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CHAPTER 1

PROBABILITY DISTRIBUTIONS AND VALENCE SHELLS
IN ATOMS

Andreas Savin

Laboratoire de Chimie Théorique
CNRS et Université Pierre et Marie Curie
4, place Jussieu, F-75252 Paris
E-mail: savin@lct.jussieu.fr

Formulas for the probabilities of finding v electrons in an arbitrarily
chosen volume, €2 are presented, and computed for Hartree—Fock atoms.
Maximizing the difference between the Hartree-Fock and independent
particle model probabilities (originating in the Pauli principle), provides
a good indicator for a spatial separation of the valence shell in atoms,
from Li to Xe.
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1. Introduction

In order to recover chemical information, the molecular space is often di-
vided into significant regions. Politzer and Parr ! considered the use of the
minima of the radial density, 47r2p(r), to define a meaningful boundary
surface separating the core and valence regions of atoms. Of course, this
choice is not unique. It is possible to define boundaries differently using the
same function 2, or using the different functions. Examples are the loges
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of Daudel and co-workers (see, e.g., ® and references therein), the atomic
basins of Bader and co-workers, the basins of the laplacian of the electron
density (see, e.g., * and references therein), or basins of the electron local-
ization function (ELF) ®6. The population of a spatial region is given by
the integral of the electron density over it. (see, e.g., *. This can be written
also as the expectation value of the operator:

NQ = Z NQ(ri) (1)

i=1,N
where N is the total number of electrons in the system, Q the considered
spatial region, and Nq(r;) is 1 when electron i is in  and 0 otherwise(see,
e.g., '). Of course, the population is only an average number, as N’Q, does
not commute with the hamiltonian. In fact, the variance (or fluctuation in
the average population of the region Q)78,
0® = (N§) — (Ng)°

turns out to be quite large with respect to (Ng). For example, in the hy-
drogen molecule, at equilibrium distance, the atomic basins (the regions
left and right of the median plane) have each a population of 1, while o is
close to 2/3. This is due to the fact that in any of the two regions there is
a finite probability to find 0 or 2 electrons.

It may thus be of interest to get the underlying information, namely the
probability of finding v electrons in a region of space Q, p(v, ). (In order
to simplify notation, the variable Q will be omitted below: p(v, Q) = p(v).)
Consider, e.g., two hydrogen atoms at infinite inter-nuclear separation. The
average number of electrons, on each atom, is equal to 1, both for the ground
state (two H atoms), and for the ionic state (one HT and one H™). The
probabilities are however different: in the first case, p(0) = p(2) = 0,p(1) =
1, while in the second case, p(0) = p(2) = 1/2,p(1) = 0.

The present paper will show in its first part that it is often not difficult to
obtain the probabilities p(v). Next, these will be used to produce a division
of space, by underlying the ’specificity’ of the system, in the sense that
p(v) maximally differs one which could be obtained by considering that the
particles were independent, but yielding the same (NQ)

As an application, the valence shell of the atoms, from Li to Xe will be
considered, in the Hartree—Fock approximation. This is not a trivial task,
as for heavier atoms, some of the spatial indicators like the laplacian of the
density, do not yield shell separators %1011 while others, like the electron



July 26, 2001 11:45 WSPC/Guidelines 2607

Probability distributions and valence shells in atoms 3

localization function may sometimes yield an average number of valence
shell electrons which significantly differs from the one expected from the
orbital occupation 12. (The radial density itself can be produce either of
these cases, depending on the criterion used (see, e.g., 13, or 2.)

2. The probabilities of having v electrons in the spatial
region 2

The probability of finding electrons 1,2,...,v in the spatial region {2, and
electrons v + 1,..., N outside it (in (2), is given by:

/d1d2...du/du+1...dN|\IJ|2
Q Q

where [, means that the integration is performed only within Q, the ‘in-
tegration’ over all spins is implicitly assumed, and ¥ is the N-electron
wave function. As the electrons are indistinguishable, the probability p(v)
of having v electrons in the spatial region 2 is given by:

p(v) = (f)/Qd1d2...dy/0dy+1...dzv|m|2 @)

The probabilities p(v) can be also expressed in terms of the m-th order
reduced density matrices, T'(™) (see, e.g., ', and references therein):

