
AUTHOR QUERY FORM

Journal: J. Chem. Phys. Please provide your responses and any corrections by annotating this

PDF and uploading it to AIP’s eProof website as detailed in the

Welcome email.

Article Number: 010843JCP

Dear Author,

Below are the queries associated with your article. Please answer all of these queries before sending the proof back to AIP.

Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before
returning your proof.
1. Is the title of your article accurate and spelled correctly?
2. Please check affiliations including spelling, completeness, and correct linking to authors.
3. Did you remember to include acknowledgment of funding, if required, and is it accurate?

Location in
article

Query/Remark: click on the Q link to navigate
to the appropriate spot in the proof. There, insert your comments as a PDF annotation.

Q1 Please check that the author names are in the proper order and spelled correctly. Also, please ensure that each author’s given and
surnames have been correctly identified (given names are highlighted in red and surnames appear in blue).

Q2 In the sentence beginning “To overcome these...,” please specify whether “ingredients” could be changed to “criteria” or “parameters.”

Q3 In the sentence beginning “Sections II C–II F are devoted...,” please confirm that “the next sections” refers to Secs. II C–II F.

Q4 Please note that the labels are missing in the captions of Figs. 1–3 and 5–8 though the part figures were labeled in source files. Also
note that we have stacked the part figures as supplied for Figs. 1(a), 1(b), 1(d), 2(a), 2(b), 2(c), 3(a), 5(a), 7(b), and 8(a). Kindly
check all artworks for correctness and insert the labels in captions, if needed.

Q5 Please define CIPSI at first occurrence.

Q6 We have reworded the sentence beginning “By integrating over...” for clarity. Please check that your meaning is preserved.

Thank you for your assistance.



THE JOURNAL OF CHEMICAL PHYSICS 149, 000000 (2018)

Curing basis-set convergence of wave-function theory using
density-functional theory: A systematically improvable approach
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The present work proposes to use density-functional theory (DFT) to correct for the basis-set error
of wave-function theory (WFT). One of the key ideas developed here is to define a range-separation
parameter which automatically adapts to a given basis set. The derivation of the exact equations are
based on the Levy-Lieb formulation of DFT, which helps us to define a complementary functional
which corrects uniquely for the basis-set error of WFT. The coupling of DFT and WFT is done through
the definition of a real-space representation of the electron-electron Coulomb operator projected on
a one-particle basis set. Such an effective interaction has the particularity to coincide with the exact
electron-electron interaction in the limit of a complete basis set, and to be finite at the electron-
electron coalescence point when the basis set is incomplete. The non-diverging character of the
effective interaction allows one to define a mapping with the long-range interaction used in the context
of range-separated DFT and to design practical approximations for the unknown complementary
functional. Here, a local-density approximation is proposed for both full-configuration-interaction
(FCI) and selected configuration-interaction approaches. Our theory is numerically tested to compute
total energies and ionization potentials for a series of atomic systems. The results clearly show that
the DFT correction drastically improves the basis-set convergence of both the total energies and the
energy differences. For instance, a sub kcal/mol accuracy is obtained from the aug-cc-pVTZ basis set
with the method proposed here when an aug-cc-pV5Z basis set barely reaches such a level of accuracy
at the near FCI level. Published by AIP Publishing. https://doi.org/10.1063/1.5052714

I. INTRODUCTION

The development of accurate and systematically improv-
able computational methods to calculate the electronic
structure of molecular systems is an important research topic
in theoretical chemistry as no definitive answer has been
brought to that problem. The main difficulty originates from
the electron-electron interaction which induces correlation
between electrons, giving rise to a complexity growing expo-
nentially with the size of the system. In this context, the
two most popular approaches used nowadays, namely, wave-
function theory (WFT) and density-functional theory (DFT),
have different advantages and limitations due to the very
different mathematical formalisms they use to describe the
electronic structure.

The clear advantage of WFT relies on the fact that,
in a given one-electron basis set, the target accuracy is
uniquely defined by the full-configuration-interaction (FCI)
limit. Therefore, there exist many ways of systematically
improving the accuracy by refining the wave-function ansatz
and ultimately by enlarging the basis set. In particular,
perturbation theory is a precious guide for approximating
the FCI wave function and it has given rise to important

a)Electronic mail: emmanuel.giner@lct.jussieu.fr

theorems1,2 and many robust methods, such as coupled clus-
ter3 or selected configuration interaction (CI).4–10 Despite
these appealing features, the main disadvantages of WFT are
certainly the slow convergence of many important physical
properties with respect to the size of the one-particle basis set
and the rapidly growing computational cost when one enlarges
the basis set. Such a behavior very often prohibits the reach of
the so-called complete-basis-set limit which is often needed
to obtain quantitative agreement with the experiment. At the
heart of the problem of slow convergence with respect to the
size of the basis set lies the description of correlation effects
when electrons are close, the so-called short-range correlation
effects near the electron-electron cusp.11 To cure this prob-
lem, explicitly correlated ( f 12) methods have emerged from
the pioneering work of Hylleraas12 and remain an active and
promising field of research (for recent reviews, see Refs. 13–
15). One possible drawback of the f 12 methods is the use of a
rather complex mathematical machinery together with numer-
ically expensive quantities involving more than two-electron
integrals.

An alternative formulation of the quantum many-body
problem is given by DFT which, thanks to the Hohenberg-
Kohn theorems,16 abandons the complex many-body wave
function for the simple one-body density. Thanks to the so-
called Kohn-Sham formalism of DFT17 and the develop-
ment of practical approximations of the exchange-correlation
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density functional, DFT is nowadays the most used computa-
tional tool for the study of the molecular electronic problem.
Despite its tremendous success in many areas of chemistry,
Kohn-Sham DFT applied with usual semilocal density func-
tional approximations generally fails to describe nonlocal
correlation effects, such as strong correlation or dispersion
forces. To overcome these problems, ingredients from WFT
have been introduced in DFT, starting from Hartree-Fock (HF)
exchange18 to many-body perturbation theory.19 Nevertheless,
the lack of a scheme to rationally and systematically improve
the quality of approximate density functionals20 remains a
major limitation of DFT.

A more general formulation

Q2

of DFT has emerged with the
introduction of the so-called range-separated DFT (RS-DFT)
(see Ref. 21 and references therein) which rigorously com-
bines WFT and DFT. In such a formalism, the electron-electron
interaction is split into a long-range part which is treated using
WFT and a complementary short-range part treated with DFT.
The formalism is exact provided that full flexibility is given
to the long-range wave function and that the exact short-range
density functional is known. In practice, approximations must
be used for these quantities and the splitting of the inter-
action has some appealing features in that regard. As the
long-range wave-function part only deals with a non-diverging
electron-electron interaction, the problematic cusp condition
is removed and the convergence with respect to the one-
particle basis set is greatly improved.22 Regarding the DFT
part, the approximate semilocal density functionals are better
suited to describe short-range interaction effects. Therefore, a
number of approximate RS-DFT schemes have been devel-
oped using either single-reference WFT approaches (such
as Møller-Plesset perturbation theory,23 coupled cluster,24

and random-phase approximations25,26) or multi-reference
WFT approaches (such as multi-reference CI,27 multicon-
figuration self-consistent field,28 multi-reference perturba-
tion theory,29 and density-matrix renormalization group30).
These mixed WFT/DFT schemes have shown to be able
to correctly describe a quite wide spectrum of chemi-
cal situations going from weak intermolecular interactions
to strong correlation effects. Nonetheless, these methods
involve a range-separation parameter, often denoted by µ,
and there is no fully satisfying and systematic scheme to
set its value, even if some interesting proposals have been
made.31–33

The main goal of the present work is to use a DFT
approach to correct for the basis-set incompleteness of WFT.
The key idea developed here is to make a separation of
the electron-electron interaction directly based on the one-
particle basis set used and to express the remaining effects
as a functional of the density. In practice, we propose a
fit of the projected electron-electron interaction by a long-
range interaction, leading to a local range-separation param-
eter µ

(
r
)

which automatically adapts to the basis set. This
is done by comparing at coalescence a real-space represen-
tation of the Coulomb electron-electron operator projected
on the basis set with the long-range interaction used in RS-
DFT. Thanks to this link, the theory proposed here can benefit
from pre-existing short-range density functionals developed in
RS-DFT.

