.51 3.51
IP 8.25 7.93 9.08
EA a a 0.13
CE 0.030 0.030 0.038 0.041 0.061 0.061

ωA′1
25.8 33.7 22.7 27.8 28.3 39.0

ωE′ 29.4 23.8 23.3 19.7 35.1 27.6
ω 28.2 27.1 23.1 22.4 32.8 31.4

a Anion not stable in CCSD(T) calculations.

convincing argument that these structures represent global
minima. This argument is also in line with our results
for n = 6 where the octahedral and bicapped tetrahedral
structures have the same number of nearest-neighbor in-
teractions but the latter possesses the denser packing. The
size dependences of averaged bond length and cohesive en-
ergy per nearest-neighbor interaction (CE/b) are shown in
Figures 1 and 2, the exact numbers are listed in Tables 1
to 4. For all group 12 elements we obtain a local minimum
(maximum) with respect to the bond length (CE/b) for
the tetrahedral structure. It is most pronounced for Zn4

and becomes more and more shallow for Cd4 and Hg4.
There is a corresponding strong increase for Zn4 in the
CE/b between the equilateral triangular and tetrahedral
structure. Looking at the trigonal bipyramidal structure in
more detail we find in all three cases a significant difference
beween the equatorial and axial bond lengths. For Zn5 and
Cd5 the equatorial bond lengths are close to that of the
tetrahedral structures whereas the axial bond lengths are
longer by 0.36 Å, respectively, 0.27 Å. This result indicates
a noticeable increase of the covalent contribution to the
bonding in the tetrahedral and the equatorial region of the
trigonal bipyramidal structures for Zn and Cd. The large
increase of the bond lengths for the octahedral structure
is due to the fact that the packing is less dense there. We
have calculated an alternative structure for n = 6 which
consists of a bicapped tetrahedron resembling more closely
the packing of the preceding ones. Actually, the averaged
bond lengths decreased considerably for Zn and Cd to-
gether with an increasing CE/b for all three elements.

In order to get a better insight into the covalent con-
tributions to the bonding we have used the electron local-
ization function [29,30] (ELF) as a tool to visualize the
electronic structure of the clusters. Given an electron at
a point

→
r , ELF is a measure for the conditional probabil-

ity to find a second electron with parallel spin close to it.
Starting from the spherically averaged pair spin density

Table 2. As in Table 1 but for the tetrahedral structure.

Zn4 Cd4 Hg4

CC MP CC MP CC MP
Re 2.94 2.93 3.46 3.46 3.35 3.35
IP 7.77 7.61 8.94
EA 0.62 0.55 0.39
CE 0.097 0.097 0.085 0.086 0.118 0.118

ωA1 76.6 111.5 39.5 57.5 42.5 51.0
ωE 78.1 55.7 39.4 28.7 31.1 25.5
ωT2 84.7 78.8 44.1 40.6 37.4 36.0
ω 81.2 76.6 41.8 39.5 36.2 35.0

Table 3. As in Table 1 but for the trigonal bipyramidal struc-
ture.

Zn5 Cd5 Hg5

CC MP CC MP CC MP
Rq 2.89 3.23 3.41 3.56 3.25 3.35
Rx 3.25 3.22 3.68 3.55 3.44 3.35
IP 7.29 7.23 8.36
EA 0.62 0.61 0.50
CE 0.100 0.089 0.097 0.91 0.139 0.136

ωA′1
86.3 85.8 45.7 50.6 52.5 52.1

55.4 49.0 34.3 28.7 33.8 29.6
ωE′ 85.9 59.7 45.1 35.2 42.8 36.2

38.9 32.4 23.3 19.1 21.8 19.7
ωA′′2

26.7 76.3 27.2 45.3 34.3 46.5

ωE′′ 54.5 56.7 33.4 33.7 31.8 34.5
ω 58.6 56.5 34.5 33.4 34.8 34.3

Pσσ(
→
r , s) (s electron-electron distance) Becke and Edge-

combe [29] performed a Taylor expansion with respect
to s:

Pσσ(
→
r , s) =

1

2
Dσσ(

→
r )s2 . . . (1)

with the second-order term for a closed shell Hartree-Fock
(HF) wave function given by

Dσσ(
→
r ) =

∑
i

| ∇φiσ(
→
r ) |2 −

1

4

| ∇ρσ(
→
r ) |2

ρσ
, (2)

where i runs over all σ spin orbitals φiσ . The second order
probabilityDσσ is scaled with the corresponding probabil-
ity for a homogeneous electron gas Dσσ of the same local
density,

ELF =

1 +

[
Dσσ(

→
r )

Dσσ(
→
r )

]2

−1

. (3)

By construction ELF can adopt values in the interval [0, 1]
and with increasing ELF value the probability for a sec-
ond electron with parallel spin to be close to the reference
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Table 4. As in Table 1 but for the octahedral structure. The numbers in parentheses belong to the bicapped tetrahedral
structure (bond lengths refer to an edge of the tetrahedron, respectively, the distance between vertex and surface atom).

