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We explore the possibility of calculating electronic excited states by using perturbation theory along a range-separated
adiabatic connection. Starting from the energies of a partially interacting Hamiltonian, a first-order correction is defined
with two variants of perturbation theory: a straightforward perturbation theory and an extension of the Görling–Levy one
that has the advantage of keeping the ground-state density constant at each order in the perturbation. Only the first, simpler,
variant is tested here on the helium and beryllium atoms and on the hydrogen molecule. The first-order correction within
this perturbation theory improves significantly the total ground- and excited-state energies of the different systems. However,
the excitation energies mostly deteriorate with respect to the zeroth-order ones, which may be explained by the fact that the
ionisation energy is no longer correct for all interaction strengths. The second (Görling–Levy) variant of the perturbation
theory should improve these results but has not been tested yet along the range-separated adiabatic connection.

Keywords: excitation energies; range separation; perturbation theory; adiabatic connection

1. Introduction

In density-functional theory (DFT) of quantum electronic
systems, the most widely used approach for calculat-
ing excitation energies is nowadays linear-response time-
dependent density-functional theory (TDDFT) (see, e.g.,
Refs. [1,2]). However, in spite of many successes, when
applied with the usual adiabatic semilocal approximations,
linear-response TDDFT has serious limitations for describ-
ing systems with static (or strong) correlation [3], double or
multiple excitations [4], and Rydberg and charge-transfer
excitations [5,6]. Besides, the Hohenberg–Kohn theorem
[7] states that the time-independent ground-state density
contains all the information about the system implying that
time-dependence is in principle not required to describe
excited states.

Several time-independent DFT approaches for calculat-
ing excitation energies exist and are still being developed.
A first strategy consists of simultaneously optimising an en-
semble of states. Such an ensemble DFT was pioneered by
Theophilou [8] and by Gross, Oliveira and Kohn [9] and is
still a subject of research [10–13], but it is hampered by the
absence of appropriate approximate ensemble functionals.
A second strategy is to apply the self-consistent field (SCF)
method to directly optimise a single excited state. This
approach was started by Gunnarsson and Lundqvist [14],
who extended ground-state DFT to the lowest-energy state
in each symmetry class, and developed into the pragmatic

∗
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(multiplet-sum) !SCF method [15,16] (still in use today
[17]) and related methods [18–20]. Great efforts have been
made by Nagy, Görling, Levy, Ayers and others to formu-
late a rigorous self-consistent DFT of an arbitrary individual
excited state [21–33] but a major difficulty is the need to
develop approximate functionals for a specific excited state
(see Ref. [34] for a proposal of such excited-state function-
als). A third strategy, first proposed by Grimme, consists
of using configuration-interaction (CI) schemes in which
modified Hamiltonian matrix elements include information
from DFT [35–38].

Finally, a fourth possible approach, proposed by Görling
[39], is to calculate the excitation energies from Görling–
Levy (GL) perturbation theory [40,41] along the adiabatic
connection using the non-interacting Kohn–Sham (KS)
Hamiltonian as the zeroth-order Hamiltonian. In this ap-
proach, the zeroth-order approximation to the exact excita-
tion energies is provided by KS orbital energy differences
(which, for accurate KS potentials, is known to be already
a fairly good approximation [42–44]). It can be improved
upon by perturbation theory at a given order in the coupling
constant of the adiabatic connection. Filippi, Umrigar, and
Gonze [45] showed that the GL first-order corrections pro-
vide a factor of two improvement on the KS zeroth-order
excitation energies for the He, Li+ and Be atoms when us-
ing accurate KS potentials. For (nearly) degenerate states,
Zhang and Burke [46] proposed to use degenerate second-

C⃝ 2015 Taylor & Francis
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order GL perturbation theory, showing that it works well
for a simple one-dimensional model. This approach is con-
ceptually simple as it uses the standard adiabatic connec-
tion along which the ground-state density is kept constant
(in contrast to approaches introducing generalised adia-
batic connections keeping an excited-state density constant
[21,22,24,29]). In spite of promising early results, this ap-
proach has not been pursued further, perhaps because it can
be considered an approximation to TDDFT [47].