— 1 (_1)Z (v+i)
=5 ¥ ST ®)
i=0,N—v
The integral on the r.h.s. is over all variables appearing in I". The reduced
density matrices used in this paper are defined using the McWeeny normal-
ization (see, e.g., 14):

N!
00 = oy [ Py @

(0 < m < N; for m = N, no integration is performed). fQ (™) gives - up
to the normalization prefactor - the probability of finding m electrons in
), no matter where the other N — m are. It thus has contributions from
the situations where m' > m electrons are in . In order to obtain the
probability of having exactly m electrons in (2, one has to eliminate the
contributions coming from having more than m electrons in 2, which is
done by linearly combining T'™ with ™) m' >m yielding Eq. 3. An
example is given in the appendix.
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A third formula for the p(v) can be obtained by considering (Ng) with
0 < m < N. If these are known, the following system of equations can be
solved for the p(v) (cf., e.g., 16:17):

(Ng)= > pw)r™ ()

v=0,N

An example will be again given in the appendix.

3. The probabilities for single determinant wave functions

When the wave function is approximated by a single Slater determinant one
can of course use Eq 2. One can also generate the probabilities by using the
integrals

wij = /Q Pid; (6)

where 0 < 4,7 < N and ¢; are spin-orbitals. One way to see it, is to
realize that the product of two determinants, is equal to the determinant
of the product matrix, which has, in our case (of the square of the Slater
determinant), the elements:

N
> pik)g; (k)
k=1

(The normalization factor 1/N! has been intentionally left out here for
the sake of clarity.) The determinant can be now expanded into a sum of
determinants:

¢1(k1) 1 (k1) ¢1(k2)ga (k) ...
¢2(k1) g1 (k1) p2(k2)ga(k2) ...

in which k1, ks, . .. take any values between 1 and N. Notice, however, that
if any two of the k; are identical, the determinant vanishes:

o1(k)p1 (k) ¢1(k)ga(k) ... b1(k) ¢1(k) ...
ba(K)p1 (k) d2(k)pa(k) ... | _ B (k) oK) ...
B3R (k) Sa(R)sak) .| = P EIP N gy by

=0
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Thus, only the N! determinants will be left, in which the kq,...ky are
different. The integration over each of the variables in Eq. 2 can now be
performed over each of the ¢;(k)¢;(k) which appear when expanding the
determinant. Remember that two types of integrals are present, over (2,
when k < v, and over €, when k£ > v. The former yields wij, of Eq. 6,
while the latter is given by d;; — w;;, due to the orthonormalization of the
spin-orbitals. In order to condensate the information, we can write again
the determinants, in which each product ¢;(k)¢; (k) has been replaced by
wij, for 1 < k < v, and by d;; — w;; for v < k < N. In short, in order
to obtain p(v), one sums up all the determinants of the matrices having v
columns (or lines) w;;, and N — v columns (lines) d;; — w;;. This method
may be convenient to use when p(v) is needed when v is small or close to
N.

Another way to obtain the p(v) is to use Eq. 3. As it contains higher-
order reduced density matrices, this evaluation of the p(v) seems tedious.
In fact, it reduces to an expression in which the matrix Sq (having elements
wij;) is taken to some power (< m):

/ rm = an(TrSg“)(TrSgLﬂ ... (single determinant ¥)  (7)
Q2 «

where Tr means the trace of a matrix, and « is any set of numbers,
mi,Ma, ..., which sum up to m, my1 + ms + ... = m (the partitions of
m). The coefficients ¢, can be determined from combinatorial considera-
tions. For a given partition a = (m;m,ma,...,m,), they are given by:

m! 1

Cq = (_1)Zj,eve'n 2]

(®)

where t; is the number of times the integer j appears in the list {mq, mo,...,m;}.
All terms ¢, can be generated with a few lines of Mathematica code'8.

Eq. 7 appears in the following way: For a single determinant wave func-
tion, T(™ = det G, where the matrix G has elements (see, e.g., '*):

Gpa= Y izp)i(z) 9)

i=1,N

mimso...Mr t1!t2!...tN!

When expanding the determinant into a sum of products, each product
shows terms of the type ¢;(z4)¢;(z,), each z, appearing twice. Integration
over all z, yields sums of products of terms w;;. (For more details, see the
example given in the appendix.)
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A reduction of the size of the matrices Sq is achieved by taking care
of spin or spatial degeneracy, which gives a factor equal to the degree of
degeneracy in front of each T'r.