Zn6 Cd6 Hg6

CC MP CC MP CC MP
Re 3.60 (3.03, 3.55) 3.60 3.83 (3.51, 3.80) 3.83 3.52 (3.39, 3.52) 3.52
IP 7.32 (7.13) 7.07 (7.04) 8.12 (8.25)
EA 0.73 (0.69) 0.80 (0.70) 0.77 (0.58)
CE 0.068 (0.101) 0.066 0.087 (0.104) 0.085 0.132 (0.145) 0.132

ωA1g 37.1 37.9 32.5 32.7 37.4 36.0
ωEg 17.9 16.8 15.0 14.6 16.4 16.2
ωT2g 28.3 27.8 24.2 23.9 25.9 26.2
ωT1u 26.0 33.6 24.7 29.0 28.9 31.9
ωT2u 30.8 18.9 23.1 16.4 22.5 18.1
ω 27.4 26.0 23.2 22.5 25.2 24.8
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Fig. 3. The value of the electron localization function (ELF)
at the center of the group 12 dimers versus the interatomic
distance (Å) (Zn2 short-dashed line, Cd2 solid line, Hg2 long-
dashed line) together with the ELF values at the saddle points
of the clusters at the corresponing bond distances (Zn ©, Cd
�, Hg4). The inset is taken from reference [26] and shows the
corresponding charge fluctuations.

electron decreases. It is therefore a measure for the local-
ization of electrons since in the case that the reference
electron represents a localized electron the probability for
a second electron to be close to it decreases with increas-
ing localization. Maxima of ELF locate the regions which
can be interpreted as bonds, lone pairs, cores etc. It has
been sucessfully applied to study the shell structure of
atoms and the chemical bonding in molecules and solids
(for a recent review with extensive bibliography see Savin
et al. [31]). For a pure van der Waals type of bonding
ELF exhibits a deep saddle point between the atoms. If
the reference electron is between the atoms it has a highly
localized electron with parallel spin in its neighborhood
which strongly increases the probability of approaching
each other compared to the homogeneous electron gas.

The depth at the saddle point is a measure for the co-
valency of the interaction. We have chosen the group 12
dimers as a reference.

As already discussed above, the inclusion of electron
correlation is essential for a correct description of group 12
clusters. Although ELF is based on the HF wave function
it can give some useful information, since the structures
have been optimized on the correlated level. Therefore
correlation effects enter indirectly into ELF. This resem-
bles some similarities with our previous work on group 12
dimers [25,26] where we have used charge fluctuations to
define the covalent contributions. A comparison of charge
fluctuations from QMC and HF calculations revealed no
significant correlation contributions. Over a large range
of interatomic distances the charge fluctuations showed a
nearly linear behavior on a logarithmic scale. In Figure 3
we have plotted the ELF values for the dimers at the cen-
ter of the bond over a range of interatomic distances. A
comparison of these curves with the corresponding curves
for the charge fluctuations shows an amazing similarity.
The curves for Zn2 and Hg2 are close together and Cd2 is
above them. Furthermore we have indicated in Figure 3
the ELF value at the saddle points of the clusters at the
corresponding bond distance. They are in good agreement
with those of the dimers at these bond distances. There-
fore it exists an almost quantitative relation between the
atomic distance and the covalent contributions to bond-
ing. Figure 4a shows the Zn dimer for which ELF has a
deep saddle point between the atoms. The ELF for the
other group 12 dimers shows a similar behavior. A com-
parison of ELF for Zn2 and Zn3 (Fig. 4b) shows a slight
flattening of the saddle point for Zn3 but the qualitative
picture remains the same. Again Cd and Hg behave sim-
ilarly. However, the ELF for the tetrahedral structure of
the group 12 elements exhibits characteristic differences.
In accordance with the observed trends for the bond dis-
tance and CE we observe a strong increase of ELF in the
interatomic region for Zn4 (Fig. 4c) and a tiny one for
Hg4 with Cd4 (Figs. 4d,e) in between. The maximum in-
crease is not on the interatomic axis but somewhat beside
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Fig. 4. 2D plots of ELF for
selected structures and elements.
The ELF values are encoded by
colors superposed with contour
lines representing the electron den-
sity to indicate the size of the
cluster. Dimer, a) Zn2; equilateral
triangular structure b) Zn3; sur-
face of the tetrahedral structure,
c) Zn4, d) Cd4, e) Hg4; section
through an axial and two equato-
rial atoms of the trigonal bipyra-
midal structure, f) Zn5; section
through the equatorial plane of
the trigonal bipyramidal structure,
g) Zn5, h) Cd5, i) Hg5; section
through four atoms of the octa-
hedral structure j) Zn6; surface of
the octahedral structure k) Zn6;
section through two atoms of the
tetrahedron and the two surface
atoms of the bicapped tetrahedral
structure, l) Zn6; section through
a surface triangle of the cubocta-
hedral structure, m) Zn13; section
through a six ring and the central
atom of the cuboctahedral struc-
ture, n) Zn13; o) Hg13.