In this work, we explore further this density-functional
perturbation-theory approach for calculating excitation en-
ergies, introducing one key modification in comparison to
the earlier work of Refs. [39,45]: as a zeroth-order Hamilto-
nian, instead of using the non-interacting KS Hamiltonian,
we use a partially interacting Hamiltonian incorporating
the long-range part only of the Coulomb electron–electron
interaction, corresponding to an intermediate point along a
range-separated adiabatic connection [48–53]. The partially
interacting zeroth-order Hamiltonian is of course closer to
the exact Hamiltonian than is the non-interacting KS Hamil-
tonian, thereby putting less demand on the perturbation
theory. In fact, the zeroth-order Hamiltonian can already
incorporate some static correlation.

The downside of this approach is that a many-body
method such as CI theory is required to generate the eigen-
states and eigenvalues of the zeroth-order Hamiltonian.
However, if the partial electron–electron interaction is only
a relatively weak long-range interaction, we expect a faster
convergence of the eigenstates and eigenvalues with re-
spect to the one- and many-electron CI expansion than for
the full Coulomb interaction [52,54], so that a small CI or
multi-configuration self-consistent field (MCSCF) descrip-
tion would be sufficiently accurate.

When using a semi-local density-functional approxima-
tion for the effective potential of the range-separated adi-
abatic connection, the presence of an explicit long-range
electron–electron interaction in the zeroth-order Hamilto-
nian has the additional advantage of preventing the collapse
of the high-lying Rydberg excitation energies [48,55,56].
In contrast to adiabatic TDDFT, double and multiple ex-
citations can be described with this density-functional
perturbation-theory approach, although this possibility was
not explored in Refs. [39,45]. Finally, approximate excited-
state wave functions are obtained in the course of the calcu-
lations, which is useful for interpretative analysis and for the
calculation of properties. We envisage using this density-
functional perturbation theory to calculate excited states af-
ter a range-separated ground-state calculation combining a
long-range CI [57,58] or long-range MCSCF [59,60] treat-
ment with a short-range density functional. This would be a
simpler alternative to linear-response range-separated MC-
SCF theory [61,62] for calculations of excitation energies.

In this work, we study in detail two variants of range-
separated density-functional perturbation theory based ei-
ther on the Rayleigh–Schrödinger (RS) or GL perturbation

theories and test the first, simpler variant on the He and Be
atoms and the H2 molecule, performing accurate calcula-
tions along a range-separated adiabatic connection without
introducing density-functional approximations.

The two variants of the range-separated perturbation
theory are presented in Section 2. Except for the finite basis
approximation, no other approximation is introduced and
the computational details can be found in Section 3. Finally,
the results obtained for the He and Be atoms and for the H2

molecule are discussed in Section 4. Section 5 contains our
conclusions.

2. Range-separated density-functional perturbation
theory

2.1. Range-separated ground-state
density-functional theory

In range-separated DFT (see, e.g., Ref. [52]), the exact
ground-state energy of an N-electron system is obtained
by the following minimisation over normalised multi-
determinantal wave functions "

E0 = min
"

{
⟨"|T̂ + V̂ne + Ŵ lr,µ

ee |"⟩ + Ē
sr,µ
Hxc [n"]

)
}, (1)

where we have introduced the kinetic-energy operator T̂ ,
the nuclear attraction operator V̂ne =

∫
vne(r)n̂(r)dr writ-

ten in terms of the density operator n̂(r), a long-range (lr)
electron–electron interaction

Ŵ lr,µ
ee = 1

2

!
wlr,µ

ee (r12)n̂2(r1, r2)dr1dr2, (2)

written in terms of the error-function interaction wlr,µ
ee (r) =

erf(µr)/r and the pair-density operator n̂2(r1, r2) and
finally the corresponding complement short-range (sr)
Hartree-exchange-correlation density functional Ē

sr,µ
Hxc [n"]

evaluated at the density of ". The density and pair density
are obtained as expectation values of the density and pair
density operators, respectively,

n"(r) = ⟨"|n̂(r)|"⟩, (3)

n2," (r1, r2) = ⟨"|n̂2(r1, r2)|"⟩. (4)

The parameter µ in the error function controls the separa-
tion range, with 1/µ acting as a smooth cut-off radius.

The Euler–Lagrange equation for the minimisation of
Equation (1) leads to the (self-consistent) eigenvalue equa-
tion,

Ĥ lr,µ
∣∣"µ

0

〉
= Eµ

0

∣∣"µ
0

〉
, (5)

where "
µ
0 and Eµ

0 are taken as the ground-state wave
function and associated energy of the partially interacting
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1742 E. Rebolini et al.

