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Model Hamiltonians are considered for which electrons interact via long-range forces. It is as-
sumed that their eigenvalues can be obtained with satisfying accuracy. Extrapolation techniques using
asymptotic behavior considerations provide estimates for the energy of the physical system. Results
for the uniform electron gas and some two-electron systems show that very few quadrature points
can already produce good quality results. Connections to the density functional theory are discussed.
© 2011 American Institute of Physics. [doi:10.1063/1.3592782]

I. INTRODUCTION

Let H be a physical Hamiltonian. A family of model
Hamiltonians, H (μ), parametrized by μ is chosen, such that
H is the limit of H (μ) when μ goes to infinity. H (μ) is cho-
sen so that solving accurately the corresponding Schrödinger
equation can be done with a reasonable amount of effort. This
paper explores the possibility of extrapolating the energies ob-
tained for the model Hamiltonians H (μ) to the limit, physical
Hamiltonian, H . This approach is called energy extrapolation
(EE).

There are two levels of choice in this method. The first
one is that of the model Hamiltonians, the second one is that
of the extrapolation technique. The model Hamiltonians have
to be chosen so as to keep low the cost of the computation
of the eigenvalues needed. The extrapolation techniques cho-
sen in this paper become exact when the dependence on μ

of the eigenvalues under consideration can be described in a
given basis. This basis can be chosen in accordance with the
choice of the model Hamiltonians. Among these extrapola-
tion schemes is numerical integration, not using the interval
endpoint corresponding to the physical system.

In order to illustrate the EE method, a model Hamiltonian
H (μ) is chosen identical to that showing up in a density func-
tional approximation (DFA), the local density approximation
(LDA), used for (an extension of) the Kohn-Sham system.
In the DFA the difference between the energy of the physi-
cal system and that of the model system is recovered not by
extrapolation, but by using a functional of the density [the
one which by functional derivation produced a potential for
H (μ)]. Using the same H (μ) for both EE and the DFA al-
lows to compare the effect of the approximations involved
(basis and number of points used for EE, density functional
for the DFA). This comparison is made using only a set sim-
ple systems, for which accurate results could easily be gen-
erated. The numerical results for EE show that a surprisingly
small set of points (one or two) are needed to obtain an ac-
curacy comparable or better than the DFA. A way to improve
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DFAs using the results of the present investigation will also
be suggested.

Advantages of EE are: (i) systematic improvement, by
addition of points (models), (ii) size-consistency, when a suit-
able extrapolation technique is used, (iii) applicability to sev-
eral eigenstates, and not only to the ground state.

This paper only analyzes the errors produced by the ex-
trapolation technique. Error propagation (when extrapolating
from the model to the physical system) is left for later stud-
ies, as is the study of the possible benefits of solving the
Schrödinger equation for the model systems and not for the
physical system.

II. APPROACH

A. Principle

In DFAs one solves the Schrödinger equation for a model
system (the Kohn-Sham system for a given approximation,
e.g., in the LDA). One assumes that this can be done accu-
rately. One needs, however, to know the energy of the physi-
cal system, and the correction needed (the difference between
the energy of the physical system and the model system) is
not known accurately. This problem can be generalized to the
case where the model system is more complicated than the
Kohn-Sham Hamiltonian, because it contains some interac-
tion between fermions (see, e.g., Ref. 1). Let us formalize it
by considering Hamiltonians which we characterize by a vari-
able μ,

H (μ) = T (μ) + V (μ) + W (μ) (1)

for which the Schrödinger equation is

H (μ)�(μ) = E(μ)�(μ), (2)

where T is a non-local one-particle operator, V is a local one-
particle operator, and W is a local two-particle operator. Our
convention is that the physical system is obtained when μ is
infinite:

H ≡ H (∞) = T + Vne + Vee,

E ≡ E(∞), (3)
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where T = T (∞) is the kinetic energy operator, Vne = V (∞)
is the external potential (of the interaction between nuclei and
electrons), and Vee = W (∞) is the potential of the interaction
between electrons.

The energy of the physical system, E , is unknown, and
even if some E(μ) can be obtained accurately, we need to
correct it by some Ē(μ) to obtain E :

Ē(μ) ≡ E − E(μ). (4)

This correction is unknown, except trivially Ē(∞) = 0.
However, the physical energy is invariant with μ, E = E(μ)
+ Ē(μ), and the change of E(μ) with μ has to be compen-
sated by a change with an opposite sign in Ē(μ). Thus, the dif-
ference between two values of Ē(μ) is known, when the dif-
ference between the corresponding values of E(μ) is known:

Ē(μ1) − Ē(μ2) = −(E(μ1) − E(μ2)). (5)

When E(μ) is differentiable with respect to μ, one can ob-
tain the derivatives of the corrections, ∂μ Ē(μ) ≡ Ē ′(μ), from
those of the model systems:

Ē ′(μ) = −E ′(μ). (6)

These considerations hold also for the higher differences and
derivatives.