The present paper is composed as follows: We present
the general equations related to the splitting of the electron-
electron interaction in a one-particle basis set in Secs. II A
and II B. In Sec. II C, we point out the similarities and differ-
ences of this formalism with RS-DFT. A real-space represen-
tation of the electron-electron Coulomb operator developed in
a one-particle basis set is proposed in Sec. II D (with details
given in Appendixes A and B), which leads to the definition
of a local range-separation parameter µ(r) that automatically
adapts to the basis set. This allows us to define in Sec. II E
a short-range local-density approximation (LDA) correcting
FCI energies for the basis-set error. The formalism is then
extended to the selected CI framework in Sec. II F. In Sec. III,
we test our theory on a series of atomic systems by comput-
ing both total energies and energy differences. We study the
basis-set convergence of the DFT-corrected FCI total energy
in the case of the helium atom in Sec. III A. We then inves-
tigate the basis-set convergence of DFT-corrected selected
CI for both total energies and ionization potentials (IPs) of
the B-Ne series in Sec. III B. In the case of the IPs, we
show that chemical accuracy is systematically reached for
all atomic systems already from the aug-cc-pVTZ basis set
within our approach, whereas an aug-cc-pV5Z basis set is
needed to reach such an accuracy at the near FCI level. In
order to better understand how the DFT-based correction acts
for both total energies and energy differences, a detailed study
is performed in Sec. III B 3 for the oxygen atom and its first
cation. Finally, we summarize the main results and conclude in
Sec. IV.

II. THEORY
A. Finite basis-set decomposition of the universal den-
sity functional

We begin by the standard DFT formalism for expressing
the exact ground-state energy

E0 = min
n(r)

{
F[n(r)] + (vne(r)|n(r))

}
, (1)

where

(vne(r)|n(r)) =
∫

dr vne(r) n(r) (2)

is the nuclei-electron interaction energy, and F[n(r)] is the
Levy-Lieb universal density functional

F[n(r)] = min
Ψ→n(r)

〈Ψ|T̂ + Ŵee |Ψ〉, (3)

where the minimization is over N-electron wave functions Ψ
with density equal to n(r), and T̂ and Ŵ ee are the kinetic-
energy and Coulomb electron-electron interaction operators,
respectively. The Levy-Lieb universal functional only depends
on the density n(r), meaning that, given a density n(r), one
does not, in principle, need to pass through the minimiza-
tion over explicit N-electron wave functions Ψ to obtain
the value F[n(r)]. Provided that the search in Eq. (1) is
done over N-representable densities expanded in a com-
plete basis set, the minimizing density will be the exact
ground-state density n0(r), leading to the exact ground-state
energy E0.

First, we consider the restriction on the densities over
which we perform the minimization to those that can be
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represented within a one-electron basis setB, which we denote
by nB(r). By this, we mean that all the densities that can be
obtained from any wave functionΨB expanded into N-electron
Slater determinants constructed from orbitals expanded on the
basis B. Note that this is a sufficient but not necessary condi-
tion for characterizing these densities, as these densities can,
in general, also be obtained from wave functions not restricted
to the basis set. Therefore, the restriction on densities repre-
sentable by a basis B is much weaker than the restriction on
wave functions representable by the same basis B. With this
restriction, there is a density, referred to as nB0 (r), which mini-
mizes the energy functional of Eq. (1) and gives a ground-state
energy EB

0

EB
0 = min

nB(r)

{
F[nB(r)] + (vne(r)|nB(r))

}

= F[nB0 (r)] + (vne(r)|nB0 (r)). (4)

Therefore, provided only that the exact ground-state density
n0(r) is well approximated by this density nB0 (r)

n0(r) ≈ nB0 (r), (5)

the exact ground-state energy E0 will be well approximated
by EB

0

E0 ≈ EB
0 . (6)

Considering the fast convergence of the density with the size
of the basis set, we expect the approximation of Eq. (6) to be
very good in practice for the basis sets commonly used.

Next, we consider the following decomposition of the
Levy-Lieb density functional for a given density nB(r):

F[nB(r)] = min
ΨB→nB(r)

〈ΨB |T̂ + Ŵee |Ψ
B〉 + ĒB[nB(r)], (7)

where ΨB are the wave functions restricted to the N-electron
Hilbert space generated by the basis B, and ĒB[nB(r)] is a
complementary density functional

ĒB[nB(r)] = min
Ψ→nB(r)

〈Ψ|T̂ + Ŵee |Ψ〉

− min
ΨB→nB(r)

〈ΨB |T̂ + Ŵee |Ψ
B〉. (8)

It should be pointed out that, in contrast with the density func-
tionals used in DFT or RS-DFT, the complementary functional
ĒB[nB(r)] is not universal as it depends on the basis set B used
to describe a specific system. As the restriction to the basis set
B is, in general, much more stringent for the N-electron wave
functions ΨB than for the densities nB(r), we expect that the
complementary functional ĒB[nB(r)] gives a substantial con-
tribution, even for basis sets B for which the approximation of
Eq. (5) is good.

By using such a decomposition in Eq. (4), we now obtain

EB
0 = min

nB(r)

{
min

ΨB→nB(r)
〈ΨB |T̂ + Ŵee |Ψ

B〉

+ (vne(r)|nB(r)) + ĒB[nB(r)]
}
, (9)

or, after recombining the two minimizations,

EB
0 = min

ΨB

{
〈ΨB |T̂ + Ŵee |Ψ

B〉 + (vne(r)|nΨB (r)) + ĒB[nΨB (r)]
}
,

(10)
where nΨB (r) is the density of ΨB. By writing the Euler-
Lagrange equation associated with the minimization in

Eq. (10), we find that the minimizing wave function ΨB
0

satisfies the Schrödinger-like equation(
T̂B + ŴB

ee + V̂B
ne + ˆ̄VB[nΨB

0
(r)]

)
|ΨB

0 〉 = EB0 |Ψ
B
0 〉, (11)

where T̂B, ŴB
ee, V̂B

ne, and ˆ̄VB[n(r)] are the restrictions to the
space generated by the basis B of the operators T̂ , Ŵ ee,
∫ dr vne(r)n̂(r), and ∫ dr(δĒB[n(r)]/δn(r))n̂(r), respectively,
and n̂(r) is the density operator. The potential ˆ̄VB[nΨB

0
(r)]

ensures that the minimizing wave function ΨB
0 gives the min-

imizing density nB0 (r) in Eq. (4). It is important to notice
that the accuracy of the obtained energy EB

0 depends only
on how close the density of ΨB

0 is from the exact density:
nΨB

0
(r) = n0(r) =⇒ EB

0 = E0.

B. Approximation of the FCI density in a finite basis set

In the limit where B is a complete basis set, Eq. (10)
gives the exact energy and ĒB[nB(r)] = 0. When the basis
set is not complete but sufficiently good, ĒB[nB(r)] can be
considered as a small perturbation. Minimizing in Eq. (10)
without ĒB[nB(r)] simply gives the FCI energy in a given basis
set B

EB
FCI = min

ΨB

{
〈ΨB |T̂ + Ŵee |Ψ

B〉 + (vne(r)|nΨB (r))
}

= 〈ΨB
FCI |T̂ + Ŵee |Ψ

B
FCI〉 + (vne(r)|nΨB

FCI
(r)), (12)

where we have introduced the ground-state FCI wave function
ΨB

FCI which satisfies the eigenvalue equation(
T̂B + ŴB

ee + V̂B
ne

)
|ΨB

FCI〉 = EB
FCI |Ψ

B
FCI〉. (13)

Note that the FCI energy EB
FCI is an upper bound of EB

0 in
Eq. (10) since ĒB[nB(r)] ≤ 0. By neglecting the impact of
ˆ̄VB[nΨB

0
(r)] on the minimizing density nB0 (r), we propose a

zeroth-order approximation for the density

nB0 (r) ≈ nΨB
FCI

(r), (14)

which leads to a first-order-like approximation for the
energy EB

0

EB
0 ≈ EB

FCI + ĒB[nΨB
FCI

(r)]. (15)

The term ĒB[nΨB
FCI

(r)] constitutes a simple DFT correction to
the FCI energy which should compensate for the incomplete-
ness of the basis set B. Sections II C–II F are devoted

Q3
to the

analysis of the properties of ĒB[nB(r)] and to some practical
approximations for this functional.