Hamiltonian (with an explicit long-range electron–electron
interaction)

Ĥ lr,µ = T̂ + V̂ne + Ŵ lr,µ
ee + ˆ̄V

sr,µ

Hxc , (6)

which contains the short-range Hartree-exchange-
correlation potential operator,

ˆ̄V
sr,µ

Hxc =
∫

v̄
sr,µ
Hxc [n0](r)n̂(r)dr, (7)

where v̄
sr,µ
Hxc [n](r) = δĒ

sr,µ
Hxc [n]/δn(r), evaluated at the

ground-state density of the physical system n0(r) =
⟨"µ

0 |n̂(r)|"µ
0 ⟩ for all µ.

For µ = 0, the Hamiltonian Ĥ lr,µ of Equation (6)
reduces to the standard non-interacting KS Hamiltonian,
Ĥ lr,µ=0 = Ĥ KS, whereas, for µ → ∞, it reduces to
the physical Hamiltonian Ĥ lr,µ→∞ = Ĥ . Therefore, when
varying the parameter µ between these two limits, the
Hamiltonian Ĥ lr,µ defines a range-separated adiabatic con-
nection, linking the non-interacting KS system to the phys-
ical system with the ground-state density kept constant
(assuming that the exact short-range Hartree-exchange-
correlation potential v̄

sr,µ
Hxc (r) is used).

2.2. Excited states from perturbation theory

Excitation energies in range-separated DFT can be obtained
by linear-response theory starting from the (adiabatic) time-
dependent generalisation of Equation (1) [63], where the ex-
cited states and their associated energies are obtained from
time-independent many-body perturbation theory. In stan-
dard KS theory, the single-determinant eigenstates and as-
sociated energies of the non-interacting KS Hamiltonian,

Ĥ KS
∣∣$KS

k

〉
= EKS

k

∣∣$KS
k

〉
, (8)

where Ĥ KS = T̂ + V̂ne + V̂Hxc, give a first approximation
to the eigenstates and associated energies of the physical
Hamiltonian. To calculate excitation energies, two variants
of perturbation theory using the KS Hamiltonian as zeroth-
order Hamiltonian have been proposed [39,45]. We here
extend these two variants of perturbation theory to range-
separated DFT. As a first approximation, it is natural to
use the excited-state wave functions and energies of the
long-range interacting Hamiltonian

Ĥ lr,µ
∣∣"µ

k

〉
= Eµ

k

∣∣"µ
k

〉
, (9)

where Ĥ lr,µ is the Hamiltonian of Equation (6) with the

short-range Hartree-exchange-correlation potential ˆ̄V
sr,µ

Hxc
evaluated at the ground-state density n0. These excited-
state wave functions and energies can then be improved

upon by defining perturbation theories in which the Hamil-
tonian Ĥ lr,µ is used as the zeroth-order Hamiltonian.

2.2.1. RS-based variant of perturbation theory

The simplest way of defining such a perturbation theory is
to introduce the following Hamiltonian dependent on the
coupling constant λ,

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ, (10)

where the short-range perturbation operator is

Ŵ sr,µ = Ŵ sr,µ
ee − ˆ̄V

sr,µ

Hxc , (11)

with the short-range electron–electron interaction

Ŵ sr,µ
ee = (1/2)

!
wsr,µ

ee (r12)n̂2(r1, r2)dr1dr2 (12)

defined with the complementary error-function interaction
wsr,µ

ee (r) = erfc(µr)/r . When varying λ, Equation (10) sets
up an adiabatic connection linking the long-range interact-
ing Hamiltonian at Ĥµ,λ=0 = Ĥ lr,µ, to the physical Hamil-
tonian Ĥµ,λ=1 = Ĥ , for all µ. Importantly, the ground-state
density is not kept constant along this adiabatic connection.

The exact eigenstates and associated eigenvalues of the
physical Hamiltonian can be obtained by standard RS per-
turbation theory – that is by Taylor expanding the eigen-
states and eigenvalues of the Hamiltonian Ĥµ,λ in λ and
setting λ = 1:

|"k⟩ =
∣∣"µ

k

〉
+

∞∑

n=1

∣∣"µ,(n)
k

〉
, (13a)

Ek = Eµ
k +

∞∑

n=1

E
µ,(n)
k , (13b)

where "
µ
k ≡ "

µ,(0)
k and Eµ

k ≡ E
µ,(0)
k act as zeroth-order

eigenstates and energies. Using orthonormalised zeroth-
order eigenstates ⟨"µ

k |"µ
l ⟩ = δkl and assuming non-

degenerate zeroth-order eigenstates, the first-order energy
correction for the state k becomes