The number presented in this paper were produced using Eqgs. 3 and 7.
For numerical convenience, two limits were imposed in the present calcula-
tion:

e A grid was constructed to explore the inner/outer region in the
atoms: the step size was uniformly taken as 0.02 bohr, and it was
considered that » = 10 bohr is sufficiently large to consider that
there are practically no electrons beyond it.

e All p(v > 24) were set to zero. Of course, this approximation was
made due to the rapidly increasing number of partitions with V.
Using the approximation allows to use the formula for N < 24, cf.
Eq. 3. The approximation can be justified, however, by the nature of
the p(v) which show vanishingly small values except in the regions
around the maxima (see below). As our interest lies in detecting
the valence shell (0 < v < 8), tests have shown that taking 24 as
an upper limit seems quite safe.

Figure 1 shows a typical plot of the p(v), as obtained for the Mg atom.
(This kind of plots can be found in literature, e.g., in %.) Tt shows the
probability of finding v electrons beyond the radius, r, given as the abscissa.
The curve approaching 1, as r gets large, is of course, that of p(0); as r gets
larger, the probability to find an electron beyond r goes to zero. Near to
the origin, another curve tends to 1; this is that corresponding to p(N): Q
becomes the whole space, and we become sure to find all N electrons in
it. In between, the curves of p(v), (0 < v < N) raise and then fall with
increasing r. It is conspicuous that two maxima are more pronounced in
our example of Mg: they correspond of v = 2, and of v = 10. Of course,
this can be related to the shell structure of Mg: v = 2 corresponds to the
valence shell, and v = 10 corresponds to the two outermost shells.

For the sake of clarity, the plots given in Fig. 1 can be simplified, by
showing just the positions of the maxima of p(v), rp, and the values of p(v)
at these positions (cf. Fig. 2).

Plots were performed for all atoms, from Li to Xe, using the atomic
near Hartree-Fock wave functions (using Slater type function basis sets) of
Bunge et al. 1°. All plots are available on the web site.?? They essentially
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Fig. 1. Probabilities p(v) of having v electrons in a spherical shell, beyond r, as a
function of r, for v = 0,1,..., in Mg (left), and Zr(right). In each of the plots, the
maxima of the curves can be used to attribute the curves to v, the one having the

outermost maximum, at 1, corresponding to ¥ = 0. From right to left, the curves pertain

to v =1,2,.... The numerically unsafe region (at small r) is not shown for Zr.
1 1
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Fig. 2. The positions of the bars show the radius rp of the spherical shell for which the
probabilities of having v electrons is maximal, for Mg( left) and Zr (right). The height of
the bars indicate the values of p(v) at these points. The last bar on the right corresponds

to v = 1. The values for larger v follow from right to left.

show the same features as the ones discussed for the Mg atom. For heavier
atoms, however, the maxima of p(Nyqi), Nyar being the number of valence
shell electrons, are less pronounced (see Figs. 1, 2). In particular, p(1) =~
p(2), for Zr, but also for other elements, like Cd.

It may be worth mentioning the relationship between p(r) and and
the radial density, mentioned in the introduction. To this end, we will not
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consider {2 as the region outside a sphere of radius r, but a spherical shells of
radius r and of infinitesimal thickness, §r. For such an , T(™) (Eq. 3) can be
expanded in a Taylor series around the reference position. When considering
only the leading terms to order v, all integrals involving I'™ | with m > v
will become negligible, because an m-fold integration is required, and each
integration introduces a term proportional to dr. From Eq. 3 it follows that
all p(m > v) will become negligible, too. For example, to first order in the
thickness of the spherical shell, §r: p(0) = 1—p(1)+..., p(1) = 47r?p(r)dr+

.., p(r >1) =0+.... One thus recovers the expected connection between
the radial density and the probabilities of finding electrons on spherical
sheets.

One can extend this picture to molecules: one may look at surfaces of
constant density p. The formula is similar to that of the one above, where
47r2p(r) has been generalized to the product of the density on this surface
(p) multiplied by the area of the surface A(p). Searching the maxima of
A(p)p (by changing p) is analogous to the search of the maximum of the
radial density in atoms (which gives, e.g., the Bohr radius for the hydrogen).