it. This kind of behavior is familiar from highly strained
covalent molecules [32]. The system bends the bonds in
order to reduce the strain due to the incorporation of s-p
hybrid-orbitals which favor angles of > 60◦. The situa-
tion remains similar for the trigonal bipyramidal structure
where we have to distinguish between axial and equato-
rial bonds. Figures 4f,g show the different covalent contri-
butions in the case of Zn5. ELF shows a larger covalent
contribution for the equatorial than for the axial bond in
perfect agreement with the corresponding bond distances.
The largest interatomic contributions are beside the equa-
torial axes. Again the covalency of the equatorial bonds
decreases from Zn > Cd ≈ Hg (Figs. 4h,i). For the octa-
hedral structure ELF behaves quite similarly for all the
elements. Figures 4j,k show sections through the center of
the Zn6 cluster, respectively, a triangular surface. There
is a distinct saddle point with vanishing ELF value be-
tween all the atoms. The bicapped tetrahedral structure
(Figs. 4l) shows larger covalent contributions among the
atoms which form the tetrahedron. In order to give an
outlook to what happens for larger clusters we present
ELF for the cuboctahedral structure of Zn13 (Figs. 4m,n)
and Hg13 (Fig. 4o). The bond lengths have been optimized

using the small basis set described in reference [27]. Ref-
erence calculations for Hg4 showed a significantly too long
bond length for the small basis set [27]. We have therefore
used corrected bond lengths for the cuboctahedral struc-
ture (Zn13 Re = 3.20 Å; Hg13 Re = 3.31 Å). The scaling
factor has been obtained from the corresponding calcula-
tions for the tetrahedral structure. Although the distance
between neighboring surface atoms and the central atom
is identical, we obtained different covalent contributions
for Zn13. The ELF value between surface atoms is notice-
able larger than between a surface atom and the central
atom. For Hg13 the saddle points between the atoms do
not show such a refinement. The covalent contributions
are rather weak and we are still quite a bit away from the
covalent region. Further studies on even larger clusters are
necessary to investigate the transition region and to figure
out the differences between the group 12 elements.

2.2 Ionization potentials and electron affinities

Important properties from a theoretical point of view are
the ionization potential (IP) and the electron affinity (EA)
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of a cluster. They are experimentally accessible and pro-
vide a direct measure for the type of bonding involved in a
cluster. Two different kinds of experiments, photoioniza-
tion [6] and electron-impact ionization [4,10] mass spec-
troscopy, have been performed for neutral Hg clusters.
Both methods yield results in perfect agreement for large
clusters. For clusters with 2 ≤ n ≤ 6 only electron-impact
IPs have been reported in the literature [4]. An exception
is Hg2 for which a photoionization IP of 9.1 eV [33] has
been measured, i.e., a value 0.3 eV lower than the corre-
sponding electron-impact IP. Conversely, for Cd clusters
both photoionization and photoelectron experiments [1]
are reported in the literature.

Care has to be taken when comparing theory and ex-
periment due to possible structural changes of the cluster
which may occur in the course of experiment. Especially
for small clusters the equilibrium structures of the neu-
tral and charged species differ significantly. It is crucial
for any meaningful comparison to take this into account.
The time scale relative to nuclear motion, on which the
ionization process takes place together with these struc-
tural differences determines the outcome of the experi-
ment. In photoelectron spectroscopy the incident photon
has an energy well above the threshold which makes the
ionization process very fast and definitely vertical [34]. No
details about the actual time scales for electron-impact
and photoionization processes can be found in the experi-
mental literature. They are generally classified as very fast
to very slow [34]. Nevertheless, these experiments are usu-
ally discussed in terms of vertical transitions [9,35,36].
A partial justification can be given by comparison with
photoelectron spectra for selected Cd [1–3] and Hg [3,9,
13] clusters. Fast processes compared to nuclear motion
are at best represented in theory by vertical IPs where
the nuclei are kept fixed. This can be seen by comparing
the potential energy curves of Hg2 (Re = 3.77 Å) and Hg+

2

(Re = 2.81 Å) (see ref. [27] for details) which clearly shows
that the Franck-Condon factors for adiabatic transitions
must be very small. The difference between vertical and
adiabatic IPs can be quite large for small clusters, e.g., for
Hg2 it amounts to 0.6 eV. In contradiction to this kinds
of reasoning are photoionization experiments for rare gas
dimers (for a review see ,e.g., Ref. [34,37]), where the qual-
itative bonding picture is very similar to group 12 dimers.
In this case it has been proven that photoionization exper-
iments measure the adiabatic IP, whereby the transition
probably takes place via a metastable highly excited Ryd-
berg state followed by autoionization.