E
µ,(1)
k =

〈
"

µ
k

∣∣Ŵ sr,µ
∣∣"µ

k

〉
. (14)

As usual, the zeroth + first-order energy is simply the ex-
pectation value of the physical Hamiltonian over the zeroth-
order eigenstate

E
µ,(0+1)
k = Eµ

k + E
µ,(1)
k =

〈
"

µ
k

∣∣Ĥ
∣∣"µ

k

〉
. (15)

This expression is a multi-determinantal extension of the
exact-exchange KS energy expression for the state k, pro-
posed and studied for the ground state in Refs. [64–66].
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The second-order energy correction is given by

E
µ,(2)
k = −

∑

l ̸=k

|
〈
"

µ
l

∣∣Ŵ sr,µ
∣∣"µ

k

〉
|2

Eµ
l − Eµ

k

, (16)

where the first-order wave-function correction is given by
(using intermediate normalisation so that ⟨"µ

k |"µ,(n)
k ⟩ = 0

for all n ≥ 1)

|"µ,(1)
k ⟩ = −

∑

l ̸=k

〈
"

µ
l

∣∣Ŵ sr,µ
∣∣"µ

k

〉

Eµ
l − Eµ

k

∣∣"µ
l

〉
. (17)

For µ = 0, this perturbation theory reduces to the first
variant of the KS perturbation theory studied by Filippi
et al., see Equation (5) of Ref. [45].

To understand the numerical results in Section 4, we
now consider how the zeroth + first-order energies behave
with respect to µ near the KS system (µ = 0) and near the
physical system (µ → ∞). The total energies up to the first
order in perturbation theory are given by the expectation
value of the full Hamiltonian over the zeroth-order wave
functions in Equation (14). Using the Taylor expansion of
the wave function "

µ
k = $KS

k + µ3"
(3)
k + O(µ5) around

the KS wave function [53], the zeroth + first-order energies
are thus given by

E
µ,(0+1)
k =

〈
$KS

k

∣∣Ĥ
∣∣$KS

k

〉
+ 2µ3

〈
$KS

k

∣∣Ĥ
∣∣"(3)

k

〉
+ O(µ5),

(18)

where "
(3)
k is the contribution entering at the third power of

µ in the zeroth-order wave function.
From the asymptotic expansion of the wave function

"
µ
k = "k + µ−2"

(−2)
k + O(µ−3), which is valid almost ev-

erywhere when µ → ∞ (the electron– electron coalescence
needs to be treated carefully) [53], the first correction to the
zeroth + first-order energies are seen to enter at the fourth
power in 1/µ

E
µ,(0+1)
k = Ek + 1

µ4
E

(0+1,−4)
k + O

(
1
µ6

)
, (19)

where E
(0+1,−4)
k is the contribution entering at the fourth

power of 1/µ.

2.2.2. GL-based variant of perturbation theory

A second possibility is to define a perturbation theory based
on a slightly more complicated adiabatic connection, in
which the ground-state density is kept constant between the
long-range interacting Hamiltonian and the physical Hamil-
tonian, see Appendix 1. The Hamiltonian of Equation (10)

is then replaced by

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ − V̂
sr,µ,λ

c,md , (20)

where Ŵ sr,µ is now defined as

Ŵ sr,µ = Ŵ sr,µ
ee − V̂

sr,µ
Hx,md, (21)

in terms of a short-range ‘multi-determinantal (md)
Hartree-exchange’ potential operator

V̂
sr,µ

Hx,md =
∫

δE
sr,µ
Hx,md[n0]

δn(r)
n̂(r) dr, (22)

and a short-range ‘multi-determinantal correlation’ poten-
tial operator

V̂
sr,µ,λ

c,md =
∫

δE
sr,µ,λ
c,md [n0]

δn(r)
n̂(r) dr, (23)

that depends non-linearly on λ so that the ground-state
density n0 is kept constant for all µ and λ. The den-
sity functionals E

sr,µ
Hx,md[n] and E

sr,µ,λ
c,md [n] are defined in

Appendix 1.
One can show that, for non-degenerate ground-state

wave functions "
µ
0 , the expansion of V̂

sr,µ,λ
c,md in λ for λ →

0 starts at second order

V̂
sr,µ,λ

c,md = λ2 V̂
sr,µ,(2)

c,md + · · · . (24)