It may be worth mentioning that such considerations can be applied in
order to define ELF (by considering the probabilities of having two pair of
electrons in the same small region of space).

4. Detection of the valence shell in atoms

A simple way to define the valence region of the atom is to simply find
the radius, r(Nyq1), beyond which the electron density, p, integrates to the
number of electrons which is attributed to the outer shell, N,;: (see, e.g., 2,
cf. Table 1):

Nya = / P (10)

(Nvai)

The maximum of p(v = Ny ) is at 7, which normally is not at r(Nye).
The values of r;, are given in Table 1, while those for (Ng), with Q being
the spherical shell beyond r,,, are given in Table 2. One notices that r, lies
at a value which is higher than ry (by a few per cent). Correspondingly,
the average number of electrons outside the sphere with radius r, is lower
than Nval-

One would like, however, to be able to define the valence shell without
a preliminary knowledge of N,q;. It is tempting to choose the separating
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surface in such a way that the relative fluctuation (see, e.g.,

(N3) — (No)?

is minimal. With this definition, only the reduced density matrices up to
second order would be needed. Two plots, for Mg and Zr, are shown in
Fig. 3. This criterion works nicely for light elements, but for transition
metals the results are not always good. (cf. Table 1, 2). The integral over
the density beyond the outer radius minimizing the relative fluctuation, 7y,
does not yield a good value for, e.g., Zr (2.6 instead of 2); A only shows a
shoulder, and thus does not produce a separation for the valence shell of

Nb or Mo.

Table 1: Radius of the sphere defining the separation between va-
lence and core, from fr p = Nyai, "(Nyar); the position of the max-
ima of the probabilities p(Nyq), 7p; that of the minima of the
relative fluctuations A, ry; and the maximal deviation of p(v) from

the binomial distribution, ra.

2607

(Ng)

T(Noat) [ Tp | Ta | TA
Li 1.53 1.57 | 1.56 | 1.57
Be | 0.99 1.00 | 0.99 | 1.00
B 0.70 0.72 1 0.71 | 0.72
C 0.54 0.55 | 0.54 | 0.55
N 0.43 0.44 | 0.43 | 0.44
O 0.36 0.37 | 0.35 | 0.37
F 0.31 0.31 | 0.30 | 0.31
Ne | 0.27 0.27 | 0.25 | 0.27
Na | 2.13 2.20 | 2.19 | 2.21
Mg | 1.63 1.66 | 1.65 | 1.66
Al 1.35 1.38 | 1.37 | 1.38
Si 1.16 1.17 | 1.16 | 1.17
P 1.01 1.02 | 1.01 | 1.02
S 0.89 0.90 | 0.89 | 0.90
Cl 0.80 0.80 | 0.79 | 0.80
Ar | 0.72 0.73 1 0.72 | 0.73
K 3.06 3.16 | 3.15 | 3.18

continued on next page
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continued from previous page

T(Nval) Tp T TA

Ca | 2.45 2.49 | 2.47 | 2.50
Sc | 2.46 2.47 | 2.32 | 2.47
Ti | 2.40 2.40 | 2.24 | 2.40
A% 2.33 2.33 | 2.17 | 2.33
Cr | 2.80 2.81 | 2.35 | 2.81
Mn | 2.18 2.20 | 2.06 | 2.20
Fe | 2.13 2.14 | 2.00 | 2.15
Co | 2.08 2.09 | 1.95 | 2.09
Ni | 2.02 2.04 | 1.90 | 2.04
Cu | 245 2.49 | 2.27 | 2.51
Zn | 1.92 1.94 | 1.82 | 1.94
Ga | 1.66 1.67 | 1.62 | 1.67
Ge | 147 1.48 | 1.44 | 1.48
As | 1.33 1.33 | 1.30 | 1.33
Se | 1.21 1.22 | 1.19 | 1.22
Br | 1.12 1.12 | 1.09 | 1.12
Kr | 1.04 1.04 | 1.01 | 1.04
Rb | 3.46 3.57 | 3.55 | 3.58
Sr | 2.83 2.88 | 2.85 | 2.89
Y 2.94 2.94 | 2.58 | 2.94
Zr | 2.89 2.89 | 2.46 | 2.89
Nb | 3.42 3.42 | > 3.43
Mo | 3.26 3.28 | 3.30
Tec | 2.65 2.66 | 2.36 | 2.67
Ru | 3.08 3.12 | 244 | 3.15
Rh | 2.99 3.04 | 2.61 | 3.08
Pd | © o0 0 o0

