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Abstract
We like to attribute a number of electrons to spatial domains (atoms, bonds, etc.). However, as a rule, the number of electrons in a
spatial domain is not a sharp number. We thus study probabilities for having any number of electrons (between 0 and the total
number of electrons in the system) in a given spatial domain. We show that by choosing a domain that maximizes a chosen
probability (or is close to it), one obtains higher probabilities for chemically relevant regions.
The probability to have a given electronic arrangement, – for example, by attributing a number of electrons to an atomic shell – can be
low. It remains so even in the "best" case, i.e., if the spatial domain is chosen to maximize the chosen probability. In other words, the
number of electrons in a spatial region significantly fluctuates.
The freedom of choosing the number of electrons we are interested in shows that a "chemical" question is not always well-posed. We
show it using as an example the KrF2 molecule.
Co
Key Points

• The probability to have a chosen number of electrons in a given spatial domain can be computed with accurate wave functions.

• The optimization (for a chemically relevant number of electrons) provides a chemically relevant spatial region.
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2 What is the Number of Electrons in a Spatial Domain?
• Even if the average number of electrons is very close to the chemically relevant one, the probability to get exactly this
number of electrons in the region appears sometimes to be disappointingly low.

• The definition of a chemically relevant number of electrons for a spatial domain is not always evident.
1 Introduction

1.1 Chemical Introduction to the Subject

When speaking about chemical bonding, it is useful to make a distinction between effects that are discussed at the collective
(molecular, crystalline) level, and those associated to a fragment. For example, the energy lowering obtained when atoms form a
molecule is providing information that we qualify here as collective. However, there are many quantities that are obtained when
looking at pairs of atoms forming a molecule, for example:

• lines drawn connecting atoms, e.g., C-H, since the 19th century.

• the energy attributed to a pair of them, e.g., that of the CC or CH bonds in saturated hydrocarbons,

• nearly invariant distances between types of atoms, e.g., the length of the CH bond,

• patterns to understand spectra, e.g., attributed to the CH stretching frequency,

• …

In this paper we are interested in describing grouping of electrons in some spatial domain, O. We use quantum mechanical
calculations, and start with the Schrödinger equation. The Hamiltonian gives a natural partitioning, and it is reasonable to use it
(see, e.g.,1,2), as well as an energy partitioning resulting from it. In many cases the physical origin of the formation of groups is the
Pauli principle. This directs us toward analyzing the wave function. Due to the complicated structure of the wave function, its
reduction to three-dimensional objects is desired. It is worth mentioning in this direction the work of Artmann3 and that of
Daudel4. Using the electron density, r, as proposed by Bader for the Quantum Theory of Atoms in Molecules (QTAIM)5 had, and
still has a great success. The Pauli principle is hidden in the density. It is made more explicit6 in the Electron Localization Function
(ELF) of Becke and Edgecombe7. The Maximum Probability Domains, MPDs8 (or their simplified variants), of interest in this
paper, originate from Daudel's idea of partitioning 3D space (into so-called "loges"), using the wave function squared. However,
instead of making a partition of the whole molecular (or crystalline) space, with MPDs one concentrates on specific spatial regions,
thus reducing the computational effort, and avoiding the propagation of errors produced in a region different from that of interest.
1.2 Quantum Mechanical Introduction to the Subject

We speak about having two electrons in a bond, eight electrons in the valence shell of Ne, atomic charges, and so on. The operator
that gives the number of electrons in a spatial domain, O, is

N̂ðOÞ ¼
Z
O
r̂ðri � rÞdr ð1Þ

where

r̂ðrÞ ¼
XN
i ¼ 1

δðri � rÞ ð2Þ

is the density operator, N the total number of electrons in the system, δ is Dirac's δ function, ri are the positions of the electrons, and
r refers to an arbitrary position in the three-dimensional space. The eigenfunctions of the Hamiltonian operator are not, in general,
eigenfunctions of N̂O.

1 As a result, we cannot specify a given number of electrons in O. However, we can specify a probability to have
a given number of electrons in O.

In this paper we choose a number of electrons, n. It is provided by chemical intuition, e.g., of having eight electrons in the
valence shell of the Ne atom. We are interested in the spatial region that maximizes the probability of having that chosen number
of electrons in it. This is aMaximum Probability Domain (MPD, see Appendix A for details). Note that the probabilities of finding an
arbitrary number of particles can be obtained for any spatial region, O, for example in the basins of the electron density as
provided by QTAIM5, or those of the electron localization function, ELF.9

Note that an error produced by an approximation to a MPD produces only second order errors in the probabilities, because the
probability is maximal for an MPD.

As with localized orbitals one may consider electron pairs, and obtain spatial regions that can be associated to one or more
nuclei (lone pairs, two-center bonds, three-center-bonds, ... ). However, the number of electrons considered for an MPD, n, can be
1The operators do not commute for arbitrary O, while they trivially commute for O being the whole space, as in this case N̂ becomes N, the number of
electrons in the system.
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adapted to the question of interest. For example, one may want to search for a given ion in a crystal and choose n equal to the
number of electrons in that ion.10 Furthermore, one may consider spatially disconnected regions, for example when considering
spin couplings of electrons on different centers.