Hence, the Hamiltonian of Equation (20) properly reduces
to the long-range Hamiltonian at λ = 0, Ĥµ,λ=0 = Ĥ lr,µ,
whereas, at λ= 1, it correctly reduces to the physical Hamil-
tonian, Ĥµ,λ=1 = Ĥ . This is so because the short-range
Hartree-exchange-correlation potential in the Hamiltonian
Ĥ lr,µ can be decomposed as

ˆ̄V
sr,µ

Hxc = V̂
sr,µ

Hx,md + ˆ̄V
sr,µ

c,md, (25)

where ˆ̄V
sr,µ

c,md = V̂
sr,µ,λ=1

c,md is cancelled by the perturbation
terms for λ = 1. Equation (25) corresponds to an alterna-
tive decomposition of the short-range Hartree-exchange-
correlation energy into Hartree-exchange and correlation
contributions based on the multi-determinantal wave func-
tion "

µ
0 instead of the single-determinant KS wave func-

tion $KS
0 [64–66], which is more natural in range-separated

DFT. This decomposition is especially relevant here since
it separates the perturbation into a Hartree-exchange con-
tribution that is linear in λ and a correlation contribution
containing all the higher order terms in λ.

As before, the first-order energy correction is given
by Equation (14) but with the perturbation operator of
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1744 E. Rebolini et al.

Equation (21), yielding the following energy up to first
order:

E
µ,(0+1)
k = Eµ

k + E
µ,(1)
k =

〈
"

µ
k

∣∣Ĥ + ˆ̄V
sr,µ

c,md

∣∣"µ
k

〉
. (26)

The second-order energy correction of Equation (16) be-
comes

E
µ,(2)
k = −

∑

l ̸=k

∣∣〈"µ
l

∣∣Ŵ sr,µ
∣∣"µ

k

〉∣∣2

Eµ
l − Eµ

k

−
〈
"

µ
k

∣∣V̂ sr,µ,(2)
c,md

∣∣"µ
k

〉
,

(27)
whereas the expression of the first-order wave function cor-
rection is still given by Equation (17) but with the pertur-
bation operator of Equation (21).

For µ = 0, this density-fixed perturbation theory re-
duces to the second variant of the KS perturbation theory
proposed by Görling [39] and studied by Filippi et al. [Equa-
tion (6) of Ref. [45]], which is simply the application of GL
perturbation theory [40,41] to excited states. In Ref. [45], it
was found that the first-order energy corrections in density-
fixed KS perturbation theory provided on average a factor
of two improvement on the KS zeroth-order excitation en-
ergies for the He, Li+ and Be atoms when using accurate
KS potentials. By contrast, the first-order energy correc-
tions in the first variant of KS perturbation theory, without
a fixed density, deteriorated on average the KS excitation
energies.

The good results obtained with the second variant of
KS perturbation theory may be understood from the fact
that, in GL perturbation theory, the ionisation potential re-
mains exact to all orders in λ. In fact, this nice feature of
GL theory holds also with range separation, so that the GL-
based variant of range-separated perturbation theory should
in principle be preferred. However, it requires the separa-
tion of the short-range Hartree-exchange-correlation po-
tential into the multi-determinantal Hartree-exchange and
multi-determinantal correlation contributions (according to
Equation (25)), which we have not done for accurate poten-
tials or calculations along the double adiabatic connection
with a partial interaction defined by Ŵ lr,µ

ee + λŴ sr,µ
ee (cf. Ap-

pendix 1). We, therefore, consider only the RS-based vari-
ant of range-separated perturbation theory here but note that
the GL-based variant can be straightforwardly applied with
density-functional approximations – using, for example, the
local-density approximation that has been constructed for
the ‘multi-determinantal correlation’ functional [64,67].

3. Computational details

Calculations were performed for the He and Be atoms
and the H2 molecule with a development version of the
DALTON program [68], see Refs. [69–71]. Following the
same settings as in Ref. [53], a full CI (FCI) calculation
was first carried out to get the exact ground-state density

within the basis set considered. Next, a Lieb optimisation of
the short-range potential vsr,µ(r) was performed to repro-
duce the FCI density with the long-range electron–electron
interaction w

lr,µ
ee (r12). Then, an FCI calculation was done

with the partially interacting Hamiltonian constructed from
w

lr,µ
ee (r12) and vsr,µ(r) to obtain the zeroth-order energies

and wave functions according to Equation (9). Finally, the
zeroth + first-order energies were calculated according to
Equation (15). The second-order correction of Equation
(16) is not calculated in this work. The basis sets used
were: uncontracted t-aug-cc-pV5Z for He, uncontracted d-
aug-cc-pVDZ for Be and uncontracted d-aug-cc-pVTZ for
H2.