C. Qualitative considerations for the complementary
functional ĒB[nB(r)]

The definition of ĒB[nB(r)] [see Eq. (8)] is clear but
deriving an approximation for such a functional is not straight-
forward. For example, defining an LDA-like approximation is
not easy as the wave functions ΨB used in the definition of
ĒB[nB(r)] are not able to reproduce a uniform density if the
basis set B is not translationally invariant. Nonetheless, it is
known that a finite one-electron basis set B usually describes
the short-range correlation effects poorly and therefore the
functional ĒB[nB(r)] must recover these effects. Therefore,
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a natural idea is to find a mapping between this functional
with the short-range functionals used in RS-DFT. Among
these functionals, the multi-determinant short-range correla-
tion functional Ēsr,µ

c,md[n(r)] of Toulouse et al.34 has a definition

very similar to the one of ĒB[nB(r)]

Ēsr,µ
c,md[n(r)] = min

Ψ→n(r)
〈Ψ|T̂ + Ŵee |Ψ〉

− 〈Ψµ[n(r)]|T̂ + Ŵee |Ψ
µ[n(r)]〉, (16)

where the wave functionΨ µ[n(r)] is defined by the constrained
minimization

Ψ
µ[n(r)] = arg min

Ψ→n(r)
〈Ψ|T̂ + Ŵ lr,µ

ee |Ψ〉, (17)

where Ŵ lr,µ
ee is the long-range electron-electron interaction

operator

Ŵ lr,µ
ee =

1
2

∫∫
dr1dr2 w

lr,µ(|r1 − r2 |)n̂
(2)(r1, r2), (18)

with

w lr,µ(|r1 − r2 |) =
erf(µ|r1 − r2 |)
|r1 − r2 |

, (19)

and the pair-density operator n̂(2)(r1, r2) = n̂(r1)n̂(r2) −
δ(r1 − r2)n̂(r1). By comparing Eq. (16) with the definition
of ĒB[nB(r)] in Eq. (8), one can see that the only difference
between these two functionals relies in the wave functions
used for the constrained minimization: in Ēsr,µ

c,md[n(r)], one

uses Ψ µ, whereas ΨB is used in ĒB[nB(r)]. More specifi-
cally,Ψ µ is determined by using a non-diverging long-range
electron-electron interaction defined in a complete basis set
[Eq. (18)], whereas the diverging Coulomb electron-electron
interaction expanded in a finite basis set is involved in
the definition of ΨB. Therefore, as these two wave func-
tions qualitatively represent the same type of physics, a
possible way to link ĒB[nB(r)] and Ēsr,µ

c,md[n(r)] is to try to
map the projection of the diverging Coulomb interaction
on a finite basis set to a non-diverging long-range effective
interaction.

D. Effective Coulomb electron-electron interaction
in a finite basis set

This section introduces a real-space representation of the
Coulomb electron-electron operator projected on a basis set
B, which is needed to derive approximations for ĒB[nB(r)].

1. Expectation values over the Coulomb
electron-electron operator

The Coulomb electron-electron operator restricted to a
basis set B is most naturally written in orbital-space second
quantization as

ŴB
ee =

1
2

∑
ijkl ∈ B

V kl
ij â†k â†l âjâi, (20)

where the sums run over all (real-valued) orthonormal spin-
orbitals {φi} in the basis set B, and V kl

ij are the two-electron
integrals. By expanding the creation and annihilation operators
in terms of real-space creation and annihilation field operators,

the expectation value of ŴB
ee over a wave function ΨB can be

written as (see Appendix A for a detailed derivation)

〈ΨB |ŴB
ee |Ψ

B〉 =
1
2

∫∫
dX1 dX2 fΨB (X1, X2), (21)

where we introduced the function

fΨB (X1, X2) =
∑

ijklmn ∈ B
V kl

ij Γ
mn
kl [ΨB]

× φn(X2)φm(X1)φi(X1)φj(X2), (22)

and Γpq
mn[ΨB] is the two-body density matrix of ΨB

Γ
pq
mn[ΨB] = 〈ΨB |â†pâ†qânâm |Ψ

B〉, (23)

and X collects the space and spin variables

X = (r,σ) r ∈ IR3, σ = ±
1
2

,∫
dX =

∑
σ=± 1

2

∫
IR3

dr.
(24)

From the properties of the restriction of an operator to the space
generated by the basis set B, we have the following equality:

〈ΨB |ŴB
ee |Ψ

B〉 = 〈ΨB |Ŵee |Ψ
B〉, (25)

which translates into

1
2

∫∫
dX1 dX2 fΨB (X1, X2)

=
1
2

∫∫
dX1 dX2

1
|r1 − r2 |

n(2)
ΨB (X1, X2), (26)

where n(2)
ΨB

(
X1X2

)
is the pair density of ΨB. Therefore, by

introducing the following function:

WΨB (X1, X2) =
fΨB (X1, X2)

n(2)
ΨB (X1, X2)

, (27)

one can rewrite Eq. (26) as∫∫
dX1 dX2 WΨB (X1, X2) n(2)

ΨB (X1, X2)

=

∫∫
dX1 dX2

1
|r1 − r2 |

n(2)
ΨB (X1, X2). (28)

One can thus identify WΨB (X1, X2) as an effective interaction,
coming from the restriction to the basis set B. This can be
seen as a generalization of the exchange potential of Slater.35

It is important to notice that all the quantities appearing in the
integrals of Eq. (28) can be considered as functions and not
operators or distributions, and therefore, they can be compared
pointwise. Of course, the function WΨB (X1, X2) is not defined
when n(2)

ΨB (X1, X2) vanishes, but we leave this for a future
study.

Equation (28) means that the two integrands have the same
integral, but it does not mean that they are equal at each point
(X1, X2). Of course, one could argue that there exist an infinite
number of functions of u(X1, X2) satisfying∫∫

dX1 dX2 u(X1, X2) n(2)
ΨB (X1, X2)

=

∫∫
dX1 dX2

1
|r1 − r2 |

n(2)
ΨB (X1, X2), (29)
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which

Q4

implies that the effective interaction is not uniquely
defined, and that the choice of Eq. (27) is just one among the
many and might not be optimal. For instance, the definition of
the effective electron-electron interaction of Eq. (27) implies

that it can depend on the spin of the electrons, whereas the exact
Coulomb electron-electron interaction does not. Nevertheless,
one can show (see Appendix B) that, in the limit of a complete
basis set (written as “B → ∞”), WΨB (X1, X2) correctly tends

FIG. 1. Effective electron-electron interaction W
ΨB (r1, r2) in the helium atom for different cc-pVXZ basis sets (X = 2, 3, 4, 5) as a function of |r1 − r2 |. The

two upper curves are for a reference point r1 at the helium nucleus and r2 moving along the diagonal of the xy plane, and the two lower curves are for a reference
point r1 at (0.5, 0.5, 0.5) bohr from the helium nucleus and r2 moving along the diagonal of the xy plane with z = 0.5 bohr. Two types of wave functions ΨB

have been used: HF and FCI in the corresponding basis set. The exact Coulomb interaction 1/|r1 − r2 | is also reported for comparison.
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to the exact Coulomb interaction

lim
B→∞

WΨB (X1, X2) =
1

|r1 − r2 |
, ∀ (X1, X2) and ΨB. (30)

In particular, in this limit, WΨB (X1, X2) does not depend on
ΨB or on the spins of the electrons.

2. Effective electron-electron interaction for opposite
spins WΨB (r1, r2) and its properties

The fact that WΨB (X1, X2) tends to the exact Coulomb
electron-electron interaction in the complete-basis-set limit
supports the choice of this effective interaction. Nevertheless,
it is also important to analyze a few properties of WΨB (X1, X2)
in the finite basis sets used in actual quantum chemistry
calculations and to understand how it differs from the true
interaction.

We will consider the effective electron-electron interac-
tion between electrons of opposite spins (σ and σ̄)

WΨB (r1, r2) = WΨB (r1σ, r2σ̄), (31)

since the interaction between the same-spin electrons is nor-
mally not the limiting factor for basis convergence. The first
thing to notice is that, because in practice B is composed
of atom-centered basis functions, the effective interaction
WΨB (r1, r2) is not translationally invariant nor isotropic, which
means that it does not depend only on the variable |r1 − r2|

WΨB (r1, r2) , WΨB (|r1 − r2 |). (32)

Thus, the quality of the representation of the Coulomb
electron-electron operator (and therefore of the electron cor-
relation effects) are not expected to be spatially uniform.
Nevertheless, WΨB (r1, r2) is symmetric in r1 and r2

WΨB (r1, r2) = WΨB (r2, r1). (33)

A simple but interesting quantity is the value of the effec-
tive interaction WΨB (r1, r2) at coalescence at a given point in
space r1

WΨB (r1) = WΨB (r1, r1). (34)

In a finite basis set, fΨB (X1, X2) is finite as it is obtained
from a finite sum of bounded quantities [see Eq. (22)]. There-
fore, provided that the on-top pair density does not vanish,
n(2)
ΨB (r1) = n(2)

ΨB (r1σ, r1σ
′) , 0, WΨB (r1) is necessarily finite

in a finite basis set

WΨB (r1) < ∞, ∀ r1 such that n(2)
ΨB (r1) , 0. (35)

As mentioned above, since the effective interaction is not trans-
lationally invariant, the value WΨB (r1) has no reason to be
independent of r1.