In order to construct an extrapolation scheme, we will
consider that we can expand Ē(μ) in some basis,

Ē(μ) ≈ Ẽ(μ) =
∑

i

ciχi (μ). (7)

One also has for the derivative

Ē ′(μ) ≈ Ẽ ′(μ) =
∑

i

ciχ
′
i (μ). (8)

Knowledge about the dependence of E on μ can be funneled
into the basis.

B. Extrapolation techniques

The extrapolation formulas are derived making the as-
sumption that a set of χi can be reliably used in Eq. (7). Eval-
uating Eqs. (7) and (8) at some points μk , we obtain a system
of equations, linear in the ci ,∑

i

ci [χi (μk) − χ (μ0)] = Ẽ(μk) − Ẽ(μ0),

∑
i

ciχ
′
i (μk) = Ẽ ′(μk). (9)

The number of equations with Ẽ(μk) − Ẽ(μ0) on the rhs is
independent from the number of equations with Ẽ ′(μk) on
the rhs, and is a matter of choice. Assuming that some E and
E ′ are known for some μk , the ci can be determined using
for the rhs Eq. (5), and/or Eq. (6). Please notice that the ci

become linear combinations of E(μk) and/or E ′(μk):

ci =
∑

k

aki E(μk) +
∑

k

bki E ′(μk), (10)

where the coefficients a, b are determined by the inverse of a
matrix containing χi and χ ′

i at the points μk . Once the ci are

known, they can be used to approximate Ē(μ0) with Eq. (7):

Ē(μ0) ≈
∑

k

(∑
i

akiχi (μ0)

)
E(μk)

+
(∑

i

bkiχ
′
i (μ0)

)
E ′(μk), (11)

showing that the correction to E(μ0), Ē(μ0) is estimated as a
linear combination of E(μk) and/or E ′(μk), with coefficients
determined by the choice of χi and μk .

The equation

Ē(μ0) = −
∫ ∞

μ0

Ē ′dμ (12)

can also be used. It appears under different names in the lit-
erature, e.g., adiabatic connection (AC), when related to the
density functional theory (DFT), or as integrated Hellmann-
Feynman formula.2 The numerical integration rule is defined
by choosing ωk and μk to satisfy∫ ∞

μ0

χ ′
i (μ)dμ =

∑
k

ωkχ
′
i (μk), (13)

(ωk and μk depend on μ0). For these ωk , μk , we have, using
Eqs. (8) and (13),∫ ∞

μ0

Ẽ ′(μ) =
∫ ∞

μ0

∑
i

ciχ
′
i (μ)dμ

=
∑

i

ci

∑
k

ωkχ
′
i (μk)

=
∑

k

ωk Ẽ ′(μk). (14)

Using Eqs. (6) and (12), we have the quadrature formula

Ē(μ0) ≈
∑

k

ωk E ′(μk) (15)

with ωk and μk determined by Eq. (13).

C. Extrapolation formulas

For the Hamiltonians H (μ) chosen below, E(μ) behaves,
for large μ, like μ−2. A simple choice for the approximation
basis in Eq. (7) is thus μ−2, μ−3, . . . , although it is certainly
not valid for small μ and more sophisticated alternatives are
available.

We will now seek for the correction to E(μ0), Ē(μ0). If
the only additional information is E ′(μ0), one coefficient of
the expansion (7) can be determined from Eq. (8). By using
Eq. (6),

Ē(μ0) ≈ −E ′(μ0)χ1(μ0)/χ ′
1(μ0). (16)

Please notice that this formula, an extension of the trapezoidal
rule, is also obtained for a single basis function and when μ0

is the point imposed for quadrature [cf., Eq. (13)]. Below, this
will be called the “endpoint quadrature”.

In particular, for χ1 = μ−2, we have

Ē(μ0) ≈ Ẽ1(μ0) = 1

2
μ0 E ′(μ0). (17)
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If E(μ1) and E ′(μ1) are also known, one can treat ex-
actly a linear combination of three basis functions. We will
choose them to be μ−2, μ−3, μ−4. To obtain Eq. (11), we use
E(μ1) − E(μ0), E ′(μ0), and E ′(μ1):

Ē(μ0) ≈ Ẽ2(μ0) = (E(μ1) − E(μ0))
μ3

1(μ1 − 2μ0)

(μ0 + μ1)(μ1 − μ0)3

+ E ′(μ0)
μ4

0

2(μ0 + μ1)(μ1 − μ0)2

+ E ′(μ1)
μ4

1

2(μ0 + μ1)(μ1 − μ0)2
. (18)

We will call here this last approximation the “arbitrary two-
point interpolation”.