4. Results and discussion

All the zeroth-order curves shown hereinafter correspond
to the curves of Ref. [53] as the partially interacting Hamil-
tonian acts as starting point for the perturbation theory.

4.1. Helium atom

The ground- and excited-state total energies to first order
along the range-separated adiabatic connection of helium
are shown in Figure 1. In the KS limit, when µ = 0, the
total energies are significantly improved with respect to
the zeroth-order ones. In fact, as shown for the ground-
state energy, the zeroth-order total energies are off by ap-
proximately 1.2 hartree with respect to the energies of the
physical system. When the first-order correction is added,
the error becomes smaller than 0.06 hartree for all states.
Moreover, the singlet and triplet excited-state energies are
no longer degenerate. With increasing range-separation pa-
rameter µ, a faster convergence towards the total energies
of the physical system is also observed at first order for all
states.

The description of the total energies is, therefore, much
improved with the addition of the first-order correction. The
linear term in µ present in the zeroth-order total energies
[53] vanishes for the zeroth + first-order total energies,
which instead depend on the third power of µ for small µ (cf.
Equation (18)). At large µ, the error relative to the physical
energies enters as 1/µ4 rather than as 1/µ2 in the zeroth-
order case, explaining the observed faster convergence of
the first-order energies.

The excitation energies of the helium atom correct to
zeroth and first orders are plotted in Figure 2. As pre-
viously noted, at µ = 0, the degeneracy of the zeroth-
order singlet and triplet excitation energies is lifted by
the first-order correction. However, the excitation energies
correct to first order overestimate the physical excitation
energies by 0.1–0.2 hartree so that the error is actually
larger than at the zeroth order. For the 11S → 13P exci-
tation energy, the correction is even going in the wrong
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Figure 1. Zeroth + first-order ground- (left) and excited-state (right) total energies E
µ,(0+1)
k (in hartree) of the helium atom as a function

of µ (in bohr−1). The zeroth-order energy Eµ
0 is recalled for the ground state in plain line and the total energies of the physical system Ek

are plotted as horizontal dotted lines.

direction and the singlet–triplet splitting is too large by
about a factor 1.5.

When the extreme long-range part of the Coulombic
interaction is switched on with positive µ close to 0, this
initial overestimation is corrected. In fact, for small µ, all
excitation energies decrease in the third power of µ, in
agreement with Equation (18). When µ ≃ 0.5–1, this cor-
rection becomes too large and the excitation energies of the
partially interacting system become lower than their fully
interacting limits. As µ increases further so that more inter-
action is included, the excitation energies converge toward
their fully interacting values from below. The zeroth-order
excitation energies, which do not oscillate for small µ, con-
verge monotonically toward their physical limit and are on

average more accurate than the zeroth + first order excita-
tion energies. In short, the first-order correction does not
improve excitation energies, although total energies are im-
proved.

The inability of the first-order correction to improve ex-
citation energies should be connected to the fact that, since
the ground-state density is not kept constant at each order
in the perturbation, the ionisation potential is no longer
constant to first order along the adiabatic connection. This
behaviour results in an unbalanced treatment of the ground
and excited states. Moreover, high-energy Rydberg excita-
tion energies should be even more sensitive to this effect, as
observed for transitions to the P state. The second GL-based
variant of perturbation theory should correct this behaviour
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Figure 2. Zeroth-order (plain line) excitation energies !Eµ
k = Eµ

k − Eµ
0 and zeroth + first-order (dashed line) excitation energies

!E
µ,(0+1)
k = E

µ,(0+1)
k − E

µ,(0+1)
0 (in hartree) of the helium atom as a function of µ (in bohr−1). The excitation energies of the physi-

cal system !Ek = Ek − E0 are plotted as horizontal dotted lines.
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Figure 3. Valence excitation energies of the beryllium atom (in
hartree) at zeroth order !Eµ

k (plain line) and zeroth + first order
!E

µ,(0+1)
k (dashed line), as a function of µ (in bohr−1). The excita-

tion energies of the physical system !Ek are plotted as horizontal
dotted lines.

by keeping the density constant at each order, as shown in
the KS case [41,45].

4.2. Beryllium atom

When the first-order perturbation correction is applied to
the ground-state and valence-excited states of beryllium,
total energies are again improved (not illustrated here). In
Figure 3, we have plotted the zeroth- and first-order va-
lence excitation energies of beryllium against the range-
separation parameter µ.