3. Illustrative examples of WΨB (r1, r2)
on the helium atom

In order to investigate how WΨB (r1, r2) behaves as a func-
tion of the basis set, the wave function ΨB, and the spatial
variables (r1, r2), we performed calculations using Dunning
basis sets of increasing sizes (from aug-cc-pVDZ to aug-cc-
pV5Z) using a HF or a FCI wave function for ΨB and differ-
ent reference points r1. We report these numerical results in
Fig. 1.

From Fig. 1, several trends can be observed. First, for all
wave functionsΨB and reference points r1 used here, the value

of WΨB (r1, r2) at coalescence is finite, which numerically illus-
trates Eq. (35). Second, the value at coalescence increases with
the cardinal of the basis set, suggesting that the description of
the short-range part of the interaction is improved by enlarging
the basis set. Third, the global shape of the WΨB (r1, r2) is qual-
itatively modified by changing the reference point r1, which
illustrates the lack of transitional invariance of WΨB (r1, r2).
In particular, the values of WHFB (r1, r2) and WFCIB (r1, r2) at
coalescence are much larger when the reference point r1 is on
the He nucleus, which is a signature that the atom-centered
basis set does not uniformly describe the Coulomb interac-
tion at all points in space. Fourth, the difference between
the WHFB (r1, r2) and WFCIB (r1, r2) is almost unnoticeable
for all basis sets and for the two reference points r1 used
here.

4. Link with range-separated DFT: Introduction
of a local range-separated parameter µ(r)

From the numerical illustration of the properties of
WΨB (r1, r2) given in Sec. II D 3, it appears that the development
of approximations for the density functional ĒB[nB(r)] seems
rather complicated since the effective interaction WΨB (r1, r2)
is system- and basis-dependent, non translationally invariant,
and non-isotropic. Nevertheless, as it was numerically illus-
trated, the effective interaction WΨB (r1, r2) typically describes
a long-range interaction which is finite at coalescence. There-
fore, a possible way to approximate WΨB (r1, r2) is to locally
fit WΨB (r1, r2) by the long-range interaction w lr,µ(|r1 − r2|) of
Eq. (19) used in RS-DFT. To do so, here we propose to deter-
mine a local value of the range-separation parameter µ such
that the value of the long-range interaction at coalescence is
identical to the value of the effective interaction WΨB (r1) at
coalescence at point r1. More specifically, the range-separation
parameter µ(r1;ΨB) is thus determined for each r1 and ΨB by
the condition

WΨB (r1) = w lr,µ(r1;ΨB)(0), (36)

with WΨB (r1) given by Eq. (34) which, sincew lr,µ(0) = 2µ/
√
π,

simply gives

µ(r1;ΨB) =

√
π

2
WΨB (r1). (37)

Therefore, defining the function W lr,µ(r1)
ΨB (r1, r2) as

W lr,µ(r1)
ΨB (r1, r2) =

erf
(
µ(r1;ΨB)|r1 − r2 |

)
|r1 − r2 |

, (38)

we make the following approximation:

WΨB (r1, r2) ≈ W lr,µ(r1)
ΨB (r1, r2), ∀ (r1, r2). (39)

One can notice that the definition of µ(r1;ΨB) in Eq. (37)
depends on the choice ofΨB, and therefore, the approximation
of Eq. (39) also depends on ΨB. Nevertheless, in the limit of
a complete basis set, the dependence on ΨB vanishes.

In order to illustrate how W lr,µ(r1)
ΨB (r1, r2) compares to

WΨB (r1, r2), we report in Fig. 2 these two functions for sev-
eral basis sets, for different reference points r1, and for two
different wave functions ΨB. From these plots, it appears that
the approximation of Eq. (39) is reasonably accurate when the
reference point r1 is on the helium nucleus and becomes even
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FIG. 2. Effective electron-electron interaction W
ΨB (r1, r2) and long-range electron-electron interaction W lr,µ(r1)

ΨB
(r1, r2) for different cc-pVXZ basis sets

(X = 3, 4) as a function of |r1 − r2 |. The two upper curves are for a reference point r1 at the helium nucleus and r2 moving along the diagonal of the xy
plane, and the two lower curves are for a reference point r1 at (0.5, 0.5, 0.5) bohr from the helium nucleus and r2 moving along the diagonal of the xy plane
with z = 0.5 bohr. Two types of wave functions ΨB have been used: HF and FCI in the corresponding basis set.

more accurate when the reference point r1 is farther away from
the helium nucleus.

In Fig. 3, we report the local range-separation parame-
ter µ(r;ΨB), as determined by Eq. (37), for different basis
sets and when ΨB is the HF or FCI wave function. It clearly
appears that the magnitude of µ(r;ΨB) increases when the size
of the basis set increases, which translates the fact that the

electron-electron interaction is better described by enlarg-
ing the basis set. Also, for all basis sets, the maximal value
of µ(r;ΨB) is reached when r is at the nucleus, which
demonstrates the non-homogeneity of the description of the
electron-electron interaction with atom-centered basis func-
tions. Finally, one can notice that the values of µ(r;ΨB) are
very similar when using the HF or FCI wave function for
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FIG. 3. Local range-separated parameter µ(r;ΨB) for the helium atom for different aug-cc-pVXZ basis sets (X = 2, 3, 4, 5) as a function of the position r along
the diagonal of the xy plane. The curve on the left is when using the HF wave function for ΨB, and the curve on the right is when using the FCI wave function
for ΨB.

ΨB, but nevertheless slightly larger for the FCI wave func-
tion which reflects the fact that the corresponding effective
interaction is slightly stronger.

E. Practical approximations for the complementary
functional ĒB[nB(r)]: A short-range LDA-like functional
with a local µ(r)

A proper way to define an LDA-like approximation for
the complementary density functional ĒB[nB(r)] would be
to perform a uniform-electron gas calculation with the func-
tion WΨB (r1, r2) as the electron-electron interaction. How-
ever, such a task would be rather difficult and ambiguous as
WΨB (r1, r2) is not translationally invariant nor isotropic, which
thus questions how a uniform density could be obtained from
such an interaction. Instead, by making the approximation of
Eq. (39), one can define for each point r1 an effective inter-
action which only depends on |r1 − r2|. For a given point in
space r1, one can therefore use the multi-determinant short-
range correlation density functional of Eq. (16) with the range-
separation parameter value µ(r1;ΨB) corresponding to a local
effective interaction at r1 [see Eq. (37)]. Therefore, we define
an LDA-like functional for ĒB[nB(r)] as

ĒB,ΨB

LDA [nB(r)] =
∫

dr nB(r) ε̄sr,unif
c,md

(
nB(r); µ(r;ΨB)

)
, (40)

where ε̄sr,unif
c, md (n, µ) is the multi-determinant short-range cor-

relation energy per particle of the uniform electron gas for
which a parametrization can be found in Ref. 36. In practice,
for open-shell systems, we use the spin-polarized version of
this functional (i.e., depending on the spin densities), but for
simplicity we will continue to use only the notation of the

spin-unpolarized case. One can interpret Eq. (40) as follows:
the total correction to the energy in a given basis set is approx-
imated by the sum of local LDA corrections obtained, at each
point, from an uniform electron gas with a specific electron-
electron interaction which approximately coincides with the
local effective interaction obtained in the basis set. Within
the LDA approximation, the final working equation for our
basis-correction scheme is thus

EB,ΨB

FCI+LDA = EB
FCI + ĒB,ΨB

LDA [nΨB
FCI

]. (41)

We will refer to this approach as FCI+LDAΨB where ΨB indi-
cates the wave function used to define the effective interaction
within the basis set B employed in the calculation.

F. Basis-set-corrected CIPSI:
The CIPSI+LDAΨB approach

Equation (41) requires the calculation of the FCI energy
and density whose computational cost can be rapidly pro-
hibitive. In order to remove this bottleneck, we propose here
a similar approximation to correct the so-called CIPSI Q5energy
which can be used to approximate the FCI energy in systems
where the latter is out of reach.