For the same set of χi , one can choose to use the E ′ at
integration endpoint, μ0, and find from Eq. (13) another in-
tegration point, μ1, as well as the integration weights ω0 and
ω1. This yields a Radau quadrature formula:

Ē(μ0) ≈ ẼR(μ0) = 1

6
μ0 E ′(μ0) + 8

3
μ0 E ′(2μ0). (19)

The formula above can be also obtained from the arbitrary
two-point interpolation formula, Eq. (18), by choosing μ1 to
eliminate the term containing E(μ1) − E(μ0).

D. Comparison to density functional methods

In density functional theory, Ē is obtained from a func-
tional of the density. The adiabatic connection, Eq. (12),
is used in the Kohn-Sham approach3 of DFT both to in-
terpret it4–7 and to produce DFAs (see, e.g., the use of
model holes,8 of hybrid methods,9 or its connection to scal-
ing relationships10). In this context, the model energy to be
corrected, E(μ0), is that of the Kohn-Sham system. We will
choose below to use Hamiltonians appearing in a generaliza-
tion of the Kohn-Sham approach,1, 11 where μ0 can be chosen
to allow for various long-range interaction between electrons,
providing a family of Hamiltonians, H (μ0).

The essential difference between EE and DFAs, even
when using the same H (μ), comes from Eqs. (5) and (6) not
being satisfied when Ē(μ) [and/or Ē ′(μ)] is given by a DFA,
even when E(μ) and E ′(μ) can be obtained accurately for the
model systems. Thus, in the limit of exact integration along
the AC, Eq. (12), with Ē ′ given by a DFA, one obtains just
what the DFA provides, while with EE, Eqs. (5) and (6) can
be used, and the physical energy is obtained accurately. Stated
differently, in EE we let the model systems decide what the
correct coefficients ci should be in Eq. (7), while in DFAs we
transfer the correction from some model and hope that it will
be accurate. We should underline, however, that in DFAs one
usually considers more complicated forms for the χi than the
ones which were given above.

A further difference to DFAs is that the EE is not re-
stricted to ground states.

Please notice that in this paper, Ē is not further parti-
tioned into further terms, as it is done in the Kohn-Sham
approach. When such a partition is made, special attention
has to be given to size-consistency issues which can be more

complicated for energy components than for the total energy
(see, e.g., Ref. 12).

E. Model Hamiltonians

In this paper we will consider model Hamiltonians of the
form

T (μ) = T,

W (μ) =
∑
i< j

erf(μri j )/ri j ,

V (μ) =
∑

i

vne(ri ) + vhxc(ri ; μ), (20)

where T is the operator for the kinetic energy, ri are the po-
sitions of the particles, ri j ≡ |ri − r j |, vne is the physical ex-
ternal potential, vhxc is the Hartree, exchange, and correla-
tion potential in the LDA), in which there is a μ-dependence,
μ-LDA.11, 13, 14 The choice of V (μ) and W (μ) is motivated
by the intention to have a direct comparison to the range-
separated DFA (see, e.g., Ref. 11). For the latter, both accurate
and approximate calculations are available.15–17 In contrast to
standard Kohn-Sham calculations, μ-LDA works almost as
well as the gradient corrected approximations. Good results
were obtained for valence electrons as long as μ was not cho-
sen too small (larger than ∼1/2 to 1 bohr−1, see, e.g., Refs.
11, 18, and 19).

To produce V (μ), the μ-LDA functional was used in its
spin-unpolarized form (and not in the local spin-density ap-
proximation, μ-LSDA, where spin-polarization is taken into
account) in order to avoid size-consistency problems, see,
e.g., Refs. 11,20,21, and 22. Although size-consistency prob-
lems may show up in the LDA (see, e.g., Ref. 11), they are
related to degeneracy issues which do not show up in the ex-
amples discussed below.

For the choice of Hamiltonian made above, Eq. (20), Ē ∝
μ−2 for large μ.13, 15, 16, 23 This is essentially a dimensional
argument.

F. Technical details

For the choice of H (μ) made above, E(μ) can be di-
rectly extracted from the output of the range-separated con-
figuration interaction program of the MOLPRO code.18, 24–32

Because E ′(μ) is not immediately available from the present
version of MOLPRO, a numerically inefficient, but convenient
scheme was used: a dense list of E(μ) was generated and was
followed by spline interpolation and differentiation.33 Some
numerical noise can be noticed in some of the figures. It is
due to the numerical grid used in the density functional cal-
culation part, present when calculating E(μ) through V (μ),
which is further amplified by the numerical differentiation.
As this noise is of no relevance for the present study, no effort
was made to eliminate it.