Since valence excitation energies should be less sensi-
tive to a poor description of the ionisation energy than Ry-
dberg excitation energies, the first-order correction should
work better for the beryllium valence excitations than for
the helium Rydberg excitations. However, although the sin-
glet excitation energy of beryllium is improved at µ = 0
at first order, the corresponding triplet excitation energy is
not. In fact, whereas the triplet excitation energy is over-
estimated at zeroth order, it is underestimated by about the
same amount at first order.

As the interaction is switched on, a bump is observed
for small µ for the singlet excitation energy but not the
triplet excitation energy, which converges monotonically to
its physical limit. The convergence of the excitation ener-
gies with µ is improved by the first-order excitation ener-
gies, especially in the singlet case.

4.3. Hydrogen molecule

In Figure 4, we have plotted the excitation energies of H2

as a function of µ at the equilibrium distance Req and at
3Req. At the equilibrium geometry, the first-order correc-
tion works well. At µ = 0, the correction is in the right di-
rection (singlet and triplet excitation energies being raised
and lowered, respectively); for nearly all µ > 0, the error is
smaller than for the zeroth-order excitation energies.

Unfortunately, when the bond is stretched, this is no
longer the case. At the stretched geometry, the first excita-
tion energy 11&+

g → 13&+
u becomes negative for small val-

ues of µ and the error with respect to the physical excitation
energy is higher than in the zeroth-order case. Moreover,
the ordering of the two singlet excitation energies is incor-
rect at small µ and they exhibit strong oscillations when
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Figure 4. Zeroth-order !Eµ
k (plain line) and zeroth + first-order !E

µ,(0+1)
k (dashed line) excitation energies of the hydrogen molecule

(in hartree) as a function of µ in bohr−1 at the equilibrium distance (left) and three times the equilibrium distance (right). The excitation
energies of the physical system !Ek are plotted as horizontal dotted lines.
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the interaction is switched on. In this case, therefore, the
zeroth-order excitation energies are better approximations
to the physical excitation energies.

5. Conclusion

We have considered two variants of perturbation theory
along a range-separated adiabatic connection. The first and
simpler variant, based on the usual RS perturbation theory,
was tested on the helium and beryllium atoms and on the
hydrogen molecule at equilibrium and stretched geometries.
Although total energies are improved to first order in the
perturbation, excitation energies are not improved since
the theory does not keep the density constant along the
adiabatic connection at each order of perturbation. It would
be interesting to examine the evolution of the ionisation
potential to understand better the effect of this variant of
the perturbation theory on our systems of interest.

The second variant of the perturbation theory, based
on GL theory, should improve the results significantly by
keeping the ground-state density constant at each order in
the perturbation [41], as already observed on the KS system
[45]. However, this more complicated theory has not yet
been implemented for µ > 0.

An interesting alternative to perturbation theory is pro-
vided by extrapolation, which make use of the behaviour of
the energies with respect to µ near the physical system to
estimate the exact energies from the energy of the partially
interacting system at a given µ and its first-order or higher
order derivatives with respect to µ [72,73]. Work using this
approach will be presented elsewhere.
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Appendix 1. Double adiabatic connection with a
constant density

We here present a double adiabatic connection, depending on two
parameters, that keeps the ground-state density constant. It is the
basis for the perturbation theory presented in Section 2.2.2. A dif-
ferent density-fixed double adiabatic connection was considered
in Refs. [74,75].

The Levy-Lieb universal density functional for the Coulomb
electron–electron interaction Ŵee is given by [76–78]

F [n] = min
"→n

⟨"|T̂ + Ŵee|"⟩ = ⟨"[n]|T̂ + Ŵee|"[n]⟩. (A1)

We here generalise it to the interaction Ŵ lr,µ
ee + λŴ sr,µ

ee , where
Ŵ lr,µ

ee and Ŵ sr,µ
ee are long-range and short-range electron–electron

interactions, respectively, that depend on both a range-separation
parameter µ and on a linear parameter λ:

F µ,λ[n] = min
"→n

〈
"|T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee |"

〉

=
〈
"µ,λ[n]|T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee |"µ,λ[n]

〉
. (A2)

The total universal density functional F[n] is then decomposed into
Fµ, λ[n] and a (µ, λ)-dependent short-range Hartree-exchange-
correlation density functional Ē

sr,µ,λ
Hxc [n],

F [n] = F µ,λ[n] + Ē
sr,µ,λ
Hxc [n], (A3)

giving the following expression for the exact ground-state energy
of the electronic system