Ag | 2.83 2.90 | 2.71 | 2.94
Cd | 2.32 2.35 | 2.20 | 2.36
In 2.06 2.08 | 2.02 | 2.08
Sn | 1.87 1.88 | 1.82 | 1.88
Sb | 1.71 1.72 | 1.67 | 1.72
Te | 1.59 1.59 | 1.54 | 1.59
I 1.48 1.49 | 1.44 | 1.49

continued on next page
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continued from previous page
T(Nwat) [ Tp | Ta | Ta
Xe | 1.39 1.40 | 1.34 | 1.40

Table 2: Valence electron numbers, as given by the occupation of
Hartree—Fock valence orbitals,N,.;, and by fr p, where r is given
by the maxima of the probabilities p(Nyqi), N(rp); the minima of
the relative fluctuations A, N(ry); and the maximal deviation of
p(v) from the binomial distribution, N(ra).

Nval N(Tp) N(T)\) N(TA)
Li 1 0.99 0.99 0.99

Be |2 1.99 |200 |1.99
B |3 298 |[3.00 |298
c |4 398 |4.00 |3.98
N |5 498 | 501 |497
O |6 597 |6.03 |597
F |7 6.97 |7.05 |6.97
Ne |8 798 | 808 | 797
Na |1 097 |0.98 |[097
Mg | 2 1.97 | 198 |1.97
Al |3 297 | 298 |297
Si |4 397 [3.99 |397
P |5 497 | 500 |4.97
S |6 598 |6.01 |5097
a |7 698 |7.01 |6.98
Ar |8 798 | 802 | 798
K |1 096 |097 |0.96
Ca |2 1.96 | 1.98 | 1.96
Sc |2 2.00 | 215 |1.99
Ti |2 2.00 | 219 |2.00
v |2 1.99 |220 |1.99
cr |1 099 |[1.40 |0.99
Mn | 2 1.98 | 218 | 198
Fe |2 1.99 |220 | 198
2

1.98 2.21 1.98

continued on next page

11
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continued from previous page

Nyai | N(rp) | N(ra) | N(ra)

Ni |2 1.98 2.21 1.98
Cu |1 0.97 1.17 0.96
In | 2 1.98 2.19 1.97
Ga | 3 2.98 3.09 2.97
Ge | 4 3.98 4.09 3.98
As | 5 4.98 5.10 4.98
Se | 6 5.98 6.12 5.98
Br | 7 6.99 7.14 6.99
Kr | 8 7.99 8.16 7.99
Rb |1 0.96 0.96 0.95
Sr 2 1.95 1.99 1.95
Y 2 2.00 241 2.00
Zr | 2 2.00 2.60 2.00
Nb |1 1.00 0 0.99
Mo |1 0.98 0 0.97
Tc | 2 1.97 2.49 1.96
Ru |1 0.97 1.83 0.94
Rh |1 0.96 1.42 0.93
Pd | O 0 0 0

Ag |1 0.95 1.13 0.91
Cd | 2 1.95 2.24 1.93
In |3 2.96 3.11 2.95
Sn | 4 3.96 4.14 3.96
Sb | 5 4.97 5.20 4.97
Te | 6 5.98 6.24 5.97
I 7 6.98 7.29 6.98
Xe | 8 7.98 8.34 7.98

The results obtained from finding the minima of the variance o2 are not
encouraging either: although the numbers are good for the light elements,
they do not yield the valence shell for Cr-Zn and Zr-In. The numbers are
not shown in the tables for this reason.

Let us now consider using the all the p(v). One can try to use the loges,
defined by finding the minimum of the ‘missing information function’ (see,
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Fig. 3. The relative fluctuation, A, for a spherical region beyond r, as a function of r,
in Mg (left), and Zr(right). The numerically unsafe region (at small 7) is not shown for

Zr.

e.g., °):

— Y p(v)log, p(v)

v=0,N

It turns out, however, that for some heavier elements, the minimum trans-
forms into a shoulder, as it did in some cases for the fluctuation A.