The cc-pV5Z basis sets were used, except for H−

and the first excited 1�+
g state of H2 (having a strong

H+ . . . H− ↔ H− . . . H+ character) where the aug-cc-pV5Z
was used.34–37 These basis sets should allow chemical
accuracy (≈1 kcal/mol) for E(μ) for all the systems presented
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in this paper. This assumption was checked against more re-
liable data, e.g., Ref. 38 for the hydrogen molecule in its
ground state and first excited triplet state, and Ref. 39 for the
E, F1�+

g state.
For the Be atom, a pseudopotential40 was used to stay

with two-electron systems, and thus simplified the treatment
of correlation.

The correlation is obtained for the two-electron systems
at the level of a full configuration interaction calculation. For
the uniform electron gas, correlation energies are available
from a parametrization of quantum Monte Carlo data.14

The error of the approximation due to numerical integra-
tion is given by

�Ē(μ0) = Ẽ(μ0) − Ē(μ0), (21)

where Ẽ is obtained by the numerical methods described
above. The values of Ē(μ), which are considered accurate,
and are taken as a reference are given by Eq. (4), using the
results obtained in the basis sets given above.

III. NUMERICAL RESULTS

A. General behavior

As EEs are constructed to vanish when μ0 approaches
infinity (an exact condition), and as the approximations were
constructed using the expansion for large μ [Eqs. (17)–(19)],
we will study below the behavior at intermediate μ0. The ap-

proximations worsen significantly for small μ0; in the limit of
μ0 = 0, they even vanish: Ẽ(μ0 = 0) = 0.

When the large μ regime is abandoned, by lowering
μ0, there is a critical value of μ0 for which the abso-
lute error, |�Ē(μ0)| becomes larger than chemical accuracy
(1 kcal/mol). We call this the “smallest acceptable” μ0. As
oscillations can occur in �Ē(μ0), further lowering μ0 may
bring back errors below 1 kcal/mol, but this situation is con-
sidered to be accidental, and is not discussed.

The ground state of the uniform electron gas is a good
test case for the quadrature formulas, as for it μ-LDA is exact
by construction.

In Fig. 1 (top, left), one can follow the error �Ē as a
function of μ0 for the uniform electron gas with the density
given by rs = 2. This value of rs was chosen as a typical va-
lence density (see, e.g., Ref. 41). The endpoint extrapolation
[Ẽ1, Eq. (17), dashed curve in Fig. 1, top, left] shows the ex-
pected behavior: small error when μ0 is large, but large when
μ0 is small. The behavior at small μ0 is important, however,
as models are expected to be less expensive to calculate when
μ0 is small, and from the experience with μ-LDA calculations
we would like to have μ0 less than ≈1.

B. Systematic improvement

With EE one has the possibility to increase the ac-
curacy by adding information from new models. In the
example above, when ẼR , the Radau quadrature, is used
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FIG. 1. The error of the numerical integration, �Ē , in the uniform electron gas using the endpoint quadrature, Ẽ1, Eq. (17), dashed curve; two-point Radau
quadrature, ẼR , Eq. (19), full curve; compared to the spin-unpolarized μ-LDA energy correction, dotted curve. The horizontal thin dotted lines mark chemical
accuracy (±1 kcal/mol). The panels correspond to: rs = 2, spin-unpolarized, as a function of μ0 (top left); rs = 2, spin-unpolarized, as a function of μ> (top
right); rs = 2, fully spin polarized, as a function of μ0 (bottom left); rs = 1, spin-unpolarized, as a function of μ0.

Downloaded 02 Jun 2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



214108-5 Correcting model energies J. Chem. Phys. 134, 214108 (2011)

(an additional point at μ1 = 2μ0), Eq. (19), the “smallest ac-
ceptable” μ0 decreases from ≈1.5 for the endpoint quadrature
(Ẽ1) to ≈0.3 for the Radau quadrature (ẼR). This exempli-
fies how a systematic improvement is possible by choosing a
better numerical approximation. However, this improvement
has been payed by the need of a new model calculation for a
larger μ, and the comparison may be considered biased, be-
cause calculations at larger μ could be considered more ex-
pensive. It will be assumed that the reader can easily keep
this in mind when looking at the graphs and this effect will be
solely illustrated for the uniform electron gas with rs = 2 (see
Fig. 1, top, right). There, the abscissa is not μ0, like in most
of the graphs of this paper, but μ>, the largest of the μk used
in the quadrature [μ> = μ0 for the endpoint quadrature, Ẽ1,
Eq. (17), and μ> = μ1 for the Radau quadrature, ẼR ,
Eq. (19)]. The figure shows that adding a quadrature point
lowers the “smallest acceptable” μ>, from ≈1.4 to ≈0.6

Of course, this conclusion cannot be generalized: it can
happen that the “smallest acceptable” μ0 of the endpoint
quadrature is smaller than the “smallest acceptable” μ1 of
the Radau quadrature. Although one rightfully expects that
in the limit of a large number of μk , Ē(μ0) becomes correct,
the largest μk is displaced to larger and larger values. Thus,
improvement may be connected to a larger price to pay,
not only in the number of calculations, but also in the price
of individual model calculations which are considered to
become more expensive as the model system approaches the
physical one.