E0 = min
"

{
⟨"|T̂ + V̂ne + Ŵ lr,µ

ee + λŴ sr,µ
ee |"⟩ + Ē

sr,µ,λ
Hxc [n" ]

}
,

(A4)

where the minimisation is over normalised multi-determinantal
wave functions. The Euler–Lagrange equation corresponding to
this minimisation is

Ĥ µ,λ
∣∣∣"µ,λ

0

〉
= Eµ,λ

0

∣∣∣"µ,λ
0

〉
, (A5)
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where "
µ,λ
0 and Eµ,λ

0 are the ground-state wave function and en-
ergy, respectively, of the Hamiltonian

Ĥ µ,λ = T̂ + V̂ne + Ŵ lr,µ
ee + λŴ sr,µ

ee + ˆ̄V
sr,µ,λ

Hxc , (A6)

where

ˆ̄V
sr,µ,λ

Hxc =
∫

δĒ
sr,µ,λ
Hxc [n0]
δn(r)

n̂(r) dr (A7)

is the short-range Hartree-exchange-correlation potential opera-
tor, evaluated at the ground-state density of the physical system at
µ and λ, n0(r) = ⟨"µ,λ

0 |n̂(r)|"µ,λ
0 ⟩. The Hamiltonian Ĥ µ,λ thus

sets up a double adiabatic connection with a constant ground-state
density.

The range-separated ground-state DFT formalism of Section
2.1 is recovered in the limit λ = 0. To set up a perturbation
theory in λ about 0, we rewrite Ĥ µ,λ of Equation (A6) as the
sum of the non-interacting Hamiltonian Ĥ lr,µ = Ĥ µ,λ=0 and a
perturbation operator. For this purpose, the Hartree-correlation-
exchange functional is written as

Ē
sr,µ,λ
Hxc [n] = Ē

sr,µ,λ=0
Hxc [n] − E

sr,µ,λ
Hxc [n], (A8)

which defines the new functional E
sr,µ,λ
Hxc [n]. The Hamiltonian can

now be rewritten as

Ĥ µ,λ = Ĥ lr,µ + λŴ sr,µ
ee − V̂

sr,µ,λ
Hxc , (A9)

where

V̂
sr,µ,λ

Hxc =
∫

δE
sr,µ,λ
Hxc [n0]
δn(r)

n̂(r) dr (A10)

is the short-range Hartree-exchange-correlation potential operator
associated with E

sr,µ,λ
Hxc [n].

The dependence on λ of E
sr,µ,λ
Hxc [n] can be made more explicit.

It is easy to show that

E
sr,µ,λ
Hxc [n] = ⟨"µ,λ[n]|T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee |"µ,λ[n]⟩

−⟨"µ,λ=0[n]|T̂ + Ŵ lr,µ
ee |"µ,λ=0[n]⟩, (A11)

which leads to the following decomposition

E
sr,µ,λ
Hxc [n] = λE

sr,µ
Hx,md[n] + E

sr,µ,λ
c,md [n], (A12)

where

E
sr,µ
Hx,md[n] = ⟨"µ,λ=0[n]|Ŵ sr,µ

ee |"µ,λ=0[n]⟩ (A13)

is a multi-determinantal generalisation of the usual short-range
Hartree-exchange functional [64–66]. Using the variational prop-
erty of the wave function "µ, λ[n], and for non-degenerate wave
functions "µ, λ = 0[n], the expansion of E

sr,µ,λ
c,md [n] in λ about 0

starts at second order

E
sr,µ,λ
c,md [n] = λ2E

sr,µ,(2)
c,md [n] + · · · , (A14)

as in standard GL perturbation theory [40,41]. The Hamiltonian
of Equation (A9) can now be rewritten as

Ĥ µ,λ = Ĥ lr,µ + λŴ sr,µ − V̂
sr,µ,λ

c,md , (A15)

where the perturbation operator Ŵ sr,µ = Ŵ sr,µ
ee − V̂

sr,µ
Hx,md and

V̂
sr,µ

Hx,md =
∫

δE
sr,µ
Hx,md[n0]

δn(r)
n̂(r) dr (A16)

has been introduced to collect all the linear terms in λ, the remain-
ing perturbation operator

V̂
sr,µ,λ

c,md =
∫

δE
sr,µ,λ
c,md [n0]

δn(r)
n̂(r) dr (A17)

containing all higher order terms in λ.
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