The definition of the probabilities and the MPDs use the wave functions squared. Thus, there is no restriction to ground states.
The same definitions can be applied to time-dependent processes.11

One can consider probabilities for multiple domains, e.g., establish connections to resonant structures.12,13 It is possible to
define a joint probability (of having nA electrons in OA, and nB electrons in OB), or a conditional probability (of having nA
electrons in OA given that there are nB electrons in OB).

4,14–17
2 How Numbers are Obtained

2.1 Probabilities

2.1.1 Choosing the relevant quantities to be obtained
Traditionally, one looks at the population of a spatial region. We can see from Eq. 1 that the expectation value of the number of
particles in the domain O is just its population,

⟨CjN̂ðOÞjC⟩¼
Z
O
rðrÞdr ð3Þ

C is the wave function of the system, r its one-particle density, and N the number of electrons in the system. Being a mean
value, we can express it in terms of probabilities.

mðOÞ ¼ ⟨CjN̂ðOÞjC⟩¼
XN
n ¼ 0

nPðn;OÞ ð4Þ

Pðn;OÞ is the probability to have n electrons in O. Its expression is given in Appendix A.
In the same way, we can express the variance,

r2ðOÞ ¼
XN
n ¼ 0

ðn� mÞ2Pðn;OÞ ð5Þ

It is tempting to indicate just m and s. If the distribution of probabilities were normal, m and s would be sufficient to recover all
information about the distribution of probabilities. However, the distribution is not normal. As n is always an integer, we do not
have a continuous probability distribution, so it cannot be a normal distribution.

To avoid this argument, we can argue that we use only a Gaussian function of a real n, but read it only at integer values of n to
obtain the values of the probabilities. In many cases, this is expected to work well (cf. Ref. 18). However, there is also another
aspect to consider with normal distributions: a normal probability distribution function is non-zero for arguments that extend to
negative values and to values larger than N. This is physically impossible. We should restrict the reading on the Gaussian curve
only to values n¼ 0;1;…;N. Let us take as a numerical example, where O is an atomic basin (QTAIM) in the water molecule,
Fig. 1.9 Choosing just points for integer values on a normal distribution gives the absurd interpretation that there is a significant
probability (E0:2) to have � 1 electron in the H atom basin. Furthermore, there is a similar probability to have 11 electrons in the
O atom basin (10 being present in the water molecule).

Fig. 1 can induce us to believe that the probability to find n electrons in O could be read (up to a precision of about 0.1) at
admissible values of a normal probability distribution function with the same mean and variance as provided by the physical
probability distribution. However, let us consider now the dissociation of the H2 molecule. The covalent (ground state) dis-
sociation produces for O being the half space containing a H atom, Pðn¼ 1;OÞ ¼ 1, yielding m¼ 1;s¼ 0. In this case, indicating m
and s is sufficient. A different situation arises when we consider a state that dissociates into the ionic form, Hþ…H�2H�…Hþ

We get Pðn¼ 0;OÞ ¼ Pðn¼ 2;OÞ ¼ 1=2, Pðn¼ 1Þ ¼ 0. The mean (the population) is the same as for the covalent case, m¼ 1, while
the variance is different, s2 ¼ 1=2. A Gaussian form with the mean at m¼ 1 yields a maximum (0.56) at n¼ 1, where P is 0, and too
low estimates at n¼ 0;2, namely, 0.21 instead of 0.5.

In statistics, more information from probability distributions is summarized by introducing higher order (standardized)
moments, e.g., the third power of ðn� mÞ (skewness) or the fourth power (kurtosis). However, if we look at the data, we see that
the number of cases where the probabilities Pðn;OÞ significantly differs from zero is small, and already contains all the relevant
information. Thus, we may use directly the significant Pðn;OÞ instead of using statistical summaries. If needed, the latter can be
easily obtained once the Pðn;OÞ are known, as, for example, in Eqs. (4) and (5).
2.2 Computing Pðn;OÞ
For Slater determinants (as obtained from Hartree-Fock or Kohn-Sham calculations), Pðn;OÞ can be computed from the overlap
integrals



Fig. 1 Probability distribution for the atomic (QTAIM) basins of O and H in the water molecule (dots) and the normal distributions (dashed lines)
with the same m and s9. The results for H are in red, for O in blue. Figure using data from Chamorro, E., Fuentealba, P., Savin, A., 2003. Electron
probability distribution in aim and elf basins. J. Comput. Chem. 24, 496.

4 What is the Number of Electrons in a Spatial Domain?
SijðOÞ ¼
Z
O
fiðrÞfjðrÞdr ð6Þ

fi;fj are the orbitals present in the Slater determinant.8,19 Note that here the integration is not performed over ℝ3, but over
OCℝ3. For large systems, it is convenient to use localized orbitals in order to neglect Sij between distant orbitals (that do not
overlap in O).

