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Judging Density-Functional Approximations:

Some Pitfalls of Statistics

Andreas Savin and Erin R. Johnson

Abstract Density-functional theory (DFT) methods have achieved widespread

popularity for thermochemical predictions, which has lead to extensive

benchmarking of functionals. While the use of statistics to judge the quality of

various density-functional approximations is valuable and even seems unavoidable,

the present chapter suggests some pitfalls of statistical analyses. Several illustrative

examples, focusing on analysis of thermochemistry and intermolecular interactions,

are presented to show that conclusions can be heavily influenced by both the data-

set size and the choice of the criterion used to assess an approximation’s quality.
Even with reliable approximations, the risk of publishing inaccurate results natu-

rally increases with the number of calculations reported.

Keywords Density-functional theory � Intermolecular interactions � Statistics �
Thermochemistry
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1 Introduction

A combination of the high performance of modern computers, fast algorithms, and

good accuracy have permitted widespread use of density-functional approximations

(DFAs) across chemistry and physics. However, the high number of DFAs often

causes users of the theory to pose the question: “Which functional should I use?”

Nowadays, large sets of reference data are available to provide valuable help in

answering this question. Consequently, there has been a recent surge of

benchmarking studies where readers can take their pick of statistical measures to

justify use of their chosen functional in a particular application. The rapid growth in

the numbers and citations of benchmarking studies is illustrated in Fig. 1.

Habitually, statistical measures such as the mean absolute error are used to

indicate the quality of a density-functional approximation. Unfortunately, statistics

can also deform reality, and using statistics to judge the quality of an approximation

is no exception. A recently published paper [1] sought to answer several questions

regarding benchmarking of DFAs:

1. Is the approximation the only source of error and would an exact treatment give

the right result?

2. Do the approximations provide the necessary quantitative accuracy?

3. Are we interested in obtaining absolute values or in reproducing trends?

In general, the user is provided with a selection of DFAs and must decide which to

choose. However, there is no single objective criterion to determine which DFA is

best for a particular problem and a somewhat subjective choice is made regarding,

for example, the statistical criteria used to rank the functionals. Which specific

functional is then qualified as the best depends on this choice [1].

In the spirit of reference [2], we consider the performance of selected DFAs for

thermochemistry and intermolecular interactions. In these cases, accurate data
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should be accessible via coupled-cluster theory with large basis sets and extrapo-

lation. We address the following questions:

1. How strong are the effects caused by the finite sample size?

2. Can the same data produce opposite interpretations?

3. What is the probability that all of the results published in an article have

sufficient quantitative accuracy?

In the process, we discuss some potential pitfalls of statistics that rank the quality of

density-functional approximations.

2 Methodology

In a previous study [3], various dispersion-corrected density functionals were

benchmarked against either experimental or high-level ab initio reference data for

intermolecular complexes, thermochemistry, and reaction barrier heights. All data

sets used in the present work are taken from this prior study. The types and sources

of the reference data are summarized in Table 1. These data sets are by no means a

comprehensive collection of DFT benchmarks and this chapter focuses on the

illustrative examples of thermochemistry and intermolecular interaction data sets

only.

The density-functional approximations considered herein are also the same as in

our earlier work [3]. The acronyms follow the usual notation related to the names of

the authors: BLYP [13, 14], B3LYP [14, 15], BH&HLYP [14, 16], B97-1 [17],

CAM-B3LYP [18], LC-ωPBE [19, 20], PBE [21], PBE0 [22], and PW86PBE

[21, 23]. To ensure that the conclusions are not adversely impacted by the basis

set, aug-cc-pVTZ bases were used as they give results close to the complete basis

set limit for conventional density-functional calculations. In all cases, the

exchange-hole dipole moment (XDM) dispersion correction was applied [3, 24],

but this does not appear in the acronyms used below. Note that the two empirical

parameters used in the dispersion damping function were fitted separately for each

of the functionals, with the aug-cc-pVTZ basis set, which also tends to correct

deficiencies of the base DFA.