A further complication arises from finite temperature
effects on the IPs of hot clusters [35]. Without anticipating
a more thorough discussion of the vibrational spectra in
the next section we want to mention that the vibrational
modes are rather soft. The harmonic vibrational frequen-
cies ω for small Cd and Hg clusters vary between 15 cm−1

and 50 cm−1. As a consequence, there is a finite probabil-
ity to encounter nuclei of hot clusters far away from the
equilibrium positions. The energies required for vertical
ionizations may therefore scatter considerably. In order to
estimate the width of this effect it is necessary to take

the nuclear motion into account. A combined treatment
of highly correlated large-scale ab initio electronic struc-
ture methods with classical dynamics for the nuclei is far
beyond our computational facilities. Since we are mainly
interested in qualitative estimates, the application of an
effective model potential to mimic the interatomic interac-
tions seems to be justifiable. We discuss the construction
of such a potential in the following sections.

In a previous publication [27] we have already dis-
cussed the IPs of Hg clusters. We obtained a reasonable
agreement with experiment by assuming vertical transi-
tions (see Fig. 5). A perfect agreement between theory
and experiment cannot be expected due to finite temper-
ature effects discussed above. We also have to admit that
our two-valence electron PP approach is not perfectly ac-
curate as can be seen from the atomic IP in Fig. 5. The
discrepancies for Hg are therefore within the uncertainties
of our approach.

The situation is somewhat different for Cd clusters
where the difference between calculated vertical IPs and
experiment is much larger. Already for the dimer we got
a vertical IP which is 0.5 eV larger than the experimen-
tal result. For the trimer the discrepancy increases even
further to 0.9 eV. This is not acceptable from the the-
oretical point of view and we compared our results for
the dimer and trimer with calculations using a more ac-
curate small-core PP, which has already been applied by
Yu and Dolg [25] to the atom and the dimer. Correlating
the 4s, 4p, 4d, 5s shells they performed CCSD(T) cal-
culations using very large basis sets. The first and sec-
ond atomic IP and dipole polarizability as well as the
vibrational frequency and binding energy of the dimer
were found to be in excellent agreement with experiment.
Applying the same procedure we obtained an IP for the
dimer which agrees within 0.1 eV with our previous cal-
culation. For the trimer we restricted our calculations to
the CCSD level. Correlating the 4d, 5s shells only we ob-
tained again a good agreement with our large-core PP cal-
culation. Therefore, insisting on a fast vertical ionization
process out of the equilibrium structure does not seem
to be appropriate any more. A possible solution to this
problem might be given by assuming a slow adiabatic
transition in the case of photoionization experiments at
the threshold. We have already mentioned that for Hg2

the photoionization IP is half-way between the vertical
and adiabatic IP. Taking into account that Hg is nearly
twice as heavy as Cd, it seems to be plausible to as-
sume that Cd clusters undergo an almost adiabatic tran-
sition in photoionization experiments. We have calculated
the equilibrium properties of Cd+

2 using both small- and
large-core pseudopotentials. The calculated spectroscopic
properties obtained with small- (large-) core pseudopo-
tentials are De = 1.39 eV, Re = 2.82 Å, ωe = 124 cm−1

(De = 1.35 eV, Re = 2.91 Å, ωe = 117 cm−1). The cor-
responding adiabatic IP of 7.59 eV (7.45 eV) is in better
agreement with experiment (7.7 eV) than the vertical one.
It is not straightforward to determine the adiabatic IPs
of the larger clusters since it requires an unconstrained
structure optimization of the cations. We performed such
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Fig. 5. Vertical ionization potential (eV) for Zn©, Cd � and
Hg 4 clusters. Solid (dashed) lines refer to CCSD(T) calcula-
tions using the large (small) core PP. The short-dashed lines
are experimental results taken from references [1,4]. The filled
symbols refer to the bicapped tetrahedral structure of M6.

an optimization for Cd+
3 where we obtained a linear struc-

ture with D∞h symmetry. The adiabatic IP (6.85 eV) is
in better agreement with experiment (7.1 eV) than the
vertical IP (7.93 eV). Unfortunately the validity of this
explanation is questioned by the larger clusters Cd4, Cd5

and Cd6 for which the IPs have been derived from photo-
electron spectra [1], which definitely correspond to vertical
excitations [34]. Both photoionization and photoelectron
experiments have been performend for Cd6. The derived
IPs are in perfect agreement and 0.6 eV lower than our cal-
culated value. An inspection of the actual spectra (Fig. 6
in ref. [2]) shows that our calculated vertical IPs are at
the center of the peaks for Cd5 and Cd6.