We will now show that a comparison with a model of independent par-
ticles provides a useful criterion to generate the spatial separation of the
valence shells in the atoms Li to Xe. First, notice that the main features
of the p(v) (cf. Figure 1, from left to right: decrease in p(IN) and increase
in p(0); p(v), for 0 < v < N vanishes at both at zero and infinity, and
is positive in-between) are independent of the specificity of the probability
distribution. Let us imagine for a moment, that electrons were independent.
Let us denote py;, the probability of finding such an independent particle
in Q. The probability to find the independent, indistinguishable particles
1,2,...,vin Qand v+ 1,v + 2,... N outside it is given by:

Phin(L = poin) N "
The probability to find v independent, indistinguishable particles in Q, and
N — v outside it is thus:

N!

pz’ndep(”) = mpzm(l - pbin)

N—v
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Fig. 4. Difference between the probabilities p(v) of having v electrons in a spherical

shell, beyond r, and those obtained from a binomial distribution, as a function of r, in

Mg (left), and Zr(right). The numerically unsafe region (at small r) is not shown for Zr.

This is nothing but the binomial distribution (cf., e.g., 22). For it, ppin is
related to the average number of particles in :

Z Vpindep(y) = prin

In order to emphasize the valence shell structure using the p(v), it seems
convenient to consider the difference between the real probabilities, p(v),
and the probabilities obtained assuming that the electrons were indepen-
dent, pingep(V):

A(”) p(”) _pindep(y)

The parameter py;, can be fixed by the requirement that the average num-
ber of particles in 2 is the same in the real and in the fictitious system:

(Nq) = Npyin

Of course, the difference between p(v) and pingep(v) arises at Hartree—
Fock level, due to the Pauli principle. In Fig. 4, A(v) is plotted as a function
r. As before, we simplify the figure by showing, for each v, a bar, having the
height of the function (now A(v)), at point r (now 7a) where its maximum is
reached (Fig. 5). In order to choose a v, we will take those which correspond
to local maxima in v. For Mg, two maxima are present: one at v = 2,
corresponding to its valence shell, and the other at v = 10, corresponding
to the two outermost shells of the atom. Please notice in Zr, given as another
example in Fig. 4, how A accentuates the difference between the peek at
v=2and v =1 (cf. Fig. 2).
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Fig. 5. The positions of the bars show the radius ra of the spherical shell for which the
difference A(v) between the probabilities p(v) of having v electrons and the probabilities
of having v fictitious independent particles, p;ndep(v) is maximal, for Mg( left) and Zr
(right). The height of the bars indicate the values of A(v) at these points. The last bar

on the right corresponds to v = 1. The values for larger v follow from right to left.

In fact, comparing the maxima of p(v) — ppin(v), for different v, the
first outermost maximum corresponds in all studied cases to v = Nyq. Its
position is very close to that of the maximum of p(N,4) (Table 1). (In fact
the differences between this position, ra, and r, seem close to the limits
of the numerical accuracy of the calculation.) A(v) thus seems to yield a
quite reasonable criterion for spatially defining the valence shell in atoms.
One can now either use A(v) = p(¥) — Pindep(v) in order to determine Nyq;
and choose as a shell separator the maximum of p(N,q), or directly take
ra as the radius of the separating sphere.

5. Conclusions and outlook

The probabilities p(v) of having v electrons in a volume § can be written
in a closed form, and easily obtained for single determinant wave functions,
as long as the number of electrons in 2 does not become excessively high
(which is commonly the case). It is the hope behind this paper, that these
probabilities can be useful for chemical interpretations. An example is given,
by studying the shell structure of atoms.

In order to select a given number of electrons, it was useful to analyze
the difference between p(v) and the probabilities of independent particles.
(This difference is due to the Pauli principle, and present at Hartree—Fock
level).
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A first question which can be raised is that of obtaining p(v) for more
elaborate wave functions. Of course, Eq. 2 is quite general, and can be even
used for complicated wave functions in Quantum Monte Carlo calculations.
In fact, work using variational Quantum Monte Carlo wave functions is in
progress 23. Furthermore, multi-determinant wave functions yield formulas
related (via transition density matrices) to Egs. 4 and 7. (For closely re-
lated work, see 42 where no sharp boundaries were used.) In general, one
expects correlation to reduce the variance (see, e.g., 26, where results for
the uniform electron gas are presented).