Multi-determinant wave functions can be also used.15,20,21 Quantum Monte Carlo calculations are very flexible in the choice of
wave functions and are convenient for estimating Pðn;OÞ.22 Moreover, computing the probabilities with samples drawn from a
Monte Carlo sampling of the squared wave function is particularly simple: one simply counts the number of electrons present in O
for each configuration generated during the calculations. The ratio between the number of configurations presenting n electrons in
O and the total number of configurations is an estimator of Pðn;OÞ. As a rule, the number of configurations needed to obtain a
reasonable probability is much lower than that for obtaining a reasonable energy simply because the number of digits needed is
much lower for probabilities.
2.3 Sensitivity to the Choice of the Wave Function

All the interpretative methods raise the question whether the refinement of the method (such that the change of the basis set)
significantly changes the conclusions. The simplest wave function capturing the physics should be sufficient. In the case we discuss,
the Pauli principle is already described by a single determinant wave function, so methods like Hartree-Fock or the Kohn-Sham
method should be sufficient in most cases. For example, it is known that the density can be reasonably obtained with relatively low
level methods (defining atomic basins in QTAIM). As a counter-example, consider jrrj=r. It is a good detector of the shell
structure in atoms, but its topology is sensitive to the (Gaussian) basis set used.23

In many cases, using a correlated wave function does not change significantly the probabilities. MPDs show often little
sensitivity to the wave function used – as long as the Pauli principle is the underlying cause of the property studied. Nevertheless,
there are cases (of near-degeneracy) when correlation effects are felt, and multi-determinant wave functions that describe correctly
the situation should be better used. For example, at dissociation, the H2 molecule yields at Hartree-Fock level Pðn¼ 1;OÞ ¼ 1=2,
where O is the half-space defined by a plane perpendicular to the H-H axis, at the midpoint between the nuclei. Correlation effects
can be seen also at equilibrium distance. For example, let us consider the F2 molecule. We divide again the space between the two
atoms by choosing a plane perpendicular to the molecular axis, at equal distance from the two nuclei. For the correlated wave
function, we obtain for O corresponding to the half-space Pðn¼ 9Þ ¼ 0:61, Pðn¼ 8Þ ¼ Pðn¼ 10Þ ¼ 0:19, while from the Hartree-
Fock we find a higher importance of the ionic functions, Pðn¼ 9Þ ¼ 0:47, Pðn¼ 8Þ ¼ Pðn¼ 10Þ ¼ 0:25.

Details concerning the wave functions used below can be found in Appendix B. Some of the wave functions used are at Hartree-
Fock level, some can be considered quite accurate. We do not expect qualitative changes in our discussion by further improvement
of the wave function.
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2.4 Spatial Domains

2.4.1 MPDs are not basins
When using r, or ELF one has functions defined in 3D. The spatial regions are obtained by constructing basins.5,24 To obtain MPDs
one directly constructs the spatial regions, by choosing to maximize the probability to have n electrons in it.
2.4.2 Known spatial regions
There are limiting cases where MPDs are known.

• The probability to have all N electrons in O is maximal when O is the whole space. We are sure that all electrons are in it, P ¼ 1.

• When the volume of O is vanishing, we know that there are no electrons in it. In this case, Pðn¼ 0Þ-1.

• Spatial regions can be equivalent by symmetry. If we have determined the MPD for one of the elements that are equivalent by
symmetry, we can obtain all the others by performing symmetry operations.

• If we have determined the MPD for a given n, On, the MPD for N � n electrons is the remaining space; Pðn;OnÞ
¼ PðN � n;ℝ3=OnÞ.
2.4.3 Shape optimization
Algorithms to deform O to maximize the probability exist (see, e.g.,17 and 25). Such (shape-optimization) algorithms even allow
having spatial regions that are not connected. One starts with a given spatial domain, O, and computes Pðn;OÞ. O is slightly
deformed to increase the Pðn;OÞ, until the latter is maximized. Unfortunately, there are some drawbacks.

• The programs to compute the MPDs are not widely distributed.

• The algorithms are computationally demanding, in spite of the fact that O has to be considered in a restricted region of space.

• For algorithms based on quantum Monte Carlo sampling, there are difficulties when the number of configurations is low at the
separation surface or O, introducing some uncertainty.

One may treat the last two problems by using smooth boundaries instead of having sharp boundaries. The smoothing
functions can depend on parameters that could be optimized directly. One should keep in mind that smoothing the borders can
lower the probabilities.17 At first, this may seem counter-intuitive. To understand it, one can imagine smoothing the boundaries of
the MPD for n electrons, On, as mixing to some degree spatial regions for which Pðn;OÞ is lower.
2.4.4 Partial optimization of the domain
Recall that - when we are close to the maximizing domain, On - the errors in Pðn;OÞ are only of second order in the change between
O and On. Thus, instead of smoothing the boundaries, we can stop before reaching the full optimization of O.17

One way to do it is to define specific shapes, and optimize a reduced number of parameters. Let us give some examples of such
incomplete optimization.

• In a molecule, the atomic core is not identical to the spherical one obtained for the isolated atom. However, we can assume that
it can be transferred from the atom. In all cases treated so far, the difference observed is at most in the second decimal of the
probabilities.

• One can define points in space that are used to define "centers" around which the MPDs are constructed as Voronoi cells.
The positions of the centers can be varied, in order to maximize the probabilities. More flexibility may be gained by modifying
the definition of distances, e.g., by introducing weights.

• Often, one can use a good guess for MPDs, e.g., ELF basins.