To assess the quality of the various DFAs for each data set, three statistical error

measures are used: the mean absolute errors (MAE):

MAE ¼ x ¼ 1

n

X
i¼1, n

xi; ð1Þ

the mean absolute percent errors (MAPE):
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MAPE ¼ 100

n

X
i¼1, n

xi
xref, ij j ð2Þ

and the root-mean-square errors (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i¼1, n

x2i

s
ð3Þ

where n is the number of data points in the set and xi ¼
��xcalc, i � xref, i

�� is the

absolute error for each point. Finally, the sample variance is

σ2 ¼ 1

n� 1

X
i¼1, n

xi � xð Þ2 ð4Þ

and the mean absolute error has a variance equal to the sample variance divided by

the size of the sample, or σ2/n. The uncertainty of the MAE is thus σ=
ffiffiffi
n

p
.

3 Using Statistical Measures to Judge Density Functional

Approximations

When judging the performance of DFAs, the mean error does not tell the full story

and further statistical measures are available to describe the distribution of errors

for a particular benchmark set. As an example, let us consider the G3/99 data set

[12] which gauges the ability of the functionals to describe atomization energies.

Histograms of the error distribution for the G3 set are shown in Fig. 2 for selected

functionals. From the figure, we see that BLYP and B3LYP have narrow error

distributions, while the BHandHLYP distribution is much broader. The maximum

errors are 27.3 kcal/mol for BLYP, 34.4 kcal/mol for B3LYP, and 79.7 kcal/mol for

Table 1 List of reference data, showing the abbreviation of the data-set name, the source of the

data (either calculated or experimental), the number of data points, a brief description of the set,

and the relevant literature reference

Name Type No. Description References

KB49 calc 49 Intermolecular interactions [3, 4]

S22 calc 22 Intermolecular interactions [5, 6]

S66 calc 66 Intermolecular interactions [7, 8]

HSG calc 21 Intermolecular interactions [6, 9]

G1 expt 56 Atomization energies [10]

G2 expt 149 Atomization energies [11]

G3 expt 222 Atomization energies [24]
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BHandHYLP. Thus, even for a relatively narrow error distribution, the maximum

errors are far from the desired chemical accuracy.

Analogous results can be presented more compactly via “box-and-whisker”

plots, where the boxes span the interquartile range of the data (i.e., the range that

spans the middle half of the data), the ends of the whiskers show the minimum and

maximum errors, and the lines show the median errors. Error distributions are

plotted in this fashion for all the DFAs considered in Fig. 3. The figure also

shows an analogous plot for the errors expressed on a per-atom basis, which

eliminates any bias of the error distribution based on molecular size.

When benchmarking density functionals, mean absolute errors are most often

presented to indicate the quality of an approximation. However, the average can be

greatly inflated by a few outliers in a data set. The root-mean-square error (RMSE)

is even more strongly affected, while the median absolute error reduces this bias.

Table 2 collects these statistics for the G3 set. B3LYP gives the lowest MAE and

median absolute error, while CAM-B3LYP gives the lowest RMSE and B97-1 the

lowest maximum error. As a further alternative, one can also consider the MAE,

RMSE, and median or maximum absolute error per atom, to account for differences

in molecular size within the benchmark. With the per-atom statistics, B3LYP,

CAM-B3LYP, LC-ωPBE, B97-1, and PBE0 all give MAEs of near 1 kcal/mol

per atom. B97-1 gives the lowest RMSE, B3LYP gives the lowest median absolute

error, and CAM-B3LYP the lowest maximum error. Thus, the choice of which

statistical indicator is used to judge the DFAs determines which is ultimately

selected as the best functional.
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With each DFA, the distribution of errors for the G3 set is very broad and the

decay of the absolute errors is very slow, so that the mean is not well defined. To

demonstrate what is meant by this, consider a linear molecule of n+ 1 atoms,

forming n chemical bonds. For each bond energy, we let the error with a particular

DFA be x kcal/mol. Then the mean error for chains of size n ¼ 1, 2, . . . ,m is
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1

m

Xm
n¼1

nx ¼ mþ 1

2
x ð5Þ

and this diverges as m ! 1. Thus, the atomization energy errors increase steadily

with molecular size and, as larger systems are added to the benchmark set, the errors

increase and the mean is inflated. Conversely, the atomization energy per atom is

well defined and approaches x when m ! 1. The divergence of the MAE with

increasing system size can be seen by comparing the error distributions for the G1,