C. Arbitrary two-point interpolation

With numerical integration of Gaussian type, the number
of basis functions in Eq. (7) can be twice as large as that used
in Eq. (11) with the same number of reference values. The
price to pay is that the μk cannot be chosen freely. The need
to input a smaller number of model system data with Gaussian
quadrature is not necessarily an economy in computing time:
often the E ′(μk) are obtained only after the E(μk) are known
anyhow. The latter are left aside for the quadrature scheme,
while they can be used in the interpolation formulas for ar-
bitrary μk , e.g., in Eq. (18). Figure 2 shows the domain of
μ0 and μ1 for which the error done by using the two-point
extrapolation formula of Eq. (18) is smaller than chemical ac-
curacy. Also shown is the line μ1 = 2μ0 along which Radau
quadrature, Eq. (19), is performed. One can see that using ẼR ,
the Radau quadrature formula, a quite good choice for μ0 and
μ1 is made, in the sense that it can provide a low value for
the “smallest acceptable” μ. However, one can see that it is
not the best choice. One could choose μ1 very close to μ0 and
further lower the value of the “smallest acceptable” μ still
staying within chemical accuracy. However, using μ1 ≈ μ0

needs a careful avoidance of numerical errors or the use of
higher derivatives. For the sake of keeping the presentation
more accessible, we will discuss below only the results ob-
tained by endpoint and Radau quadrature.

D. Spin dependence

By the choice made above, no spin-dependence was
considered for constructing V (μ). Usually this considerably

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

µ0

µ1

rs 2, 0

FIG. 2. The domain of μ0 and μ1 where the error produced by two-point ex-
trapolation, Ẽ2, Eq. (18), is smaller than chemical accuracy (±1 kcal/mol)
is shown as the shaded area. The dots mark the “smallest acceptable” μ

for the endpoint quadrature, Ẽ1, Eq. (17), and the Radau quadrature, ẼR ,
Eq. (19). The pairs μ0, μ1 of the Radau quadrature lie on the dotted line. As
μ1 > μ0, only the upper left part of the plot is relevant.

worsens results with DFAs. This can be seen, e.g., for the fully
spin-polarized electron gas at rs = 2 (Fig. 1, bottom, left).
While for a spin-polarized electron gas μ-LSDA has no er-
ror, the spin-unpolarized μ-LDA yields ≈2.4 for the “small-
est acceptable” μ0. The endpoint and the Radau quadratures
yield better values for the “smallest acceptable” μ0, ≈1.4 and
≈0.6, respectively. This can be connected to the behavior of
Ē(μ) for large μ: it decays as μ−2 both for the unpolarized
and the fully polarized electron gas, but with different pref-
actors. The inclusion of the accurate E ′(μ) in the quadrature
formulas provides the necessary correction at large μ0.

A further example is given by the hydrogen atom
(Fig. 3). When μ-LDA in its spin-unpolarized variant is used,
the chemical accuracy is reached only at large values of μ0

≈ 2.9. In its spin-polarized form, however, μ-LSDA works
up to μ0 ≈ 0.5. Using EE [and thus the correct E ′(μ)] allows
reaching about the same “smallest acceptable” μ0 when using
μ-LSDA.

E. System dependence

In Fig. 4 we compare the different approximations for the
He atom, H2 molecule, H− ion, and Be atom (the latter with
a pseudopotential). The approximations based upon numeri-
cal integration show a behavior similar to that observed in the
uniform electron gas: a small error at large μ0, and a break-
down at smaller μ0. As for the gas, adding a quadrature point
[as in Eq. (19)] improves the result at μ0, although one notices
that for the hydrogen molecule, the “best available” μ1 = 2μ0
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FIG. 3. Error of the numerical integration, �Ē , Eq. (21), as a function
of μ0, in hartree atomic units, for the hydrogen atom; obtained with spin-
unpolarized μ-LDA (in the upper right corner, dotted curve), compared to
that obtained with endpoint quadrature, Ẽ1, Eq. (17), dashed curve, or two-
point Radau quadrature, ẼR , Eq. (19), full curve. The horizontal thin dotted
lines mark chemical accuracy (±1 kcal/mol). Also shown, as a dotted curve
staying within chemical accuracy for μ0 larger than ≈0.5 is μ-LDA with
spin polarization.

is close to the “best available” μ0 of the endpoint quadrature
[Eq. (17)].