Let us take as an example the construction of domains in the H2O molecule. We first determine the core domain, by
maximizing the probability to have 2 electrons within a sphere around the O nucleus. For a radius of 0.36 bohr, we obtain the
maximal probability 0.73. We choose four points; two are in the plane defined by the plane of the nuclei, two are in the plane
perpendicular to the previous one. For example, we may start with a tetrahedron having two vertices on the H nuclei, and the O
nucleus in the center. The centers define Voronoi cells. We further exclude the core domain, and compute the probability of having
2 electrons in one of the regions containing a H atom. We now change the positions of the points, respecting the symmetry of the
molecule, to maximize the probability. The maximum is reached with P ¼ 0:45. We can repeat this procedure for maximizing the
probability of having two electrons in the region that corresponds to one of the lone pairs (one of the centers in the plane
perpendicular to the HOH plane). The maximum is reached with P ¼ 0:41. The probabilities obtained this way do not differ by
more than 0.01 from those obtained after full optimization. The domains obtained are shown in Fig. 2.

It is also interesting to consider several spatial regions, e.g., for analyzing statistical correlations between them14–16 or electrons
distributed over disconnected spatial regions.11,26 A problem that appears when considering joint probabilities is that they are
lower than that of the individual ones. Recall that for independent events, the probability of the joint event is the product of
probabilities; as the probabilities are between 0 and 1, their product is lower than each of the individual probabilities. In this
context, it is more reasonable to consider conditional probabilities, e.g., the probability to have nA electrons in OA given that there
are nB electrons in OB

4,14,16,17,



Fig. 2 Spatial domains that maximize the probability for a domain associated to the OH bond electron pair (orange), or the O lone pair (brown),
by excluding a region associated to the O core, and by defining Voronoi cells with moving centers. The positions of the nuclei are indicated by
small spheres (red: O, white: one of the H atoms, the other being hidden behind the orange surface).
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PAjB ¼ PA-B

PB
: ð7Þ

2.4.5 Describing the spatial domains
Of course, the spatial extension of the MPD can be graphically shown, and this is consistent with the pictorial attitude existing in
chemistry. Some numbers can also be used to describe them when the parametrization of the domain is simple. For example, the
core region of the Ne atom can be represented by a sphere of radius r maximizing the probability of having two electrons, and the
valence region is the complement. The probability is maximal for rE0:27 bohr. Similarly, for diatomic molecules a single number
is sufficient to describe the position of the plane perpendicular to the molecular axis, which defines the boundary between the two
atomic domains.

2.4.6 Multiplicity of MPDs
For a given molecule, the MPDs are defined by indicating a number n of electrons in them, and are obtained by optimization of
the spatial domain. The latter process can lead to several solutions (several local maxima may exist). In this respect, the MPDs
behave in a way similar to localized orbitals: equivalent solutions exist.

There are trivial cases. For example, if we search in the H2O molecule for a MPD for n¼ 2 electrons, we can find a domain
corresponding to the core, or to any of the OH bonds, or any of the two lone pairs. Note that some of these solutions have
chemically different significance, e.g., core versus lone pairs. Other solutions may be equivalent by symmetry e.g., the MPDs
corresponding to the two OH bonds.

Notice the analogy to localized orbitals. These also can lower the symmetry, and equivalent solution exist. A simple example is
that of the p orbitals in benzene, where one has three localized orbitals for a six-fold axis.

Sometimes one needs a moment of reflection to discover this effect. For example, in trans-HSiSiH one has three electron pairs
connected to the two Si atoms. However, the system is invariant under the inversion operation (r-� r) that is lost once a set
three MPDs are found; the symmetry operation produces another equivalent set.22

In general, we expect a displacement of the MPD to lower the probability associated to it. For example, transforming the CHMPD
into another O by inversion through the position of the C nucleus lowers the probability from 0.55 to 0.36. However, an infinite set
of equivalent solutions can be produced by symmetry. This also presents an analogy to localized molecular orbitals.27,28 For example,
in the HCCH molecule, we can find a banana bond between the two C atoms, but cylindrical symmetry dictates that any rotation
around the molecular axis yields an equivalent solution. The same type of situation appears in atoms, e.g., the Ne atom. When
searching for a pair of electrons we will find a domain avoiding the core region and resembling to an sp3 hybrid, pointing into an
arbitrary direction. However, any rotation with the center on the Ne nucleus produces an equivalent MPD. In the uniform electron
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gas, any translation produces equivalent MPDs. One expects that in metals deformations of the MPD have little effect on the
probability. A study of the Kronig-Penney model gives a hint in this direction.26

Methods like ELF give in such cases solutions that average out the effect of different solutions: one gets a single bonding region
for the CC bond in acetylene, a valence shell for the Ne atom, a constant value through the uniform electron gas. However, in the
case of HSiSiH discussed above, this "averaging out" produces four basins. This is disturbing, because there are only three bonds.23

In the case of MPDs, one can consider larger groups, e.g., n¼ 6 electrons for the triple CC bond in HCCH, or n¼ 8 electrons for
the valence shell of Ne.
3 What the Numbers Tell us: Comforting and Disturbing Results

3.1 Comforting Results

3.1.1 Conceptual advantage
The MPDs are simple to explain, applicable to simple or complicated wave functions. As the number of electrons in a spatial
domain is user-defined, one is not compelled to study a given object. For example, one can use MPDs to find electron pairs,
bonding regions in diamond, as with ELF29, or to find ions in crystals, as with QTAIM10. In many instances it gives results that are
consistent with those obtained with other methods, such as QTAIM or ELF. This can be seen, for example when looking at crystals
in rock salt structure (when recognizing ions)10, or at crystals with diamond structure (for covalent bonds)29. This is very
encouraging, taking into account the wide success of QTAIM and ELF.