1. The CIPSI algorithm in a nutshell

The CIPSI algorithm approximates the FCI wave function
through an iterative selected CI procedure and the FCI energy
through a second-order multi-reference perturbation theory.
The CIPSI algorithm belongs to the general class of meth-
ods built upon selected CI4–10 which have been successfully
used to converge to FCI correlation energies, one-body prop-
erties, and nodal surfaces.8,37–44 The CIPSI algorithm used
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in this work uses iteratively enlarged selected CI spaces and
Epstein–Nesbet45,46 multi-reference perturbation theory. The
CIPSI energy is

ECIPSI = Ev + E(2), (42)

where Ev is the variational energy

Ev = min
{cI }

〈Ψ(0) |Ĥ |Ψ(0)〉

〈Ψ(0) |Ψ(0)〉
, (43)

where the reference wave function |Ψ(0)〉 =
∑

I ∈R cI |I〉 is
expanded in Slater determinants I within the CI reference space
R, and E(2) is the second-order energy correction

E(2) =
∑
κ

|〈Ψ(0) |Ĥ |κ〉|2

Ev − 〈κ |H |κ〉
=

∑
κ

e(2)
κ , (44)

where κ denotes the determinant outside R. To reduce the cost
of the evaluation of the second-order energy correction, the
semi-stochastic multi-reference approach of Garniron et al.47

was used, adopting the technical specifications recommended
in that work. The CIPSI energy is systematically refined by
doubling the size of the CI reference space at each itera-
tion, selecting the determinants κ with the largest |e(2)

κ |. The
calculations are stopped when a target value of E(2) is reached.

2. Working equations for the CIPSI+LDAΨB approach

The CIPSI algorithm being an approximation to FCI, one
can straightforwardly apply the DFT correction developed in
this work to correct the CIPSI energy error due to the basis
set. For a given basis set B and a given reference wave func-
tion Ψ(0), one can estimate the FCI energy and density by the
following approximations:

EB
FCI ≈ EB

CIPSI, (45)

nΨB
FCI

(r) ≈ nBCIPSI(r), (46)

with
nBCIPSI(r) = 〈Ψ(0) |n̂(r)|Ψ(0)〉. (47)

Assuming these approximations, for a given choice of ΨB to
define the effective interaction and within the LDA approxi-
mation of Eq. (40), one can define the corrected CIPSI energy
as

EB,ΨB

CIPSI+LDA
ΨB
= EB

CIPSI + ĒB,ΨB

LDA [nBCIPSI(r)]. (48)

Note that the reference wave function Ψ(0) can be used for
the definition of the effective interaction through its two-body
density matrix [see Eq. (22)], but we leave that for further
investigation and for the rest of the calculations, we use the
HF wave function for ΨB in the definition of the effective
interaction, and we denote the method by CIPSI+LDAHF.

III. NUMERICAL TESTS: TOTAL ENERGY
OF HE AND IONIZATION POTENTIALS
FOR THE B-Ne ATOMIC SERIES

For the present study, we use the LDA approximation of
Eq. (40) and investigate the convergence of the total energies
and energy differences as a function of the basis set. All cal-
culations were performed with Quantum Package48 using the
Dunning aug-cc-pVXZ basis sets which are referred here as
AVXZ.

FIG. 4. Convergence of the total energy of the helium atom for FCI and
FCI+LDA

ΨB , where ΨB is either the HF or FCI wave function, as a function
of the inverse of the cardinal number X of the AVXZ basis sets (X = 2, 3, 4,
5, 6). The exact non-relativistic (NR) energy is also reported.

A. FCI+DFT: Total energy of the helium atom

We report in Fig. 4 and Table I the convergence of the
total energies computed for the helium atom in the Dunning
basis sets AVXZ (X = 2, 3, 4, 5, 6) using FCI and FCI+LDAΨB

where ΨB is either the HF or FCI wave function. The first
striking observation from these data is that the FCI+LDAΨB

energies rapidly converge to the exact energy as one increases
the size of the basis set and that FCI+LDAΨB is systemati-
cally closer to the exact energy than the FCI energy. Also,

one can observe that ĒB,ΨB

LDA [nB(r)] overestimates the correla-
tion energy (in absolute value) for the AV3Z basis and the
larger ones, which is consistent with the fact that LDA is
known to give more negative correlation energies in regular

Kohn-Sham DFT or in RS-DFT. Interestingly, ĒB,ΨB

LDA [nB(r)]
is almost independent of the choice of the wave function ΨB

used for the definition of the effective interaction within B, as
the FCI+LDAHF and FCI+LDAFCI energies are overall very
close and get closer as one increases the size of the basis set.
This last point is the numerical illustration that, in the limit
of a complete basis set, the effective interaction is indepen-
dent of the wave functionΨB [see Eq. (30)]. Nevertheless, one
observes that the correction obtained using the FCI wave func-
tion forΨB is systematically smaller in absolute value than the
one obtained with the HF wave function for ΨB. This result
can be qualitatively understood by noticing that the introduc-
tion of the HF two-body density matrix in Eq. (22) reduces

TABLE I. Total energies (in Hartree) of the helium atom and errors (in mH)
with respect to the exact non-relativistic energy for FCI, FCI+LDAHF, and
FCI+LDAFCI with the AVXZ basis sets (X = 2, 3, 4, 5, 6).

FCI FCI+LDAHF FCI+LDAFCI

Total energy Error Total energy Error Total energy Error

AV2Z �2.88 955 14.17 �2.90 040 3.3187 �2.89 976 3.962
AV3Z �2.90 060 03.12 �2.90 489 �1.1698 �2.90 456 �0.840
AV4Z �2.90 253 01.18 �2.90 430 �0.5849 �2.90 418 �0.460
AV5Z �2.90 320 00.52 �2.90 409 �0.3710 �2.90 404 �0.321
AV6Z �2.90 346 00.26 �2.90 396 �0.2367 �2.90 394 �0.217

Exact non-relativistic total energy �2.90 372
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the number of two-electron integrals involved in the defini-
tion of WΨB (X1, X2) [see Eq. (27)]. This reduction implies
that the effective interaction WHF(X1, X2) misses a part of the
interaction within the basis set, namely, the repulsion between
electrons in virtual orbitals. However, the fact that ĒB,HF

LDA [n(r)]

and ĒB,FCI
LDA [n(r)] are close suggests that ĒB,HF

LDA [n(r)] misses
only a small part of the interaction. This statement can be
intuitively understood by noticing that some two-electron inte-
grals involved in the definition of WHF(X1, X2) are of the type
Vab

ij (where i, j and a, b run over the occupied and virtual
orbitals, respectively) which are the ones giving rise to the
dominant part of the MP2 correlation energy in a given basis
set.

B. CIPSI+LDA: Total energies and energy differences
for atomic systems
1. Convergence of the CIPSI+LDAHF total energy
with the number of determinants

We report in Fig. 5, in the case of the oxygen ground
state using the AV4Z basis set, the convergence of the varia-
tional energy Ev, the CIPSI energy, the CIPSI+LDAHF energy,
and the LDA correction ĒB,HF

LDA [nBCIPSI(r)] as a function of the
number of Slater determinants in the reference wave func-
tion. The behavior of Ev and ECIPSI reported in Fig. 5 is
typical of a CIPSI calculation: a rapid convergence of the vari-
ational energy and an even faster convergence of the CIPSI
energy. In this case, ECIPSI with a reference wave function
including 2 × 103 and 5 × 105 determinants provides an

estimation of the FCI energy with an error smaller than 1 mH
and 0.1 mH, respectively, whereas the size of the FCI space of
this system for this basis set is approximately of 1011 determi-
nants. Regarding ĒB,HF

LDA [nBCIPSI(r)], it varies by about 0.08 mH
between 100 and 4 × 106 determinants. The very small vari-
ation of ĒB,HF

LDA [nBCIPSI(r)] can be qualitatively understood by
noticing that, within the LDA approximation of Eq. (40) and
choosing a HF wave function for ΨB to define the effective
interaction, ĒB,HF

LDA [nBCIPSI(r)] only depends on the one-body
density which is known to converge rapidly with the level
of correlation treatment, especially for atomic systems. To
conclude this part of the study, it can be stated that the con-
vergence of the CIPSI+LDAHF energy is only limited by the
convergence of the CIPSI algorithm itself as ĒB,HF

LDA [nBCIPSI(r)]
converges rapidly with the quality of the wave function.