G2, and G3 test sets, as shown in Fig. 4. The G1 set was the first set of atomization

energy data, compiled for small molecules only. This set was later expanded to the

G2, and subsequently the G3, by adding progressively larger organic molecules to

the benchmark. From the figure, the errors in total atomization energies increase

going from the G1 to the G3 set. On the other hand, the errors per atom remain

roughly constant or even decrease slightly going from the G1 to the G3 set. The

errors are reduced in some cases since the DFAs tend to perform better for organic

molecules, which constitute a larger fraction of the G3 set. Ultimately, the MAE per

atom should be a favored statistic over the total MAE when comparing performance

of DFAs for atomization energies.

Another consequence of the breadth of the error distribution is that the MAE

may have a large associated uncertainty, particularly for small sample sizes.

Therefore, the variance of the mean may be larger than the difference in MAEs

between two or more functionals, prohibiting use of this metric to make an

informed ranking of DFA quality. For the G3 set, MAEs and their uncertainties

for each functional are collected in Table 3. The uncertainties are fairly large,

ranging from 0.3 to 1.1 kcal/mol, illustrating that the MAEs are not certain beyond

the first decimal point. Additionally, we cannot definitively conclude that B3LYP is

the optimum functional, despite giving the lowest MAE, because the difference

between the MAEs from B3LYP and CAM-B3LYP is smaller than the sum of the

uncertainties.

Table 2 MAEs, RMSEs, median absolute errors (Med), and maximum absolute errors (Max) for

the G3 set, in kcal/mol. The same quantities, expressed per atom, are also shown

Functional

Total Per atom

MAE RMSE Med Max MAE RMSE Med Max

B3LYP 4.0 6.7 2.2 34.4 0.8 1.5 0.3 6.8

CAM-B3LYP 4.6 6.5 3.5 29.9 0.9 1.5 0.6 5.0

LC-ωPBE 5.2 7.0 3.9 24.6 1.1 1.7 0.6 9.3

B97-1 5.3 7.1 4.0 22.8 0.8 1.1 0.4 6.6

BLYP 6.5 8.8 4.7 27.3 1.3 2.1 0.6 9.1

PBE0 6.7 9.5 4.2 38.6 1.0 1.5 0.6 6.3

PW86PBE 9.4 12.6 6.7 38.6 1.7 2.6 1.0 11.5

PBE 20.8 25.8 17.5 82.0 3.0 3.8 2.4 13.7

BH&HLYP 29.2 33.5 28.6 79.7 4.5 5.7 3.4 20.4
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Fig. 4 Histograms of the MAE and MAE per atom with selected functionals for the G1, G2, and

G3 sets of atomization energies

Table 3 MAEs and their uncertainties, measured using the square-root of the sample variance, for

the full G3 set and three randomly-chosen subsets, in kcal/mol

Functional G3 Subset 1 Subset 2 Subset 3

B3LYP 4.0� 0.4 2.7� 0.5 2.4� 0.4 3.6� 0.8

CAM-B3LYP 4.6� 0.3 3.5� 0.5 4.0� 0.7 4.8� 0.8

LC-ωPBE 5.2� 0.3 4.6� 0.7 5.1� 0.7 4.6� 0.8

B97-1 5.3� 0.3 4.6� 0.8 4.4� 0.8 5.0� 1.0

BLYP 6.5� 0.4 5.1� 1.1 5.5� 1.2 6.3� 1.1

PBE0 6.7� 0.5 6.6� 1.9 4.8� 0.8 5.6� 1.0

PW86PBE 9.4� 0.6 8.7� 2.1 7.2� 1.4 7.1� 1.2

PBE 20.8� 1.0 20.6� 4.2 20.2� 3.8 20.7� 2.0

BH&HLYP 29.2� 1.1 26.1� 4.3 27.4� 2.6 30.3� 2.2
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In general, because of the finite number of systems considered, the mean of a

data set is uncertain and has a variance which is inversely dependent on the sample

size. To investigate the dependence of the statistics on sample size, we consider the

effect of taking three randomly-chosen subsets, each consisting of 22 molecules,

from the G3 and evaluating the MAE and its variance for each subset. This

procedure demonstrates the danger of using small data sets when benchmarking

functionals. For example, using subset 2, the errors for CAM-B3LYP, B97-1, and

PBE0 are all equivalent, to within the uncertainty. However, for the full G3 set,