3.1.2 Producing reasonable numbers
We are used to look at populations (as defined in Eqs. 3 and 4). While numbers obtained with different approaches can slightly
differ, there is some consensus about what we should expect from some populations: that of "standard" bonds should be close to
2, that of atomic shells, etc.

The population cannot be used to define a spatial region; one cannot define atomic shells by requesting that the number of
electrons integrate to a specified number. For example, we can find in Be an infinity of spherical shells, between rminAð0; rcoreÞ and
rmaxAðrcore;1Þ, where rcoreE1 bohr, just requesting that the integral of the density between rmin and rmax equals two.

One may ask whether all methods give equivalent results. For example, it would not be worth computing the MPD if ELF and
the Laplacian of the density would give the same result. Very often, the MPDs are close to other spatial regions, e.g., the ELF basins
when searching for regions characterizing electron pairs. However, it is known that the shell structure of atoms is not always
correctly reproduced by the Laplacian of the density; for example, the last shell of the Zn atom is merged with the penultimate
shell.5 ELF separates them, but the population of the valence shell is 2.2 instead of 2.30 With MPDs, the difference between the
expected population of the valence shell and that obtained is at the second decimal, 1.96 with the Hartree-Fock wave function.
(This is also roughly the accuracy we expect for the data discussed in this article.) The last shell is also separated in atoms like Nb,
or Mo. yielding in these cases a population of 1.0.8

In molecules like CH4 or H2O, MPDs define regions of space that are conventionally attributed to the bonding or the lone
pairs. The populations are very close to the expected number, 2. Even when the electrons are "crowded", like in the N2 molecule,
the population is not too far from 2 (it is 2.2).

There can be also qualitative differences, between, say, ELF and MPD results, in particular when several alternative classical
bonding situations exist22. Differences may appear because ELF is producing spatial domains that respect symmetry, e.g., the
spherical shells in atoms, while there may be several ways MPDs can be produced. In this respect, MPDs resemble localized orbitals.

3.1.3 Different structures, similar MPDs
Fig. 3 shows MPDs for C2H2 and Si2H2. Some of the MPDs are not shown for clarity; they can be easily obtained by symmetry
operations. We know that the most stable structure of C2H2 is linear, while for Si2H2 we have a "butterfly" structure

31. With MPDs,
however, we get a different perspective. In both cases, we find three electron pairs between the heavy atoms, and one electron pair
pointing out from the other heavy atom. In C2H2, the first three correspond to the three "banana" bonds, and the last to the CH
bond. In Si2H2, the first three correspond to the two three-center SiHSi bonds, and one SiSi bond, while the latter corresponds to a
lone pair. It is as if electron pairs like a tetrahedral arrangement, and nuclei arrange to fit into it. The probabilities are 0.4 for the
bent bond regions (CC and SiSi), and 0.5 for the regions corresponding to the other electron pairs. Apparently there is an extra
localization provided by the protons.

3.1.4 Selecting the relevant region
During a chemical reaction MPDs evolve. Let us consider, for example, the potential energy surface of the following reaction

H � H

⋮ ⋮
⋮ ⋮
H � H

-

H � H

j j
H � H

-

H … … H

j j
H … … H

ð8Þ



Fig. 3 MPDs in acetylene C2H2, top, and Si2H2, bottom. The MPDs containing the H nuclei are silver-colored; one of the triple banana bond
MPDs in C2H2 is shown in purple; the lone pair of Si is shown dark blue while the bent Si-Si bond MPD is shown in red.
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For a rectangular arrangement of the nuclei, we divide the space symmetrically into a region containing the upper two H nuclei,
Oup, and one containing the lower two H nuclei, Odown. We can also divide it into a left and right region (Oleft;Oright). The
probability to find two electrons for the region where the H nuclei are closer to each other is higher than that for the other division.
For the first structure indicated above on the left, we have P ðn¼ 2;OupÞ ¼ P ðn¼ 2;OdownÞ4Pðn¼ 2;OleftÞ ¼ Pðn¼ 2;OrightÞ while
for the structure shown on the right, Pðn¼ 2;OupÞ ¼ Pðn¼ 2;OdownÞoPðn¼ 2;OleftÞ ¼ Pðn¼ 2;OrightÞ The transition between the
two "best" choices occurs at the square arrangement. The evolution of probabilities is shown in Fig. 4. It shows that passing
through the square region can be associated with a change of the chemical description.



Fig. 4 Probability to have 2 electrons in the lower (or upper) half-space (blue), or left (or right) half-space (red) as function of the deformation of
the rectangular arrangement of the nuclei; on the abscissa the ratio of the sides of the rectangle.
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3.1.5 The effect of the Pauli principle
Pðn;OÞ can be significantly larger than that obtained using a binomial distribution,

Pind n; pð Þ ¼ N!

n!ðN � nÞ! p
nð1� pÞN�n ð9Þ

This distribution is obtained when considering that each of the N electrons would have the probability p to be in O. For some
choices of n and O,

Pðn;OnÞ4max
p

Pindðn; pÞ

i.e., the wave function produces a larger probability than the largest that could be produced by statistically independent particles.
The main reason behind it is the Pauli principle.