2. The ionization potentials of the B-Ne series
using CIPSI+LDAHF

In order to investigate how the correction ĒB,ΨB

LDA [nB(r)]
performs for energy differences, we report calculations of IPs
for the B-Ne series using Dunning AVXZ basis sets (X = 2, 3,
4, 5). These quantities have already been investigated at the ini-
tiator FCI Quantum Monte Carlo (i-FCIQMC) level by Alavi
and co-workers,49 and the authors have shown that obtain-
ing errors of the IPs of the order of 1 mH for these simple
atomic systems having at most ten electrons requires the use
of large basis sets. As FCI in large basis sets is rapidly out
of reach for these systems, here we use the CIPSI+LDAHF

FIG. 5. Convergence of the variational total energy Ev, the CIPSI total energy, and the CIPSI+LDAHF total energy (left plot), and of the LDA correction
ĒB,HF

LDA [nBCIPSI(r)] (right plot) of the oxygen atom as a function of the number of Slater determinants in the reference wave function using the AV4Z basis set.
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method. The total energies are reported in Table II and the IPs in
Table III. A graphical representation of the errors with respect
to the estimated exact non-relativistic IPs at the CIPSI and
CIPSI+LDAHF levels is also reported in Fig. 6. All electrons
were correlated with the CIPSI calculations, and the calcula-
tions were stopped when |E(2)| < 10−3 Hartree, except for the
Ne atom with the AV5Z basis set for which the calculation was
stopped at |E(2)| = 1.3 × 10−3 Hartree.

From Table II, it clearly appears that all available i-
FCIQMC total energies values are perfectly reproduced by
the CIPSI total energies, which can thus be considered as

good approximations of the FCI energies. Also, consider-
ing the small threshold on |E(2)| and that the LDA correction
ĒB,HF

LDA [nBCIPSI(r)] converges rapidly with respect to the num-
ber of Slater determinants (see Fig. 5), the approximation
of Eq. (46) can be considered as valid, and therefore, our
CIPSI+LDAHF results can be considered as virtually identical
to the ones that would be obtained with FCI+LDAHF. Finally,
the CIPSI+LDAHF total energies obtained with the AV5Z basis
set are remarkably close to the estimated exact total energies
for the whole series, with an error ranging from 3.8 mH for
the B+ cation to 7.2 mH for the Ne atom.

TABLE II. Total energies (in Hartree) of the neutral atoms and first cations for the B-Ne series with the AVXZ
basis sets (X = 2, 3, 4, 5) using CIPSI and CIPSI+LDAHF. The i-FCIQMC values from Ref. 49 are also reported
for comparison with CIPSI.

Method AV2Z AV3Z AV4Z AV5Z Exact NRa

B i-FCIQMCb
�24.59 242(1) �24.60 665(2) �24.62 407(11) �24.63 023(2) �24.65 390

CIPSI �24.592 418 �24.606 654 �24.624 109 �24.630 233
CIPSI+LDAHF �24.641 525 �24.641 706 �24.648 135 �24.650 243

B+ i-FCIQMCb
�24.29 450(1) �24.30 366(2) �24.32 005(2) �24.32 553(9)

CIPSI �24.294 496 �24.303 660 �24.320 044 �24.325 531 �24.34 889
CIPSI+LDAHF �24.338 930 �24.336 580 �24.343 043 �24.345 024

C i-FCIQMCb
�37.76 656(1) �37.79 163(2) �37.81 301(2) �37.82 001(4)

CIPSI �37.766 573 �37.791 623 �37.813 025 �37.820 016 �37.8 450
CIPSI+LDAHF �37.824 730 �37.830 667 �37.838 253 �37.840 544

C+ i-FCIQMCb
�37.35 960(1) �37.37 967(2) �37.39 991(1) �37.40 605(1)

CIPSI �37.359 602 �37.379 703 �37.399 932 �37.406 342 �37.43 095
CIPSI+LDAHF �37.413 086 �37.416 631 �37.424 109 �37.426 321

N i-FCIQMCb
�54.48 881(2) �54.52 797(1) �54.55 423(3) �54.56 303(2)

CIPSI �54.488 814 �54.527 941 �54.554 235 �54.563 027 �54.5 893
CIPSI+LDAHF �54.556 940 �54.571 576 �54.581 128 �54.584 048

N+ i-FCIQMC b
�53.96 106(10) �53.99 535(1) �54.01 838(1) �54.02 865(2)

CIPSI �53.961 062 �53.995 355 �54.020 414 �54.028 633 �54.0 546
CIPSI+LDAHF �54.024 314 �54.036 820 �54.046 204 �54.049 068

O i-FCIQMCb
�74.92 772(2) �74.99 077(4) �75.02 534(4) �75.03 749(6)

CIPSI �74.927 696 �74.990 750 �75.025 340 �75.037 527 �75.0 674
CIPSI+LDAHF �75.014 946 �75.044 685 �75.057 889 �75.061 639

O+ i-FCIQMCb
�74.444 194(6) �74.49 701(1) �74.52 799(4) �74.53 869(6)

CIPSI �74.444 191 �74.497 018 �74.527 968 �74.538 630 �74.5 669
CIPSI+LDAHF �74.517 650 �74.543 804 �74.556 296 �74.560 233

F i-FCIQMCb
�99.55 223(1) �99.64 036(2) �99.68 460(10) �99.70 029(5)

CIPSI �99.552 228 �99.640 295 �99.684 561 �99.700 258 �99.7 341
CIPSI+LDAHF �99.658 315 �99.704 195 �99.722 750 �99.727 639

F+ i-FCIQMCb
�98.923 015(6) �99.00 542(1) �99.04 599(3) �99.06 082(4)

CIPSI �98.923 000 �99.005 441 �99.046 481 �99.060 808 �99.0 930
CIPSI+LDAHF �99.016 909 �99.062 981 �99.080 847 �99.085 872

Ne i-FCIQMCb
�128.71 145(3) �128.82 577(5) �128.88 065(6) . . .

CIPSI �128.711 476 �128.825 813 �128.880 658 �128.900 438 �128.9 383
CIPSI+LDAHF �128.835 474 �128.898 894 �128.924 219 �128.931 038

Ne+ i-FCIQMCb
�127.92 411(2) �128.03 691(2) �128.08 816(11) . . .

CIPSI �127.924 068 �128.036 898 �128.088 901 �128.107 479 �128.1 437
CIPSI+LDAHF �128.037 019 �128.104 203 �128.128 973 �128.135 914

aEstimated exact non-relativistic (NR) values from Ref. 50.
bFrom Ref. 49. The statistical errors are given in parentheses.
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TABLE III. IPs (in mH) calculated by CIPSI and CIPSI+LDAHF for the B-Ne series with the AVXZ basis sets
(X = 2, 3, 4, 5). The errors with respect to the estimated exact non-relativistic values are given in parentheses.

Method AV2Z AV3Z AV4Z AV5Z Exact NRa

B CIPSI 297.92 (7.05) 302.99 (1.98) 304.06 (0.91) 304.70 (0.27) 304.98
CIPSI+LDAHF 302.59 (2.38) 305.12 (�0.14) 305.09 (�0.11) 305.21 (�0.23)

C CIPSI 406.97 (7.10) 411.92 (2.15) 413.09 (0.98) 413.67 (0.40) 414.08
CIPSI+LDAHF 411.64 (2.43) 414.03 (0.04) 414.14 (�0.06) 414.22 (�0.14)

N CIPSI 527.75 (7.13) 532.58 (2.30) 533.82 (1.06) 534.39 (0.49) 534.89
CIPSI+LDAHF 532.62 (2.26) 534.75 (0.13) 534.92 (�0.03) 534.97 (�0.08)

O CIPSI 483.50 (16.90) 493.73 (6.67) 497.37 (3.03) 498.89 (1.51) 500.41
CIPSI+LDAHF 497.29 (3.11) 500.88 (�0.47) 501.59 (�1.18) 501.40 (�0.99)

F CIPSI 629.22 (11.90) 634.85 (6.27) 638.07 (3.05) 639.45 (1.67) 641.13
CIPSI+LDAHF 641.40 (�0.27) 641.21 (�0.08) 641.90 (�0.77) 641.76 (�0.63)

Ne CIPSI 787.40 (7.23) 788.91 (5.72) 791.75 (2.88) 792.95 (1.68) 794.64
CIPSI+LDAHF 798.45 (�3.81) 794.69 (�0.05) 795.24 (�0.60) 795.12 (�0.48)

aEstimated exact non-relativistic (NR) values from Ref. 50.