For the purpose of comparison it is most important to
choose a consistent measure for all the group 12 elements.
Regardless of what has been measured in experiment we
have taken the vertical IPs to discuss the behavior of group
12 elements with increasing cluster size. The vertical IPs
for Zn, Cd and Hg clusters with up to six atoms are shown
in Figure 5. From the IP point of view, Zn, Cd and Hg
behave qualitatively very similarly. Moreover, Zn and Cd
agree even quantitatively. The decrease in the IP between
three and six atoms is 0.93, 0.86 and 0.96 eV for Zn, Cd
and Hg, respectively. Taking the difference between the
vertical ionization potential and electron affinity (EA), we
can define a cluster analog to the band gap IP − EA in
solid state physics. On the way to the metallic regime the
band gap shrinks to zero. For the small clusters consid-
ered in the present work the EAs are listed in Tables 1
to 4. The vertical EAs of the group 12 element clusters
are close together and range between 0.4 and 0.8 eV for
the tetrahedral, trigonal bipyramidal, respectively octahe-
dral structure. The predominant effect for closing the gap
is therefore the strong decrease of the IP with increasing
cluster size.

While the present paper was in revision, a publication
of Busani et al. [38] appeared where they report on pho-
toelectron spectra of negatively charged Hg clusters. The
EAs for the small clusters derived in this work are consid-
erably larger than our results. Again care has to be taken
in comparing theory and experiment. The photoelectron
spectra measure vertical excitations from the equilibrium
structure of the negatively charged cluster which may dif-
fer significantly from the neutral structure. In order to
demonstrate this we have optimized the structure of the
negatively charged species Hg−3 , Hg−4 . A bond length con-
traction of 0.36 Å, respectively, 0.15 Å has been obtained
for the two species. It is the vertical IP of 0.29 eV, respec-
tively, 0.46 eV for the negatively charged clusters which
has to be compared with experiment. Since the unpaired
electron occupies a p-type orbital, spin-orbit effects lead
to a further stabilization of the negatively charged species
by approximately 0.05 eV.

2.3 Vibrational frequencies

Even for a small number of atoms there are plenty of pos-
sible structures which may represent local minima on the
energy hypersurface. In order to decide whether or not
there is a local minimum, it is necessary to determine the
harmonic vibrational frequencies and to check if any of
these is zero or takes an imaginary value. The structures
discussed above have been selected under the assumption
that the dominant interaction have no preferred spatial
orientation. This is not valid for covalent contributions.
Clusters with mainly covalent interactions like alkali metal
clusters prefer completely different structures [39]. There-
fore it seems to be desirable to check the correctness of
our assumptions. The calculation of vibrational frequen-
cies requires the second derivatives of the energy expec-
tation value with respect to the coordinates. This can be
done in principle for nearly all kinds of wave functions
including the CC method. In practice, it requires a great
deal of effort and existing programs have not been made
available to the public. At present, second derivatives for
HF wave functions are the only ones available; however,
for our application HF is not sufficient since the struc-
tures of these clusters strongly depend on electron cor-
relation. Additional complications with respect to energy
derivatives are caused by the use of CPPs for which an
analytic derivatives program has not yet been developed.
The only remaining possibility is to calculate the required
second derivatives numerically. Fortunately all of our clus-
ters are highly symmetric, we can therefore use group the-
ory to reduce the computational effort considerably (see,
e.g., the authoritative monograph of Wilson, Decius, and
Cross [40]). The whole problem can be decomposed into
one- and two-dimensional independent subproblems for
which the required second derivatives can be calculated
numerically (cf. the section on computational details be-
low). The calculated vibrational frequencies are listed in
Tables 1 to 4. At first we have to notice that all frequencies
are real, i.e., all of our structures represent real minima
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Fig. 6. Averaged vibrational frequencies (cm−1) for Zn©, Cd
� and Hg 4 clusters.

on the energy hypersurface. Averaging over all the vibra-
tional modes ωγ taking into account the degeneracies dγ
we define the averaged vibrational frequency

ω =

∑
γ dγωγ∑
γ dγ

(4)

for each cluster. Figure 6 shows the dependence of the av-
eraged vibrational frequency on the cluster size. We just
want to stress the close similarity between Cd and Hg
as well as the sharp increase between Zn3 and Zn4. The
range of vibrational modes starts to increase for five and
six atoms. Especially the soft modes can give some hints
concerning the liquidizing of the clusters. Although the
cohesive energy for the trigonal bipyramidal structures is
more than a factor of three larger than for the dimers,
there are E′ modes with vibrational frequencies close to
that of the dimer. Liquidizing may take place along these
modes, but the clusters are too small for any definite treat-
ment of this subject.