Let us consider as an example the Be atom. We separate it into two regions, an inner sphere, corresponding to the core, and the
rest of the space, corresponding to valence. All interpretative models give the sphere a radius of E1 bohr. Fig. 5 shows the
probability distribution obtained when making a core/valence separation with the MPDs. It is compared with that would be
obtained for independent particles, namely that obtained with a binomial distribution (producing the highest possible outcome
for 2 electrons in each of the regions, p¼ 1=2). One clearly sees a higher probability of having 2 electrons in each of the shells
when using the Hartree-Fock wave function, which satisfies the Pauli principle.
3.2 Disturbing Results

In addition to the potential of providing "chemical" answers using quantum mechanical calculations, the more detailed character
given by the probability distributions raises also some questions.

3.2.1 Low probabilities
When we define a spatial domain, OAℝ3, quantum mechanics tells us that electrons can cross its limits. Even when the average
number of electrons in the region corresponds to our expectation, we know that electrons can get into the domain, or out of the
domain. In most cases, there is a non-negligible probability to find a number of electrons different from the chemically expected
one. Let us recall the procedure used. When constructing an MPD we consider Pðn¼ n;OÞ where n corresponds to chemical
intuition, and find On, the region that maximizes Pðn;OÞ. For example, choosing n¼ 2 we can find in the methane molecule a
region for a CH bond, that gives Pðn¼ 2;O2Þ. Although this is the best (highest) number we can get for the probability, we find
numerically, even for good wave functions, that it is only slightly above 1/2. This means that quantum mechanical fluctuations
induce almost the same probability to have a smaller, or a larger number of electrons in this spatial domain. The dominating
contribution comes from having n71 electrons in On.

In the water molecule, the probability to have two electrons in the lone pair (or the OH bond) is even smaller than 1/2 (the
probability to have a number of electrons o2, or 42 is larger than that of having just 2 electrons in it). Nevertheless, the
population of the MPD is close to 2, because the probability to have no2, electrons, or n42 are nearly equal.

However, the Slater determinant can be built from orbitals having nodes in the same spatial domain. When we cut out a spatial
region, say, a spherical shell in an atom, it is possible to different orbitals to coexist. For example, the 3d orbitals can penetrate the



Fig. 5 Probability distribution for the MPD corresponding to the valence shell of Be (full circles) compared to that of independent particles
(empty circles).
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region mainly occupied by the 4s orbitals, and this can explain increasing fluctuations between the M and N shells in Zn. Let us
look closer at the numbers.

3.2.2 Strong fluctuations
Let us construct the MPD of an atomic valence shell, i.e., find O as extending from some radius to infinity, such that Pðn¼Nval;OÞ
is maximal, Nval being the expected number of electrons in the valence shell.

Let us consider the noble gas atoms, Fig. 6. For Ne and Ar, only the probability of having Nval ¼ 8 electrons in the valence shell
is clearly higher than that for independent particles. This changes for Kr and Xe: we note that finding Nval71 electrons in it is more
probable than what one expects for independent particles (exchanging with the deeper shell). We can attribute the increase in
Pðn¼ 871;O8Þ to the penetration of the d orbitals of the deeper shell into the valence shell. The Pauli principle is satisfied not by
spatially separating the electrons into regions, but within the same region of space.

Let us analyze the probability of having Nval71 electrons in the periodic table (Li-Xe) for Hartree-Fock wave functions32, cf.
Fig. 7. One notices a certain symmetry of the distribution: the probabilities of having Nval � 1 or Nval þ 1 electrons are, in general,
quite close. If one considers the probability to have not only Nval � 1, or Nval þ 1 electrons, but noNval, or n4Nval electrons, one
obtains in the worst case studied (Xe) an almost equal number for the three probabilities: PðN4NvalÞEPðNoNvalÞEPðNvalÞ. As
the MPD is the spatial region yielding the highest possible value for PðNvalÞ this casts a shadow of doubt on our image of spatially
separated valence shells.

In analogy with valence bond, let us consider the atom formed by a core, C, and a valence shell V . In this spirit, one could write:

CþV�2CV2C�Vþ2…

to indicate that electrons can quit and enter a specific region. The charges indicated are produced by the separation into shells. In
contrast to valence bond methods, this does not invoke changing orbital occupancies as in valence bond methods. (Recall that our
results are obtained from a Hartree-Fock wave function with a prescribed orbital occupancy.) In analogy to valence bond methods
it is possible to indicating weights. Here these are given by the probabilities, e.g., that for CþV� is PðNval þ 1;Oℕval Þ. For example,
we see in Fig. 6 that the probability to have 9 electrons in the valence shell of Kr is around 1/4, that we can interpret as a "weight"
of CþV�.