Regarding the quality of the IPs (Table III and Fig. 6),
at the near FCI level (either i-FCIQMC or CIPSI), the typical
chemical accuracy of 1 kcal/mol (≈1.6 mH) is reached with
the AV4Z basis set for the B, C, and N atoms, whereas such a
level of accuracy is barely reached with the AV5Z basis set for
the O, F, and Ne atoms. This illustrates how demanding the
accurate computation of energy differences on these simple
atomic systems is. Also one can notice that the IPs computed
at the CIPSI level are systematically very small compared to
the estimated exact values, showing that the cations are sys-
tematically better described than the neutral atoms in a given
basis set. This result can be intuitively understood by the fact
that the neutral atom has necessarily more correlated electron
pairs than the cation and therefore, in the same basis, the cation
is favored.

Considering now the convergence of the results obtained
at the CIPSI+LDAHF level with respect to the basis set, it is
striking to observe how the addition of the DFT correction
improves the accuracy of the energy differences, with a sub-
kcal/mol accuracy being obtained for all atoms from the AV3Z
to the AV5Z basis sets. With the AV2Z basis set, the error is
overall strongly reduced, the average error being about 3 mH

at the CIPSI+LDAHF, whereas it is of about 9 mH at the CIPSI
level. From the AV3Z and larger basis sets, the maximum error
occurs for the IP of the oxygen atom, which is overestimated
by only 1.1 mH with the AV4Z basis set and by 0.9 mH with
the AV5Z basis set, showing the accuracy of the approach. One
can nevertheless observe a global trend of CIPSI+LDAHF to
overestimate the IP, which is due to an over-correlation of the
neutral species.

3. A case study: The oxygen atom and cation

In order to better understand how ĒB,HF
LDA [nBCIPSI(r)] corrects

for the basis-set incompleteness and its impact on the energy
differences, we perform a detailed study of the behavior of two
quantities related to ĒB,HF

LDA [nBCIPSI(r)] for the oxygen atom and
its first cation.

We first define the spherically averaged local basis-set
correction as

ĒB
LDA(r) =

∫∫
dΩ r2nBCIPSI(r) ε̄sr,unif

c,md

(
nBCIPSI(r); µ(r; HF)

)
such that ∫

dr ĒB
LDA(r) = ĒB,HF

LDA [nBCIPSI(r)], (49)

FIG. 6. Errors on the IPs calculated at the CIPSI (left plot) and CIPSI+LDAHF (right plot) levels for the B-Ne series with the AVXZ basis sets (X = 2, 3, 4, 5).
Note the different scales of the two plots.
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where we use the largest CIPSI wave function to obtain the
density nBCIPSI(r). With ĒB

LDA(r), one can analyze in real space

how ĒB,HF
LDA [nBCIPSI(r)] corrects for the incompleteness of the

basis set in near FCI calculations.
We report in Fig. 7 the plot of ĒB

LDA(r) for the oxygen atom
and its cation for different basis sets. One can observe that,
with all basis sets used here, the LDA correction for the neu-
tral atom is overall larger in absolute value than for the cation,
which confirms that the cation is better described in a given
basis set than the neutral atom. Also, it clearly explains why
ĒB,HF

LDA [nBCIPSI(r)] has a differential effect on the IPs. Regard-
ing the behavior as a function of the distance to the nucleus,
all the curves show that the dominant contributions, in abso-
lute value, are in the region of high density. As expected,
ĒB

LDA(r) gets smaller as the size of the basis set is increased.
With the largest basis set, ĒB

LDA(r) is small in the valence shell
(r > 0.5 bohr) but remains substantial in the core region. The
fact that the basis sets used here do not contain functions opti-
mized for core correlation explains why the LDA correction

remains important in the core region, even with the AV5Z basis
set.

In order to investigate the differential impact of the DFT
correction on O and O+, we also define the following function:

∆ĒB
LDA(r) = ĒB

LDA,O(r) − ĒB
LDA,O+ (r). (50)

We report in Fig. 8 the values of ∆ĒB
LDA(r) for differ-

ent basis sets. It clearly appears that the differential effects
are mainly located in the valence region, which is what is
expected since the electron can be qualitatively considered to
be removed from the valence region. Also, except for the inner
core region, ∆ĒB

LDA(r) is always negative which means that

ĒB,HF
LDA [nBCIPSI(r)] corrects more the neutral atom than the cation

for the basis-set incompleteness. The fact that ∆ĒB
LDA(r) is

positive near 0.1 bohr means that the cation is more correlated
in this region, which could be a sign that the two 1s elec-
trons are closer to each other in the cation than in the neutral
atom.

FIG. 7. Behavior of ĒB
LDA(r) for the AV2Z and AV3Z basis sets (left plot) and AV4Z and AV5Z basis sets (right plot) for the oxygen atom and its first cation.
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FIG. 8. Behavior of ∆ĒB
LDA(r) for the AV2Z and AV3Z basis sets (left plot) and AV4Z and AV5Z basis sets (right plot) for the oxygen atom.

IV. CONCLUSION

In the present work, we have proposed a theory based
on DFT to correct for the basis-set incompleteness of WFT.
The key point here is the definition of a local range-separation
parameter µ(r) which automatically adapts to the basis set.

Both the exact theory (see Sec. II A) and a series of approx-
imations (see Secs. II B, II E, and II F) were derived for FCI and
selected CI wave functions. Our theory combines WFT with a
complementary density functional, as in RS-DFT. Unlike the
latter theory, the electron-electron interaction is split directly
in the one-electron basis set (see Sec. II A). Here, the part of
the electron-electron interaction expanded in the basis set is
treated by WFT and the remaining interaction by the density
functional. Thanks to a definition of the real-space represen-
tation of the basis-set-projected electron-electron interaction
(see Sec. II D), we show that the effect of the incompleteness of
a given basis set can be mapped into a non-diverging effective
electron-electron interaction. We derive some of the important
exact properties of the effective electron-electron interaction
(see Appendix B and Sec. II D 2), which helps us to physi-
cally motivate such a choice for an effective electron-electron
interaction. A mapping between RS-DFT and our theory is
proposed through the non-diverging behavior of the interac-
tions in both theories (see Sec. II C), and such a mapping
is done in practice through a comparison at coalescence of
the effective electron-electron interaction with the long-range
interaction used in the RS-DFT framework (see Sec. II D 4).
More specifically, this link between the basis-set splitting and
range separation of the electron-electron interaction is done
through the definition of a range-separation parameter µ(r)
which now depends on the spatial coordinate in IR3. The

computation of µ(r) nonetheless requires the computation of
two-electron integrals. This allows us to benefit from all pre-
existing methodologies developed in the RS-DFT framework
and therefore to produce numerically tractable approxima-
tions for our theory (see Sec. II E for the definition of an
LDA-like functional in the present context). As the local range-
separation parameter µ(r) is automatically defined for a given
physical system in a given basis set, we completely remove
the choice of the parameter µwhich is inherent in the RS-DFT
framework. Also this local range-separation parameter µ(r)
can be seen as a measure of the incompleteness of a given
basis set together with its non-uniformity in the description
of the correlation effects in IR3. Finally, our theory produces
a DFT-based correction for a given basis set which is added
to the approximation of the FCI energy obtained in the same
basis set.

We performed numerical tests both for total energies and
energy differences for atomic systems (see Sec. III). Using
FCI wave functions (see Sec. III A), we demonstrated that our
approach is able to accelerate the basis convergence toward the
exact non-relativistic total energy for the helium atom, which
numerically illustrates its systematically improvable character.
Then, we investigated the accuracy of our basis-set corrected
CIPSI approach to describe the IPs of the B-Ne series (see
Sec. III B) which are known to be challenging for WFT meth-
ods, even at the near FCI level. The main result of this study is
that the level of accuracy of the energy differences is drastically
improved even using the small aug-cc-pVDZ basis set and that
a sub-kcal/mol error is reached for all atoms from the aug-cc-
pVTZ up to the aug-cc-pV5Z basis sets. Such results have to be
compared with near FCI results for which a comparable error is
barely reached only using the aug-cc-pV5Z basis set. In order
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to have a better understanding of the origin of the systematic
improvement of IPs brought by the DFT correction, we per-
formed a detailed study of the oxygen atom and its first cation
(see Sec. III B 3). By introducing spherical averaged quantities,
we show that the major differential contribution brought by the
DFT correction comes from the valence region, which is phys-
ically meaningful and therefore tends to confirm that the good
results obtained with our approach do not come from fortuitous
error cancellations. Finally, it is important to stress here that the
computational cost of the DFT corrections used here represents
a negligible percentage of the computational cost of the CIPSI
calculations.