CAM-B3LYP is more accurate to within one standard deviation, with an MAE

2 kcal/mol lower than that of PBE0. Additionally, the MAEs obtained with B3LYP

for each of the subsets are much lower than the MAE for the full G3 set, showing

that it is quite probable that larger errors appear for increasingly larger sets. Indeed,

the means for the full set are often worse, because some molecules for which the

errors are particularly large are not included in the subsets.

We now turn our focus away from atomization energies and towards

intermolecular interactions. Since small sets can give misleading results, are these

data sets large enough for us to trust our conclusions? The MAEs for the KB49,

S22, S66, and HSG data sets, obtained with the various DFAs, are shown in Table 4,

together with their uncertainties, calculated using the square-root of the sample

variance. We also consider a superset of 115 intermolecular complexes by com-

bining the KB49 (which already includes the S22 set) with the S66 data set (which

is entirely separate from the KB49 set). The MAEs and uncertainties are also shown

graphically in Fig. 5. Because of the small size of the benchmarks, particularly for

the S22 and HSG sets, definitive statements about the relative quality of the DFAs

cannot be made because the uncertainties are so large that the MAEs for many of

the functionals are not distinguishable. The statistics for the combined S115 set

show, more definitively than for any of the smaller constituent data sets, the

separation in performance between the three best-performing functionals

(B3LYP, BLYP, and LC-ωPBE) and the rest of the DFAs.

Because of the small values of the interaction energies for dispersion-bound

complexes, the mean absolute percent error (MAPE) is often preferred over the

MAE. The MAPEs for the intermolecular data sets are shown in Table 5. However,

as seen previously for the G3 set, different conclusions regarding which DFA is

preferable may be drawn depending on which statistic is used as the selection

criterion. The difference between MAE and MAPE is particularly important in sets

where the absolute values cover a wide range. For example, considering the HSG

set, B3LYP gives the lowest MAE while CAM-B3LYP gives the lowest MAPE.

This occurs because, when the binding energies are large in magnitude (typically

for H-bonding), CAM-B3LYP generally gives larger errors than B3LYP, while it

performs quite well for small binding energies (BEs). The errors for large BEs have

less weight in the MAPE than the MAE, so the apparent accuracy of CAM-B3LYP
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improves. Thus, the choice of statistical indicator determines which would be

selected as the best functional and this is an example where the same data can

produce opposite interpretations. It is also interesting that B3LYP, BLYP, and

LC-ωPBE all give equivalent MAEs for the S115 set, but B3LYP gives a signifi-

cantly lower MAPE.

As we have demonstrated, using a sufficiently large data set to ensure that the

differences between functionals are less than the sum of the uncertainties is of key

importance. However, other hidden problems may be encountered when enlarging

the test set. For example, a method can perform well for one part of the set, but not

Table 4 MAEs and their uncertainties for the KB49, S22, S66, and HSG sets, together with the

S115 superset (combining KB49 and S66), in kcal/mol

Functional KB49 S22 S66 HSG S115

LC-ωPBE 0.27� 0.03 0.31� 0.06 0.21� 0.02 0.23� 0.04 0.23� 0.02

BLYP 0.29� 0.04 0.22� 0.04 0.19� 0.02 0.20� 0.04 0.23� 0.02

B3LYP 0.26� 0.03 0.31� 0.06 0.22� 0.02 0.12� 0.03 0.24� 0.02

PW86PBE 0.39� 0.06 0.35� 0.09 0.26� 0.03 0.17� 0.02 0.32� 0.03

BH&HLYP 0.35� 0.06 0.47� 0.11 0.31� 0.04 0.18� 0.05 0.33� 0.04

CAM-B3LYP 0.37� 0.06 0.50� 0.11 0.35� 0.04 0.16� 0.05 0.36� 0.03

PBE0 0.39� 0.06 0.53� 0.13 0.36� 0.04 0.15� 0.03 0.37� 0.04

B97-1 0.42� 0.09 0.62� 0.18 0.38� 0.05 0.21� 0.05 0.40� 0.05

PBE 0.48� 0.08 0.57� 0.15 0.39� 0.04 0.16� 0.02 0.43� 0.04
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for another. This is the case for intermolecular complexes, where the functionals