Such stronger fluctuations do not occur only in atoms. For example, the values for the probabilities obtained for the MPDs
corresponding to the six electrons of the triple bond in HCCH or N2 are quite comparable to those obtained for the valence shell
of Xe. In HCCH the probability to have six electrons between the two C atoms is around 1/3, while that to have five (or to have
seven) electrons in the same region is around 1/4.17 In the N2 molecule, the probability to find 2 electrons in the lone pair is
around 0.45, and in a banana bond only 0.34. The probability to have only one electron in the banana bond is slightly lower
(0.32), and that of having three electrons in it 0.17.

3.2.3 Choosing the relevant object of study
Sometimes chemical intuition guides us well in guessing a good number of electrons. For example, when we are interested in
describing an atom, we know its nuclear charge, and it seems natural to choose the same numbers of electrons. However, would it
not be better to sometimes choose an ion? Let us consider the KrF2 molecule. For the Kr atom, we should choose n¼ 36, while for
Kr-, Krþ , Krþ þ we should choose n¼ 37;35, or n¼ 34, respectively. We take two planes perpendicular to the molecular axis, at



Fig. 6 Probability distributions for the MPDs corresponding to the valence shells of noble gas atoms (full circles). For comparison, the
probability distributions for independent particles obtained for 8 electrons in the valence shell bring able to exchange electrons with the next
deeper shell (empty circles).

Fig. 7 Probability to have a number of electrons equal to the expected one (red), larger by one (blue), or smaller by one (black) in the MPD
corresponding to the valence shell of atoms with nuclear charge Zr54; H, He, and Pd (Z ¼ 0; 1 or 46) are not shown, as the results correspond
to trivial expectations: the MPDs correspond to the whole space (for 1sn), or vanish (5s0).
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equal distance z from the Kr nucleus.2 Fig. 8 shows the probabilities to have n¼ 34;35; 36 or 37 electrons between the two planes.
We see that there is no clear-cut preference for choosing Kr as a reference: the best (the highest probability) we can get is not better
than the one obtained for the separation into Krþ , or Krþ þ . Once we have made the choice, the answers are different. If we
choose the Kr domain, we obtain a probability of 0.36 to describe the region as a Kr atom (n¼ 36), and 0.22 as a Krþ ion
(n¼ 35). If we choose the Krþ domain, we obtain a probability of 0.40 to describe the region as a Krþ ion, and 0.28 as a Kr atom.
2For a discussion of the choice of the domains, see Ref. 18.



Fig. 8 Probabilities to have n ¼ 34; 35; 36, or 37 electrons in the domain associated to Krþ þ (blue, rhombus), Krþ (yellow, triangle), Kr (green
rhombus), Kr- (orange, square); points are connected by lines to guide the eye.
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4 Questions of Attitude

4.1 Three Practical Questions

• Are MPDs ready for "mass production"?
To obtain MPDs there is a need for new algorithms and programs. Progress is made, but slowly. Furthermore, the existing
programs take some time for the optimization of the spatial domain, and this is opposed by all those who think that it is worth
having a long quantum mechanical calculation, but not for producing an interpretation using it. Evidently, the present authors
do not share this opinion.

• How much input is needed from the user ?
Some methods (QTAIM, ELF), just let the program work (maybe with a little help). With MPDs, the users have to specify the
number of particles they are interested in, an initial guess of the region where the MPD is of interest.

• When is an interpretative method that we, theoreticians, propose successful?
When experimentalists use it. With MPDs we are not yet so far.
4.2 Do we Need MPDs?

We could imagine that our computers could give, e.g., by machine learning all the answers to the questions we would like to ask.
Would it be sufficient? One would like the interpretative methods give tools to let us think independently of the computer.

The next question is whether we should accept the computer help us to think about chemistry. Maybe a common answer is that
given by Prof. C. Pisani (University of Torino) when he criticized ELF: "With MO theory, you can help yourself using the back of an
envelope''. Here is a philosophical support for this attitude of independence of external support.

Socrates. At the Egyptian city of Naucratis, there was a famous old god, whose name was Theuth [Toth]; ... was the inventor of
many arts, such as arithmetic and calculation and geometry and astronomy and drafts and dice, but his great discovery was the
use of letters. Now in those days the god Thamus [Amun] was the king of the whole country of Egypt. ... To him came Theuth
and showed his inventions, desiring that the other Egyptians might be allowed to have the benefit of them; he enumerated
them, and Thamus enquired about their several uses, and praised some of them and censured others, as he approved or
disapproved of them. ... But when they came to letters, This, said Theuth, will make the Egyptians wiser and give them better
memories; it is a specific both for the memory and for the wit. Thamus replied: ...this discovery of yours will create forgetfulness
in the learners' souls, because they will not use their memories; they will trust to the external written characters and not
remember of themselves. The specific which you have discovered is an aid not to memory, but to reminiscence, and you give
your disciples not truth, but only the semblance of truth; they will be hearers of many things and will have learned nothing;
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they will appear to be omniscient and will generally know nothing; they will be tiresome company, having the show of wisdom
without the reality.

Plato, Phaedrus3.
The present authors are full of admiration for those who are able to use only the back of the envelope. However,

• experience accumulated using computers may help developing such methods,

• nowadays, we live with Wikipedia in our pocket and it is a good starting point for our thinking; the computers can give us ideas
we can think about.
5 Conclusion

The present paper considers the probabilities to have a chosen number of electrons in a spatial domain. If these domains are
optimized in the sense of maximizing the probability, they can be associated to classical chemical concepts. For example, one
would consider two electrons for defining a region of a lone pair, or that of a single bond. As the probabilities

(1) are not needed to high accuracy, and
(2) have second order errors when the departure from the optimal domain is of first order, high accuracy in optimization is not

needed.