For these systems, μ-LDA is not exact (in contrast to the
uniform electron gas above). The error is small for large μ,
confirming that μ-LDA is a good approximation for a short
range. At smaller μ0, however, the errors are less systematic,
oscillations occur. Thus, we notice that for He and the ground
state of the hydrogen molecule, at equilibrium distance, the
quality of μ-LDA and EE is comparable. However, for H−,
μ-LDA worsens, and EE is clearly superior for the Be atom.

The difference between the μ-LDA and the EE results
can be rationalized. As already discussed, EE is expected to
work accurately in the limit of large μ, but (with the choice
of χi made) cannot be expected to work for small μ. μ-LDA
also vanishes for μ → ∞ and is expected to work quite well
for large μ, but will not become exact, in general, as EE
does. In contrast to EE, μ-LDA automatically uses the correct
E ′(μ = 0), because the leading term of the expansion around
μ = 0 is solely determined by the correct normalization of the
pair function which is transferred from the uniform electron
gas.13, 15, 16 However, the next terms of the expansion of the
derivative of ∂μE(μ) around μ = 0 are wrong in μ-LDA.16

Thus, μ-LDA connects wrongly to the intermediate μ regime,
by using features of the uniform electron gas not present in
atoms or molecules.

A critical feature of μ-LDA (Refs. 1, 18, and 42) that is
not avoided by the formulas for EE given above is the system-
dependence of the “smallest acceptable” μ0. It is relatively
important, and is related to the significance of the parame-
ter μ we are considering in Eq. (20) which is the inverse of
a “range of interaction”. For the same range of interaction,
the energetic contributions are more important when the elec-
trons are “dense”. For example, in a uniform electron gas, the
ratio E(μ)/E(∞) depends on the density of the gas. Thus,
if a system is “denser”, the “smallest acceptable” μ0 should
increase. This feature can be seen in Fig. 1, bottom, right,
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FIG. 4. Error of the numerical integration, �Ē , Eq. (21), as a function of
μ0, in hartree atomic units, compared to that of μ-LDA, dotted: for endpoint
quadrature, Ẽ1, Eq. (17), dashed, and two-point Radau, ẼR , Eq. (19), full.
The horizontal thin dotted lines mark chemical accuracy (±1 kcal/mol). The
panels correspond to He, H2 at equilibrium distance, H−, and Be, from top
to bottom.
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presenting the errors for a uniform electron gas at a higher
density (rs = 1) than that used previously (rs = 2, Fig. 1, top,
left). It also shows up in atomic or molecular systems. For ex-
ample, EE works better for the H− ion than for the He atom
(cf., Fig. 4).

F. Size-consistency

One of the advantages of using for extrapolation ex-
pressions which are linear in E(μk) and E ′(μk) is that size-
consistency can be preserved, i.e., that the energy of the sys-
tem formed by two subsystems, A and B, infinitely far apart,
is the sum of the energies of the systems A and B computed
separately.

As an example, we consider the hydrogen molecule at
large internuclear separations. For the (singlet) ground state,
there is no physical spin polarization. In a DFA where depen-
dence on spin-polarization is added, one necessarily obtains a
different result for the dissociated hydrogen molecule, where
no spin polarization is present, and for two hydrogen atoms
which are fully spin-polarized, even when the densities are
the same in the two calculations. This problem is usually cir-
cumvented by introducing some fictitious spin-polarization in
approximate Kohn-Sham calculations for the dissociation of
the hydrogen molecule.

EE was constructed to be size-consistent. Thus, as the
separation between the two H nuclei increases, the error
evolves from that shown for the equilibrium distance in
Fig. 4, second panel from the top, to the one where the er-
rors are twice as those shown for the H atom, Fig. 3. There
is no need to artificially introduce spin-polarization for EE to
describe correctly the H2 molecule.

G. Excited states

As the model Hamiltonians can be constructed to have
the same symmetry as the physical Hamiltonian, states can be
identified, and symmetry-related degeneracies can be kept. Of
course, there is no guarantee that the energetic ordering of the
states is correct, but states can be followed as μ changes.

The lowest triplet excited state comes out well both
in spin-polarized μ-LDA and with EE. However, if spin-
polarization is not taken into account, μ-LDA does not work
so well, while EE is little affected (see above the discussion
about spin polarization), as can be seen in Fig. 3 for the hydro-
gen atom errors (which are half the errors at the dissociation
of the hydrogen molecule in the lowest triplet state).