2.4 Effective interaction potentials

Besides the electronic properties of group 12 clusters it
would be interesting to study the dynamical behavior of
these systems. With increasing temperature the systems
undergo a phase transition to a liquid state and finally
decompose into fragments. The structural features of the
liquid state are of special interest since experiments have
been performed for hot liquid clusters only. This applies
especially to small and medium sized clusters, where the
electronic properties are more sensitive to structural
changes than to the large ones. The basic ingredient of
every simulation studying this feature is an effective in-
teraction potential between the atoms. For van der Waals
interacting rare gas clusters such potentials have been de-
termined with very high accuracy. Unfortunately the sit-
uation is completely different for group 12 and the related

group 2 clusters. The fundamental problem in adjusting
an effective potential is the change of the type of bonding
with the size of the cluster. Although we can calculate the
potential energy curve for the dimers with very high accu-
racy [25,41], it makes not much sense to apply it to larger
clusters since the covalent contributions are not taken into
account. There are several examples in the literature (see,
e.g., refs. [42,43]) where effective potentials have been de-
termind from solid state properties. Such potentials are
useful for the simulation of large clusters which already
show a metallic type of behavior, but they are less appro-
priate for small and medium sized clusters. Since we are
especially interested in this regime, we tried to get some
indications for the construction of the potentials from our
calculations for small clusters. In the present work we re-
stricted ourselves to two-body interactions. This is not
sufficient for accurate simulations which require at least
three-body terms. The deficiencies of the two-body ap-
proach must remain within acceptable limits in order to
be applicable in an actual simulation.

The basic ingredients we can rely upon are the op-
timized structures, cohesive energies and harmonic vibra-
tional frequencies obtained from our calculations. We have
chosen a simple ansatz for our potential

V
(2)
ij = −D(1 + a2ρij) exp(−a2ρij) (5)

with the scaled interatomic distance

ρij = (rij − re)/re . (6)

Such a potential has already been applied as a two-body
part for group 2 clusters [42]. For the dimer the parameters
D, re have a simple interpretation in terms of dissociation
energy and equilibrium bond length. The parameter a2 is
related to the vibrational frequency via ωe = a2

√
2Dµ/re,

with µ denoting the reciprocal mass of the atoms.
The optimization of the parameters has been performed

using a least-squares fit,

σ2 = w1(Dopt
e −De)

2 + w2

∑
i

(Ropt
i −Ri)

2

+w3

∑
γ

dγ(ωopt
γ − ωγ)2 (7)

with respect to the structure parameters (Ri), cohesive en-
ergy (De) and vibrational frequencies (ωγ) obtained from
CCSD(T) calculations. The weight factors wi where cho-
sen in such a way that w1, w2 � w3. We found that an in-
crease of w3 did not result in any significant improvement
of the vibrational frequencies but shifted Dopt

e to unrea-
sonable values. Apart from this, the optimized parameters
where not sensitive with respect to the wi. In Tables 1 to 4
we have listed the Dopt

e , Ropt
e , ωopt

i calculated from the op-
timized effective model potentials (MP) together with the
corresponding CCSD(T) results. The optimized parame-
ters are listed in Table 5. It can be seen that the MP
reproduce De, Re for all clusters with regular polyhedral
structure very well. Only the trigonal bipyramidal struc-
ture with two significantly different bond lengths cannot
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Table 5. Model potential parameters (a.u) D, a2, re and av-
eraged vibrational frequency ω (cm−1).

D a2 re ωa

Zn2 0.000808 6.403 7.767 21.0
Zn3 0.001115 6.525 7.095 27.5
Zn4 0.002377 10.007 5.546 78.8
Zn5 0.001807 9.407 6.094 58.8
Zn6 0.001131 5.873 6.897 25.7

Cd2 0.001066 6.451 7.994 18.0
Cd3 0.001494 6.390 7.427 22.7
Cd4 0.002096 8.497 6.538 40.6
Cd5 0.001854 7.911 6.713 34.7
Cd6 0.001455 6.250 7.319 22.3

Hg2 0.001617 6.582 7.124 19.0
Hg3 0.002250 8.699 6.633 31.8
Hg4 0.002892 8.298 6.331 36.0
Hg5 0.002772 8.389 6.332 35.7
Hg6 0.002284 6.764 6.713 24.6

a Calculated from equation (8).

be reproduced by our approach. Actually it cannot be ex-
pected that our simple two-body MP is capable to do so
since Rq, Rx cannot deviate too much from re without
being energetically very unfavorable. Instead of this, we
found that Ropt

q = Ropt
x is close to the mean bond dis-

tance in the cluster. The vibrational frequencies are well
reproduced in the average. The absolute mean differences
are 12, 6 and 5 cm−1 for Zn, Cd and Hg, respectively.
Much better agreement has been obtained for the aver-
aged vibrational frequencies ω for which the agreement
is usually close to 1 cm−1. Summing up, it may be said
that within our simple ansatz for the effective potential
we can reproduce the equilibrium properties of the clus-
ters with reasonable accuracy. A further improvement re-
quires the incorporation of three-body interactions [42]
into the MP. Like for the two-body potential one has to
adjust the parameters to the size of the clusters. Such a
procedure encounters difficulties due to the large num-
ber of parameters involved compared to the few available
properties of a cluster. Within the present work we are
mainly concerned with a qualitative study of the proper-
ties of MPs for small group 12 clusters. Therefore we have
neclected three-body interactions entirely. Another prob-
lem concerns the correct description of the anharmonicity
of the MP. It is not taken into account in the adjust-
ment of the parameters which relies only on the part of
the energy hypersurface close to the equilibrium structure.
Nevertheless, the anharmonicity is very important for the
intended application. It is fixed by our simple ansatz for
the MP which can be justified in a quantitative manner
at least for the dimers. We have compared the whole MP
and CCSD(T) potential energy curves and found an ex-
cellent agreement over the whole range. Especially the an-
harmonic long range parts are well reproduced.
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Fig. 7. Averaged vibrational frequencies (cm−1) versus the
model potential parameter D for Zn ©, Cd � and Hg 4 clus-
ters. Linear regressions have been performed through the data
points.