Sometimes the chemical question is not well set. For example, should we define an atomic region, and look at the probability
of having a number of electrons different number of electrons in it, or should we start by first defining an ionic region? The results
obtained are not the same. Furthermore, the highest probability to have a chemically significant electron number in a given spatial
domain is often not far away from that of having a different number of electrons in the same region. In some cases the probability
is higher. For example, the probability of having 2 electrons in the core and the rest in the valence for the atoms decreases from 0.9
to 0.7 from Li to Ne. However, one is used to consider a statistical event relevant if the probability is higher than 0.95 (E2s for a
normal distribution). This was never observed in the systems presented here. Does this mean that we should give up the chemical
concepts associated to a given number of electrons in a spatial region? The main argument for not doing so is the success of the
chemical concepts. Did we not look at the right quantities? Finally, they seem to be recovered in an average sense, because the
distribution of probabilities are often symmetric around the maximum, mean values, i.e., populations, are most often used in
discussions. However, we should not forget the quantum nature produces more information, and it may be worth looking into it
its implications.
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Appendix A: Mathematical Definition of the Maximum Probability Domains

Maximum Probability Domains (MPDs) are spatial regions that maximize the probability of having a chosen number of particles,
n, in them.8 For discussing the chemical bonding in molecules (see, e.g.,14), crystals (see, e.g.,29) the particles considered are the
electrons. However, there are applications, where the particles have different nature, e.g., for solvation, the particles considered
may be atoms, ions, molecules.33

For Slater determinants, in the limiting case that the localization of orbitals is perfect (no overlap between them), the MPDs are
identical34 to the spatial domain where these orbitals are localized, or the basins24 of the electron localization function, ELF7. The
probability to find n electrons in the spatial region O is given by:

Pðn;OÞ ¼ N

n

� �Z
O
d1d2…dn

Z
Odnþ 1…dNjCj2 ðA1Þ

Here, C is the wave function of the system and N the number of electrons. The integration over the region O is performed for
the first n electrons. The integration is performed over the remaining space, O, for the other N � n electrons. The prefactor arises
because the electrons are not distinguishable: any other choice of n electrons contributes (by the same amount) to Pðn;OÞ. The
MPD is the spatial region that maximizes, for a given n, Pðn;OÞ,

On ¼ arg max
O

PðX; nÞ ðA2Þ

Note that On may be a collection of spatially disconnected domains.
3Plato, Phaedrus 274b, translated by B. Jowett, http://classics.mit.edu/Plato/phaedrus.html.

http://classics.mit.edu/Plato/phaedrus.html


Table 1 Geometries and energies for the potential energy curve of H4 ↔ 2 H2

n r1 (Å) r2 (Å) Energy (au) EFCI (au)

0.00 1.2760 1.2760 −2.10783 −2.10786
0.25 1.2422 1.4236 −2.13344 −2.13345
0.50 1.2084 1.5713 −2.16824 −2.16826
1.00 1.1407 1.8665 −2.22134 −2.22136
2.00 1.0055 2.4571 −2.28642 −2.28644
3.00 0.8702 3.0476 −2.32775 −2.32779
4.00 0.7349 3.6381 −2.34459 −2.34460
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Obtaining Pðn;OÞ seems difficult, except for Quantum Monte Carlo calculations where one has only to count how many times
n electrons are in O.22 An algorithm for computing Pðn;OÞ using only the overlap between occupied orbitals, can be found in19,
and extensions to multi-determinant wave functions exist.20 One can also work with models, e.g., the Hubbard model.35

Maximizing the probability can be done by different algorithms. One can divide space, define a collection of these spatial
elements for O and add or eliminate spatial elements to reshape the spatial domain to maximize the probability.36 There are more
refined methods, like the level set method.19
Appendix B: Details of the Underlying Computations

The atomic calculations were performed using the Hartree-Fock wave functions of ref. 32. The calculations for Si2H2 were
performed at the Hartree-Fock level with the energy-consistent pseudopotentials (and corresponding basis sets) of the Stuttgart/
Cologne group37.

For F2, H2O, C2H2 and KrF2 we used the electron configurations generated for Ref17. These were obtained by sampling
wavefunctions generated with the CIPSI algorithm in the valence full CI space.

In the geometries used for H4, the H-H bond lengths (in Å) are obtained as

r1 ¼ 1:276� 0:135275n ðB1Þ

r2 ¼ 1:276þ 0:590525n ðB2Þ
where n¼ 0 corresponds to the transition state and n¼ 4 corresponds to a geometry optimized at the CAS(4,4)/cc-pVDZ level. At
each geometry, the wave function was computed with the cc-pVTZ basis set close to the full configuration interaction (CI) level
(E� EFCIo10�4 au) using a wave function made of determinants selected with the CIPSI algorithm. The energies are given in
Table 1.

The CIPSI calculations were made using the Quantum Package program38, and the electron configurations were sampled with
the QMC¼Chem code39.
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