APPENDIX A: DERIVATION OF THE REAL-SPACE
REPRESENTATION OF THE EFFECTIVE
INTERACTION PROJECTED ON A BASIS SET

The exact Coulomb electron-electron operator can be
expressed in real-space second quantization as

Ŵee =
1
2

∫∫∫∫
dX1 dX2 dX3 dX4δ(X1 − X4) δ(X2 − X3)

×
1

|r1 − r2 |
Ψ̂
†(X4)Ψ̂†(X3)Ψ̂(X2)Ψ̂(X1), (A1)

where Ψ̂(X) and Ψ̂†(X) are the annihilation and creation field
operators, and X = (r,σ) collects the space and spin variables.
The Coulomb electron-electron operator restricted to a basis
set B can be written in orbital-space second quantization as

ŴB
ee =

1
2

∑
ijkl ∈ B

V kl
ij â†k â†l âjâi, (A2)

where the summations run over all (real-valued) orthonormal
spin-orbitals{φi(X)} in the basis setB, V kl

ij are the two-electron
integrals, and the annihilation and creation operators can be
written in terms of the field operators as

âi =

∫
dX φi(X) Ψ̂(X), (A3)

â†i =
∫

dX φi(X) Ψ̂†(X). (A4)

Therefore, by defining

wB(X1, X2, X3, X4) =
∑

ijkl ∈ B
V kl

ij φk(X4)φl(X3)φj(X2)φi(X1),

(A5)
we can rewrite ŴB

ee in real-space second quantization as

ŴB
ee =

1
2

∫∫∫∫
dX1 dX2 dX3 dX4 w

B(X1, X2, X3, X4)

× Ψ̂†(X4)Ψ̂†(X3)Ψ̂(X2)Ψ̂(X1). (A6)

In the limit of a complete basis set (written as “B→ ∞”), ŴB
ee

coincides with Ŵ ee

lim
B→∞

ŴB
ee = Ŵee, (A7)

which implies that

lim
B→∞

wB(X1, X2, X3, X4) = δ(X1 − X4) δ(X2 − X3)
1

|r1 − r2 |
.

(A8)

It is important here to stress that the definition
wB(X1, X2, X3, X4) tends to a distribution in the limit of a
complete basis set, and therefore, such an object must really
be considered as a distribution acting on test functions and
not as a function to be evaluated pointwise. This is why we
need to use an expectation value in order to make sense out of
wB(X1, X2, X3, X4).

From Eq. (A1), the expectation value of the Coulomb
electron-electron operator over a wave function Ψ is, after
integration over X3 and X4,

〈Ψ|Ŵee |Ψ〉 =
1
2

∫∫
dX1 dX2

1
|r1 − r2 |

× 〈Ψ|Ψ̂†(X1)Ψ̂†(X2)Ψ̂(X2)Ψ̂(X1)|Ψ〉, (A9)

which, by introducing the two-body density matrix,

n(2)
Ψ

(X1, X2, X3, X4) = 〈Ψ|Ψ̂†(X4)Ψ̂†(X3)Ψ̂(X2)Ψ̂(X1)|Ψ〉,

(A10)

turns into

〈Ψ|Ŵee |Ψ〉 =
1
2

∫∫
dX1 dX2

1
|r1 − r2 |

n(2)
Ψ

(X1, X2), (A11)

where n(2)
Ψ

(X1X2) = n(2)
Ψ

(X1, X2, X2, X1) is the pair density of
Ψ. Equation (A11) holds for any wave function Ψ. Consider
now the expectation value of ŴB

ee over a wave function ΨB.
From Eq. (A6), we get

〈ΨB |ŴB
ee |Ψ

B〉 =
1
2

∫∫∫∫
dX1 dX2 dX3 dX4w

B(X1, X2, X3, X4)

× n(2)
ΨB (X1, X2, X3, X4), (A12)

where n(2)
ΨB (X1, X2, X3, X4) is expressed as

n(2)
ΨB (X1, X2, X3, X4)

=
∑

mnpq ∈ B
φp(X4)φq(X3)φn(X2)φm(X1) Γpq

mn[ΨB],

(A13)

and Γpq
mn[ΨB] is the two-body density tensor of ΨB

Γ
pq
mn[ΨB] = 〈ΨB |â†pâ†qânâm |Ψ

B〉. (A14)

By integrating over Q6X3 and X4 in Eq. (A12), we obtain

〈ΨB |ŴB
ee |Ψ

B〉 =
1
2

∫∫
dX1 dX2 fΨB (X1, X2), (A15)

where we introduced the function

fΨB (X1, X2)

=
∑

ijklmn ∈ B
V kl

ij Γ
mn
kl [ΨB]φn(X2)φm(X1)φi(X1)φj(X2).

(A16)

From the definition of the restriction of an operator to the space
generated by the basis set B, we have the following equality:

〈ΨB |ŴB
ee |Ψ

B〉 = 〈ΨB |Ŵee |Ψ
B〉, (A17)

which translates into
1
2

∫∫
dX1 dX2 fΨB (X1, X2)

=
1
2

∫∫
dX1 dX2

1
|r1 − r2 |

n(2)
ΨB (X1, X2) (A18)
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and holds for any ΨB. Therefore, by introducing the following
function:

WΨB (X1, X2) =
fΨB (X1, X2)

n(2)
ΨB (X1, X2)

, (A19)

one can rewrite Eq. (A18) as∫∫
dX1 dX2 WΨB (X1, X2) n(2)

ΨB (X1, X2)

=

∫∫
dX1 dX2

1
|r1 − r2 |

n(2)
ΨB (X1, X2). (A20)

APPENDIX B: BEHAVIOR OF THE EFFECTIVE
ELECTRON-ELECTRON INTERACTION WΨB (X1, X2)
IN THE LIMIT OF A COMPLETE BASIS SET

To study how WΨB (X1, X2) behaves in the limit of a com-
plete basis set, one needs to study only fΨB (X1, X2). By explic-
iting the two-electron integrals, fΨB (X1, X2) can be written
as

fΨB (X1, X2) =
∑

ijklmn ∈B
Γ

mn
kl [ΨB]φn(X2)φm(X1)φi(X1)φj(X2)

×

∫∫
dXdX′φk(X)φl(X′)φi(X)φj(X′)

1
��r − r′��

,

(B1)

which, after regrouping the summations over the indices i and
j, becomes

fΨB (X1, X2) =
∑

mnkl ∈ B
Γ

mn
kl [ΨB]φn(X2)φm(X1)

×

∫
dX *

,

∑
i ∈ B

φi(X1)φi(X)+
-
φk(X)

×

∫
dX′ *.

,

∑
j ∈ B

φj(X2)φj(X′)
+/
-
φl(X′)

1
��r − r′��

.

(B2)

One can recognize in Eq. (B2) the expression of the restriction
of a Dirac distribution to the basis set B

δB(Y − Y′) =
∑
i ∈ B

φi(Y)φi(Y′). (B3)

Such a distribution δB(Y − Y′) maintains the standard Dirac
distribution properties only when applied to functions which
are exactly representable in B. More precisely, if g is a test
function from R3 to R, gB is its component in B, and g⊥ is the
orthogonal component

g = gB + g⊥ with
∫

dr gB(r) g⊥(r) = 0, (B4)

then∫
dr δB(r − r′) g(r) = g(r′) iff g⊥(r′) = 0 ∀ r′. (B5)

In the limit of a complete basis set, the function φl(X′) 1
|r−r′ |

is necessarily within B, and thus, one has

lim
B→∞

∫
dX′ δB(X2 − X′)φl(X′)

1
��r − r′��

= φl(X2)
1

|r − r2 |

(B6)

and

lim
B→∞

∫
dX δB(X1 − X)φk(X)

∫
dX′

δB(X2 − X′)φl(X′)
��r − r′��

= φk(X1) φl(X2)
1

|r1 − r2 |
. (B7)

Inserting this expression into fΨB (X1, X2) leads to

lim
B→∞

fΨB (X1, X2) =
∑

klmn ∈ B
Γ

mn
kl [ΨB]φm(X1) φn(X2)

× φl(X2) φk(X1)
1

|r1 − r2 |
, (B8)

which is nothing but

lim
B→∞

fΨB (X1, X2) = n(2)
ΨB (X1, X2)

1
|r1 − r2 |

. (B9)

Therefore, in the limit of a complete basis set, the effective
electron-electron interaction WΨB (X1, X2) correctly reduces
to the true Coulomb interaction for all points (X1, X2)

lim
B→∞

WΨB (X1, X2) =
1

|r1 − r2 |
, ∀ (X1, X2) and ΨB. (B10)
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