We have checked the consistency of our MPs by per-
forming unconstrained structure optimizations using a sim-
ulated annealing algorithm [44]. The optimization has been
repeated several times with initially randomly distributed
atoms in a box. For n = 4, 5 only the tetrahedral, respec-
tively the trigonal bipyramidal structure emerged in the
optimization. In agreement with our previous assumption
we obtained for n = 6 both the octahedral and the bi-
capped tetrahedral structure.

The calculation of vibrational frequencies using the
CCSD(T) method requires a considerable numerical effort
which can be done for small highly symmetrical clusters
only. In order to study the dynamics of larger systems, it is
desirable to find a simple scaling relation which takes into
account the increasing covalent contributions. We propose
a compromise between a scaling of all the parameters and
an adjustment according to equation (7). The parameters
D, re can be assigned to the cohesive energy per nearest-
neighbors interaction and the averaged distance between
nearest neighbors. The third parameter a2 can be related
to the vibrational frequencies. We suggest the relation

ω =
a2

re

√
2Dµ , (8)

which is an extension of the corresponding exact rela-
tion for the dimer. The ω obtained from equation (8) (see
Tab. 5) are in excellent agreement with the CCSD(T) val-
ues. By inspection of our data we found a nearly linear
relationship of the form D ∼ ω. In Figure 7 we plotted D
versus ω for the group 12 elements. At least for Zn, Cd the
linear relationship seems to be appropriate and even for
Hg it seems to be acceptable. To generate a MP for larger
clusters we have to know the bond distances and cohesive
energies. The optimization of bond distances becomes very
expensive but we have a lower bound given by the bulk
value. Bond distances for Hg13, Hg15 have already been
optimized and it should be possible to apply some simple
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scaling relation to connect to the bulk distance. Cohesive
energies can be obtained from QMC calculations which
can be applied to even larger clusters.

3 Conclusions

We have performed CCSD(T) calculations for small group
12 clusters with up to six atoms using large-core relativis-
tic PPs and CPPs. The calculated properties include bond
lengths, cohesive energies, IPs, EAs and vibrational fre-
quencies. These data have been used to study the cova-
lent contributions to the bonding in these clusters and to
reveal the differences between the group 12 elements. To
gain further insight into the structure of the bonding we
have applied ELF to these systems. ELF is a very use-
ful tool to study local properties of the bonding and to
distinguish between various interatomic interactions in a
cluster. It does not suffer from basis set dependences like
the standard Mulliken population analysis which is inap-
propriate in the present application due to the large and
diffuse basis sets involved. The covalent contributions are
most strongly developed for Zn4 and Zn5 clusters. There is
a remarkably strong increase in stability between Zn3 and
Zn4 which is less pronounced for Cd and Hg. Actually, we
observed a close similarity between Cd and Hg clusters.
This contradicts the experimental findings which indicate
stronger covalent contributions for Cd. Especially the dis-
crepancies between the calculated and measured IPs for
Cd clusters have not been completely resolved. For a bet-
ter comparison to experiment, it is highly desirable to take
into account finite temperature effects on the structure of
these clusters. As a first step in this direction we have ad-
justed two-body MPs using CEs and vibrational frequen-
cies obtained from our CCSD(T) calculations. We further
suggest a simple scaling relation for the generation of MPs
for larger clusters which incorporate changes in the cova-
lent contributions with the cluster size. The MPs can be
used in molecular dynamics simulations to study at least
in a semi-quantitative manner the melting of these clus-
ters. The resulting structural information can in turn be
used to study their influence on electronic properties like
IPs.

4 Computational details

4.1 Pseudopotentials and valence basis sets

As already outlined above, the application of large-core
PPs is essential for the present work in order to keep the
computational effort within reasonable limits. We have
used two-valence electron relativistic PPs [26,45] which
provide an efficient way to incorporate scalar relativistic
effects in the calculations. Relativistic effects become in-
creasingly important for Zn, Cd, Hg and cannot be ne-
glected in a comparative study for these elements. Beyond
that core-valence correlation plays an essential role in the
bonding of these systems [23,25]. This has been taken into
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Fig. 8. The ELF of Hg2 along the interatomic axes obtained
from large (dashed line) and small (long-dashed line) core PP
calculations. A corrected ELF (solid line) has been obtained
by adding the 5s, 5p, 5d core orbitals to the pseudo-valence
orbitals without orthogonalization.

account by using CPPs [46,47]. We have used large uncon-
tracted valence basis sets (6s6p5d3f1g) for n = 3, 4 which
were reduced to (6s6p3d2f1g) for n = 5, 6. Further details
concerning the basis sets and the reduction of the polar-
ization functions are given in previous publications [26,
27]. All the calculations reported in this work have been
done using the MOLPRO [48–50] program package.