The second question is the definition of the volumes 2. This paper
suggests to emphasize the difference between the real probabilities and those
of a hypothetical one of independent particles. This requires, however, to
explore different volumes, until the optimal criterion (i.e., the maximal
difference) is achieved. To investigate it concretely, algorithms are needed,
which are different from the currently used for defining spatial regions. The
latter define the volumes by following the gradients of some function of the
three spatial coordinates). Algorithms for varying surfaces until an optimal
criterion is reached are used nowadays (level set methods 27) and seem
applicable to the present approach 28.

Finally, we would like to point out a feature noticed in many cases. In
Refs. 1617 the p(v) were assumed to lie on a curve Cexp[—a(v — vg)?],
where the parameters C, a, vy were determined from the Egs. 5, m = 0,1, 2.
From the data obtained in the present work, it turns out that very often the
p(v) lie very close to a normalized Gaussian curve. Furthermore, the two
free parameters can be quite well approximated by simply taking (NQ), and
o2. (The present numerical material typically produces errors in p(v) of the
order of 0.01.) As only two parameters are required, one may further ask,
under which conditions all p(v), (and thus even all [, (M) with m' > 1),
can be obtained from Y p(v) = 1 and (Ng), i.e., using only the electron
density, like in density functional theory (cf. Eq. 5).
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Appendix

This appendix exemplifies several formulas for the number of electrons,
N = 3. We start with Eq. 5. As N& = [3°,_; x No(r;)]™ and No(r;)™ =
N(r;), we get:

NQ = Z NQ(ri)
i=1,3

N = 3 No(r:) +2Y No(r)Na(r;)
i=1,3 i<

N = Y No(r:) + 6 No(ri)Na(r;) + 6Na(r1) No(r2) No(rs)
i=1,3 i<j

We observe one-, two-, and three-body operators. The expectation values
are thus, by using the rules for m-body operators (see, e.g., 14):

(D) =
mazﬁﬂ”

@@:/rm+/ﬂ”

Q Q

<Ng)=/r<l>+3/r<2>+/r<3>
Q Q Q

By introducing these expression in the system of equations 5, and solving
for p(v), we obtain the expressions given in Eq. 3, for the special case N = 3:

1 1
—1- [ W / @ _ / (3
p(0) = / +3 A
/ r® _ / re@ 4 / e
- @) _ (3)
p(2) = /Q -3 /Q r

p(3) = = / )
6 Jq

We will now directly obtain these equations, starting with Eqs. 2 and
4. Of course,

—3)!
p(3) = 3 / d1d2d3 | ¥ |?= 3 / d1a2d3C =3
3) Jo 3) Jg 3!
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Furthermore, using [, = [ — [, we have:

:(3>/d1d2/d3|l11|2
2/ Ja o

3 2 3 2
:( )/d1d2/d3|l11| —( )/d1d2/d3|111|

2 Q 2 Q Q
3 B=2! ¢ (3 3=3)! @
(2)/Qd1d2 3l s — 9 /led2d373! T

=) o s
(¢) afasios

() fare () [ fm 1o
() L

() 50 () [ e
+(3) a2

Let us now consider the case when the wave function is approximated
by a single Slater determinant. The reduced density matrix '™, is the
determinant of the matrix with elements G,, (Eq. 9). For example, for
m = 3, one has

an

w

—

—

N
T® =" (1) i (21)p;(2) B (22) i (w3) i (x3)
1,7,k
(z1) i
—¢i(z3)di
—¢i($2)
+i(z3) 9
(z2)9i
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To obtain Eq. 7, fQ is performed, and one obtains (cf. Eq. 6):

N
3

/T( ) = E WiiW;j Wk

& ik
—WiiWjkWhj
—WikWjjWki
—WijWjiWkk
Fwi Wik Wk

FTWikWrjWji

N N N
= E Wii E Wjj E Wkk
i i k
N N
- E Wii E WikWkj
i ik

N
- E Wik Wi E Wyj
ik j
- E wz’jwjiE Wk
i k
+E WijWikWhi

ii.j,k

+ E Wik WkjWyi
ii.j,k

which is, in a more compact notation:

I'®) = (TrSq)® — 3TrSqTrSE + 2TrSS

Of course, the coefficients can be directly obtained from Eq. 8, the partitions
of 3 being {1,1,1}, {1,2} and {3}.
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