behave differently depending on whether a dimer is bound by dispersion interac-

tions or hydrogen-bonding. To illustrate this, consider the combined KB49 and S66

sets (called S115 above), which can then be divided into two new subsets: a subset

of 35 H-bonded (HB) complexes and a subset of 80 weakly-interacting

(WI) complexes. The MAPEs for each subset are given in Table 6 for the selected

DFAs. For the WI subset, the lowest MAPE is obtained with B3LYP, and it also

gives the second-lowest MAPE for the HB subset, so it performs best for the

combined set. However, many of the other functionals do not provide such balanced

performance for both interaction types. For the hydrogen-bonding complexes, the

best result is obtained with B97-1, although it performs much worse for dispersion-

bound complexes. Conversely, CAM-B3LYP and BH&HLYP give the largest

MAPEs for H-bonding, but perform much better than B97-1 for dispersion-bound

complexes.

When combining data sets, we often wish to determine which functional gives

the best balance of errors. As an example of a potential pitfall in such an assess-

ment, let us attempt to judge whether B97-1 or BH&HLYP is most accurate for the

union of the HB and WI sets, using ratios of the MAPEs.

On one hand, the defender of B97-1 makes the following argument. True, the

ratio of MAPEs for the WI subset (6.8/13.3� 0.51) is <1 and favors BH&HLYP.

However, for the HB subset, the ratio is >1 (5.6/3.0� 1.87) and BH&HLYP is

Table 5 MAPEs for the

KB49, S22, S66, and HSG

sets, together with the S115

superset

Functional KB49 S22 S66 HSG S115

B3LYP 6.3 5.0 3.9 10.0 4.9

LC-ωPBE 7.6 5.0 4.3 23.7 5.7

BLYP 9.4 4.8 3.9 9.9 6.2

BH&HLYP 8.1 6.4 5.2 9.5 6.4

CAM-B3LYP 8.2 7.2 6.1 8.4 7.0

PW86PBE 11.3 5.9 6.0 10.5 8.3

PBE0 9.8 8.3 7.4 13.5 8.4

B97-1 11.9 11.7 8.8 14.9 10.1

PBE 13.8 10.5 8.5 10.7 10.8

Table 6 MAPEs for selected

methods, for the combined

S115 set, divided into two

subsets of 35 H-bonded

(HB) complexes and 80 other

weakly-interacting

(WI) complexes

Functional HB WI

B97-1 3.0 13.3

B3LYP 3.4 5.6

BLYP 3.4 7.5

LC-ωPBE 3.5 6.7

PW86PBE 3.7 10.3

PBE0 3.9 10.4

PBE 4.2 13.7

BH&HLYP 5.6 6.8

CAM-B3LYP 6.5 7.2
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worse for this set. Thus, on average, we get (1.87 + 0.51)/2� 1.19 and conclude that

the errors of BH&HLYP are larger than those of B97-1 so the latter should be

preferred.

On the other hand, the proponent of BH&HLYP makes the following, analogous

argument. True, the ratio of MAPEs for the HB subset (3.0/5.6� 0.54) is <1 and

favors B97-1. However, for the WI subset, the ratio is >1 (13.3/6.8� 1.96) and

B97-1 is worse for this set. Thus, on average, we get (1.96 + 0.54)/2� 1.24 and

conclude that the errors of B97-1 are larger than those of BH&HLYP so the latter

should be preferred.