4.2 A technical remark concerning ELF

In principle the ELF is based on quantities accessi-
ble from experiment [51]. Since we are doing valence-only
calculations including only the highest s shell, this does
not remain valid any more. The underlying d shells are
not well separated from the s shell. The ELF obtained
from our valence-only calculations looks therefore quite
different from the ELF obtained from an all-electron cal-
culation or a hypothetical experiment [51]. This is not a
real problem in our application since the physical content
of ELF remains unchanged in a valence-only calculation.
We are only interested in the relative differences of ELF
between clusters of different structure or elemental com-
position. Using the same type of PP in all of our calcu-
lations permits a consistent interpretation of our results.
However care has to be taken when comparing ELF ob-
tained with different types of PPs. In order to do this,
one has to attach the remaining core orbitals to the cal-
culation with the larger core. This can be done only in an
approximate way because of the differences in the nodal
structure between pseudo-valence orbitals obtained with
different kinds of PPs. Figure 8 shows the effect of the
core orbitals in the case of Hg2. The ELF obtained with
two and twenty-valence electron PP look quite different.
Adding core orbitals we obtain a good agreement between
both calculations. This has also been done for larger clus-
ters with the same result. We have renounced to add the
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F (γ) ≈
−
[
E(2S(γ)) +E(−2S(γ))

]
+ 16

[
E(S(γ)) +E(−S(γ))

]
− 30E(0)

12S(γ)2
(12)

F (γ)
qx ≈

E(S
(γ)
q , S

(γ)
x ) +E(−S(γ)

q ,−S(γ)
x )−E(S

(γ)
q ,−S(γ)

x )−E(−S(γ)
q , S

(γ)
x )

4S
(γ)
q S

(γ)
x

(13)

core orbitals since this introduces additional features into
ELF which are not important in the present context.

4.3 Normal coordinate analysis

The study of vibrational structures of highly symmetri-
cal molecules is one of the classical examples for the ap-
plication of group theory in physics [40]. We applied a
standard procedure based on symmetry-adapted internal
coordinates which will be briefly oulined in the follow-
ing. The whole procedure is described in full detail for
example in the book of Wilson, Decius and Cross [40]. We
have used the nearest-neighbor distances as internal coor-
dinates. The corresponding displacement coordinates are
denoted by Si. With the exception of the trigonal bipyra-
midal structure we have therefore only one set of internal
coordinates for each structure. Every set spans a reducible
representation of the corresponding point group. Taking
an arbitrary element S1 of the set we can easily construct
symmetry-adapted orthogonal internal coordinates using
the formula

S(γ) = Nγ
∑
R

χ
(γ)
R RS1 , (9)

where the sum runs over all elements R of the group and

χ
(γ)
R is the character of the group element in the corre-

sponding irreducible representation. The S(γ) depends on
the choice of S1 if the dimension dγ of the irreducible
representation is greater than one. It is sufficient to con-
sider an arbitrary single representative since the resulting
secular equation blocks into dγ identical subsystems. In
the case of the trigonal bipyramidal structure, where two

different sets of internal coordinates (equatorial S
(γ)
q and

axial S
(γ)
x distances) belong to the same irreducible rep-

resentation of dγ = 2, care has to be taken that the two
representatives obey the same transformation properties.
In our applications the force constant matrix elements ap-
pear only in their diagonal form

F (γ) =
∂2E

∂S(γ)2
(10)

with the exception of the trigonal bipyramidal structure
where we also have nondiagonal coupling elements

F (γ)
qx =

∂2E

∂S
(γ)
q ∂S

(γ)
x

. (11)

We have used the five-point numerical differentiation for-
mula

see equation (12) above

for the diagonal matrix elements with Si = 0.1 bohr and
the four-point formula

see equation (13) above

for the nondiagonal parts of the trigonal bipyramidal struc-
ture. The relatively large value for the displacement coor-
dinates is necessary due to the weak bonding. The change
in energy has to be large enough compared to the numeri-
cal accuracy of the total energy. We performed some tests
on the numerical accuracy of our procedure from which
we expect errors of less than 1 cm−1 for the vibrational
frequencies. Given the force matrix elements, it is an easy
task so solve the secular equation | GF −ω2I | which fac-
tors into one- and two-dimensional subsets. The secular
equation contains the G-matrix related to the kinetic en-
ergy, its matrix elements can be obtained using the tables
and rules given in reference [40].

The authors are grateful to Dr. Gongy Hong, Dresden, for per-
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3 and to Prof. P. Fulde, Dresden,
for continuous support.
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