More difficult than the excited triplet state is the case
where the excited state has the same symmetry as the ground
state. For example, the E, F1�+

g excited state of the hydro-
gen molecule has a strong ionic resonant character.43 Usually,
it is argued that DFAs work better than Hartree-Fock, as the
exchange-correlation hole is more strongly localized than the
exchange hole (see, e.g., Refs. 44 and 45). This is essentially
valid for ground states. When H+ . . . H− ↔ H− . . . H+ dom-
inates, as in the case of the E, F1�+

g state,43 the opposite
is true: the exchange-correlation hole is less localized than
in Hartree-Fock. Thus, μ-LDA is not expected to give good
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FIG. 5. Error of the numerical integration, �Ē , Eq. (21), as a function of
μ0, in hartree atomic units, compared to that of μ-LDA, dotted: for end-
point quadrature, Ẽ1, Eq. (17), dashed, and two-point Radau quadrature, ẼR ,
Eq. (19), full. For the E, F1�+

g state of the H2 molecule R = 4.2 bohr. The
horizontal thin dotted lines mark chemical accuracy (±1 kcal/mol).

results, and introducing spin-polarization does not help. How-
ever, when using EE no significant difference is noticed be-
tween the errors for the excited singlet, Fig. 5, and those for
the ground state of the hydrogen molecule, Fig. 4.

H. Energy differences

Up to now, only total energies were analyzed. The nearly
uniform quality of EE (sometimes related to size-consistency)
often allows for a better description of energy differences than
μ-LDA, like excitation energies, or potential energy surfaces,
in particular, when μ-LDA describes well only one of the
terms of the difference considered. For example, as the ex-
cited triplet state of the hydrogen molecule is better described
by EE than by spin-unpolarized μ-LDA, but with a similar
quality for its ground state, the excitation energy will be bet-
ter described by EE than by μ-LDA.

Errors in energy differences can sometimes take advan-
tage from error compensation. For EE, the effect is expected
to be less important than for μ-LDA, as the quality worsens
quickly when the basis of χi used in defining the approxima-
tion starts to fail. For example, the “smallest acceptable” μ0

for the electron affinity of the hydrogen atom is ≈2.2 with
spin-unpolarized μ-LDA; for the H atom (the worse of H and
H−) it is ≈2.9. For the same energy difference, the endpoint
quadrature yields the “smallest acceptable” μ0 which is only
smaller by 0.1 than the worse of H and H−. The effect is even
smaller for the Radau quadrature.

I. Analogies

The method discussed in the present paper presents some
analogy to existing procedures. EE can be seen as a variant of
perturbation theory. Perturbation theory produces the energy
of the physical Hamiltonian by perturbing a model Hamilto-
nian. The perturbation is multiplied by a parameter that allows
the construction of the eigenvalues of the perturbed Hamilto-
nian by using power series. The energy and its derivatives are
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typically evaluated at the value of the parameter characteriz-
ing the model system, to extrapolate the value of the energy
for the value of the parameter characterizing the physical sys-
tem. The present paper considers, for the same aim, (i) func-
tional dependencies different than that of a polynomial, and
(ii) the use of multiple values for the parameter, by using well-
known extrapolation techniques. Point (ii) above also occurs
in methods such as first-order perturbation iteration method,46

where the perturbation is redefined in the process of approach-
ing the physical system.

Other examples are extrapolations to the full configura-
tion interaction limit (see, e.g., Ref. 47), or to the complete
basis set limit (see, e.g., Ref. 48) where the asymptotic be-
havior is also used (see, e.g., Refs. 49 and 50). The analogy
to the complete basis set extrapolation of Ref. 51 goes even
further, as in the latter, one imposes that different type of cal-
culations lead to the same extrapolated value.

EE does not require V (μ) to be produced by the deriva-
tive of some functional with respect to the density. One is
free, however, to choose such a V (μ). In this case, and when
Eq. (12) is used, an analogy with the AC of DFT exists. To fol-
low the latter, however, the Schrödinger equation of the phys-
ical system has to be accurately solved, because it requires the
knowledge of the exact density.4, 5 Calculations along the AC
of DFT can be accurately done, but they are significantly more
expensive than solving the Schrödinger equation for H alone,
as they have to be repeated for several Hamiltonians, for dif-
ferent H (μ).17, 52–56 EE with quadrature formulas should be
rather seen as a numerical approximation to a Hamiltonian-
driven AC.57

Naturally, a connection exists with the techniques us-
ing the AC for constructing hybrid functionals, as given,
e.g., by Becke for the half-and-half method,9 or to interpo-
lations between the situation when the interaction between
electrons is vanishingly small (second-order perturbation the-
ory) and when it becomes infinitely strong (strictly correlated
electrons).58, 59 In this paper, however, no attempt was made
about to construct a DFA.

There is also some similitude with the technique pro-
posed by van Leeuwen and Baerends60 to extract the exact
energy from a series of densities by finding the corresponding
Kohn-Sham potential for each of them. EE, however, does not
require the knowledge of the exact density, nor the solution of
an inverse problem.

Finally, the EE presented in this paper can be seen as
an extension of the methods presented in Refs. 61 and 62
where extrapolation was used in connection with non-local
one-particle operators.