This illustrates how the same data can support two different conclusions. To

understand how it is possible to reach two contradictory conclusions in this fashion,

consider the more general case, where the two functionals to be compared are

labeled methods 1 and 2 and the data sets are A and B. We denote the average error

(MAPE in this case) for functional 1 on set A as A1 and follow an analogous

notation for the other functional and data set. To compare the errors of the two

functionals we average the ratios for both data sets:A1=A2 andB1=B2 . If the result is

<1, then functional 1 is judged to perform better. However, this analysis can also be

performed using the inverse ratios: A2=A1 and B2=B1 . The result depends on which

ratio was used because of the different order of operations:

1

2

A1

A2

þ B1

B2

� �
6¼ 1

2

A2

A1

þ B2

B1

� �
ð6Þ

Thus, we see that the way the mean has been produced (arithmetic vs harmonic) can

sometimes lead to different conclusions. In particular, using the harmonic mean can

favor a method that gives near zero error for one data set.

Finally, we consider the probability that all the results published in an article are

significant. As we have seen, based on statistics for the G3 set, density-functional

approximations work very well for general thermochemistry. However, there is

always the possibility of obtaining an error larger than one wants to accept for

useful chemical predictions and this risk increases as more results are generated.

For example, assume that the distribution of the errors for the G3 is representa-

tive for the chemical systems under study and that the required accuracy is 0.5 kcal/

mol per atom. Then the number of cases where this accuracy is reached in the G3

data set, divided by the size of the set, gives the probability that a single additional

calculation yields an accurate result. The highest probability to obtain the desired

accuracy is provided by B3LYP, but it is only 0.64. Thus, if ten new B3LYP

calculations are performed, for systems having the same error distribution as the

G3 data set, the probability that all results possess the needed accuracy is extremely

small (0.6410¼ 0.01).

One can also impose less strict requirements to judge a result as accurate.

Figure 6 shows how the probability of obtaining one, two, five, or ten accurate

results for the G3 set evolves when gradually increasing the acceptance bar. For
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example, if one wants to accept errors within �2 kcal/mol per atom, the probability

of reaching the desired accuracy for ten calculations is now 0.23.

Similar effects are observed for other data sets and functionals, as shown in

Table 7. For example, if we repeat this analysis for the KB49 set, the probability of

obtaining a required accuracy of 0.5 kcal/mol from a single B3LYP calculation is

very high at 0.86. However, the probability of having ten sufficiently accurate

results decreases to 0.22, and to 0.05 for 20. Even if the probability of obtaining a

reliable result is high, the probability that all future calculations are accurate

becomes low as the number of published results increases.
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Fig. 6 The probability to obtain B3LYP atomization energies with absolute errors per atom less

than a chosen maximum acceptable value, for a set of n systems and assuming the same error

distribution as the G3 data set

Table 7 Probabilities of a

single calculated result having

an error less than a particular

accuracy threshold (in kcal/

mol) for either the G3 or

KB49 data sets, with selected

functionals. The values for the

G3 set refer to errors per atom

Functional

G3 KB49

<0.5 <1 <0.5

B3LYP 0.64 0.78 0.86

CAM-B3LYP 0.57 0.77 0.73

B97-1 0.43 0.80 0.78

LC-ωPBE 0.45 0.68 0.84

BLYP 0.41 0.68 0.80

PBE0 0.38 0.65 0.73

PW86PBE 0.29 0.48 0.67

PBE 0.05 0.15 0.63

BH&HLYP 0.03 0.08 0.71
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4 Summary

There is no doubt that density-functional approximations have enhanced the field of

computational chemistry. This would not have been the case without the ability of

DFAs to produce interesting and reliable data. As the use of statistical measures to

assess the quality of DFAs is valuable and necessary, the number of benchmarking

studies has been growing rapidly. It should be pointed out, however, that such

statistics-based judgments are subject to several potential pitfalls. For atomization

energies, commonly used in parameterization of new functionals, the mean absolute

error is not well defined in the limit of large molecular size and errors per atom are a

preferable statistic. Large data sets are critical for ranking of functionals to mini-

mize the variance, although they can include a variety of effects and can thus blur

one’s judgment of the functionals. It is even possible to reach opposite conclusions

using the same data, for example depending on the choice of statistical measure.

Finally, publishing more data naturally augments the risk of including some data

with unsatisfactory accuracy. Statistical data used to judge the quality of density-

functional approximations must be carefully analyzed and understood in advance of

drawing conclusions.
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