IV. CONCLUSIONS AND PERSPECTIVES

The approach presented in this paper uses model Hamil-
tonians (characterized by a parameter, μ), to produce energies
which are extrapolated to the physical one using standard nu-
merical techniques. For good quality results, the energy of the
model systems should be obtained accurately, and knowledge
about the way the model energies extrapolate to the physical
systems is important.

The numerical techniques to estimate the exact energy
use as an input the difference between the energies of two
different models and/or the derivative of the model energy
with respect to the parameter transforming the models into the
physical system. This kind of information is not used when
constructing density functional approximations, and is one of
the keys of the improvements seen in this paper.

Most of the results of the paper were produced using the
approximations Ẽ1, Eq. (17), and ẼR , Eq. (19).

As one can choose the model Hamiltonian to have the
same symmetries as the physical one, states can be identified
and followed.

Excited states can be treated on the same footing as the
ground state.

EE does not show inherent size-consistency problems.
Size-consistency can be satisfied when size-consistent meth-
ods are used to solve the Schrödinger equations for the model
systems.

The approach was found to work quite well for small two-
electron systems and for the uniform electron gas.

A surprisingly small number of models is needed to pro-
duce an accuracy comparable, or even better than that of
range-separated hybrid density functional approximations. A
small number of quadrature points was noticed also in previ-
ous work for adiabatic connections.63

One can hope that the effort can be reduced by a ju-
dicious choice of the model system, e.g., by elimination of
the electron-electron cusp, as for the Hamiltonian studied in
this paper, or by reducing the space of virtual orbitals, as in
Ref. 62.

There are many issues left open for exploration.
The applicability of EE, as presented in this paper will

depend on the effort needed to obtain accurate solutions for
the Schrödinger equation for the model systems. This aspect
was not studied in the paper.

For the present paper, only very small systems were con-
sidered, for which the error made by numerical integration
can be directly analyzed by comparison with accurate results.
No attempt was yet made to use error estimates associated
to the quadrature rules given above. Furthermore, error prop-
agation was not studied in this paper. Here are two simple
examples for error propagation. From a calculation with a
very weak interaction, for a non-degenerate system, one might
guess that a single Slater determinant is enough. However,
when staying with the latter, the best extrapolation will yield
the Hartree-Fock result, not the exact one. The same type of
error shows up if one scales linearly the electron-electron in-
teraction, and computes the energy only to second order. Ex-
trapolation to full interaction does not yield more than the full
second-order energy. This does not mean that error propaga-
tion will always be present. Consider, e.g., the stretched H2

molecule. In this case, some repulsive interaction produces
the correct ground state,64 and any expectation value such as
〈∂μ H〉 is correct. One can thus expect to get correct estimates
for E ′. Please notice that with the Hamiltonian used here,
Eq. (20), ∂μW is short-ranged and thus 〈∂μW 〉 can be pro-
duced with order N algorithms.

Other forms of model Hamiltonians H (μ) may be more
appropriate. A totally different form was already mentioned
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above (selection of the virtual space, Ref. 62). To stay with the
same form of H (μ), one may choose V (μ) different from the
type explored in this paper where it was chosen to be derived
from a DFA. Even when DFAs are used, V (μ) does not have
to be a functional derivative. In the density functional papers,
potentials have been proposed which yield good results for
certain properties (not the ground state energy), without be-
ing constructed as functional derivatives (see, e.g., Ref. 65).
Other forms for V (μ) could be chosen as well, e.g., of the
optimized effective potential type (see, e.g., Refs. 66–68), or
even with no reference to density functional theory. EE can
provide energies also for such potentials. For example, taking
V = Vne produces a similar quality of results for the atoms
and molecules considered in this paper.69

The differentiability of E(μ) was used in this paper.
However, it is possible to use only conditions given in
Eq. (5). The parameter μ does not even have to be a con-
tinuous variable. For example, it can be an orbital index.62

Furthermore, other numerical techniques to obtain ap-
proximations to Ē(μ) should be envisaged, in particular, in
order to reduce the system dependence which is still too im-
portant (cf., the system dependence of the “smallest accept-
able” μ0 in Fig. 4).

Properties could be computed by EE by using the
Hellmann-Feynman theorem.

Although no functional of the density has to be given,
the importance of using a correct E ′ is a hint for further
improvement of DFAs. For example, the energy extrapola-
tion underlines the advantage of using the correct E ′ and not
that provided by the DFA. DFAs might contain a parameter
which is adjusted to obtain the correct E ′. Similarly, one could
compute energies for different values of μ, and impose that
the difference in the approximate density functionals accu-
rately corrects for such a change. An improvement achieved
this way can be found in Ref. 62. Such a parameter can be
seen as one of the possible ways to define “alternative spin
densities”70–74 in DFAs, which would be needed, in particu-
lar, in multi-reference μ-LDA.64
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