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ABSTRACT. A non-local density functional including gradient corrections
has been recently developed by Langreth and Mehl (Phys.Rev. B28, 1809

(1983)), and by Hu and Langreth (preprint RU-85-011). We report on appli-
cations of this functional for first-row atoms and molecules (hydrides
and dimers). The properties considered are: total correlation energies
and correlation contributions to ionization potentials, electron affin-
ities (atoms), and dissociation energies (molecules). The results indi-
cate a significant improvement for total correlation energies and bind-

ing energies of diatomic molecules.

1. INTRODUCTION

The density-functional method allows, in principle, the calculation of

exact ground-state energies, but the universal energy-density functional
which would be necessary for this purpose is not explicitly known [1,2].
In the approach, which is most widely used nowadays, a local-density ap-

proximation (LDA) is introduced for the exchange-correlation part of the

functional [3]. This approach has been remarkably successful for atoms,
molecules and solids (cf. e.g. |4]), but a number of systematic errors

have been revealed for the exchange as well as the correlation part of

the LDA functional (cf. e.g. [5,61); LDA correlation energies, in par-

ticular, are too large in magnitude by about a factor 2. Several correc-

tions to the LDA functional have been suggested in the literature, among
them self-interaction (SIC) [7,8] and gradient corrections (GC) [9]. The

potential of the latter could not be fully exploited, up to very recent-

ly, since the spin dependence of the GC functional was unknown. With the

advent of a spin-polarized version [10], this limitation has been removed

by now.

In the present paper, we test the performance of the GC functional,
in comparison to LDA and SIC, for correlation energies of first-row atoms

and molecules. Since differential correlation energies are usually much

more important, in applications, than absolute ones, we give not only
total correlation energies but also correlation contributions to ioniza-
tion potentials, electron affinities and dissociation energies.
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2. METHOD

The Hartree-Fock (HF) method is used, in our calculations, for generat-

ing (total and partial) electron densities n(r), n,(f), n,(¥), and den-

sity gradients Yn(t), Vn,(r), Vn,(F). (Here t and 4 are spin indices,

n(¥) = n,(¥) + n,(7%)). In the HF calculations, finite (contracted)
Gaussian basis sets are employed: (8s2p)/[5s2p] for the H atom,

(13s4p)/[7s4ff] for Li and Be, and (13s8p2d)/(7s4p2d] for B to F [11].
For negative ions, a single diffuse basis function is added in each case,

an even-tempered s for H, Li and Be, and ap function with exponent

taken from [12] for B to F. The calculations are of the restricted

Hartree-Fock (RHF) type. No spherical restriction is imposed on the Fock

potential of the atoms. The resulting density information is then used as

input for various correlation-energy density functionals.

In the LDA approximation, the functional is

BAT, sn] = € [n, (#) 0,2] alae (1)

where € (n,n) is the correlation energy per particle of the homogeneous

electron‘gas with densities n,,n,. We took the parametrization of Vosko

et al [13] for € (ny,n,), in our calculations with eq (1).
With the self-interaction correction of [7], the functional reads

ayn) = Magn] - ad - Ma)

Again we employed the Vosko et al parametrization for € |. The SIC func-

tional of [8] looks different from that in eq (2), but the results for

the atoms and molecules considered in this work are only marginally dif-

ferent.

The gradient corrected correlation functional (10) reads (in

hartrees)

pe = {€,(n,.n,)nd'F+ 7/6

+ a Clen|?/n*!%)expi-hWal is
et +

[cn,/n>/3+ (a /n?/3 |
+ sat? [Clva,|?/04/)+ (lyn, [2704/3Jar (3)

with

a = m/scene) 43> » = con) '/%¢

In the LDA part of ge ,
the random-phase approximatior (RPA) has to

be used for € , since the gradient part has been evaluated in RPA also.

It is argu 14] that the terms beyond RPA in the local and non-local

part of E would almost cancel. The parametrization of von Barth and

Hedin [15]° is employed for €. in our present calculations. For the

cut-off parameter f, we take the value of 0.17, which was found to be
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Table I

Total correlation energies of atoms (in hartrees),
in the local density approximation (LDA), with a

self-interaction corrected (SIC) and a gradient
corrected (GC) density functional. The 'experimental'
valyes are taken from a compilation in Ref. [16].

Atom LDA SIC GC exp

H 0.022 0. 0.006 0.

Li 0.151 0.072 0.051 0.045

Be 0.225 0.116 0.088 0.094

B 0.290 0.147 0.117 0.125

C 0.359 0.176 0.150 0.158

N 0.430 0.204 0.187 0.188

fe) 0.535 0.267 0.247 0.258

F 0.641 0.328 0.311 0.324

Table IL

Correlation contributions to atomic ionization

energies (in hartrees), for various density
functional approximations (cf. Table I).
The 'experimental' values are the differences

between the experimental [17] and computed
Hartree-Fock ionization energies.
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optimum for correlation energies of closed-shell atoms in [9].
The integration in eqs (1) to (3) is done numerically (Gauss-

Legendre), with a cut-off for densities n(f) < 10’ au.

3. RESULTS

3.1. Atoms

Our results for total correlation energies of the first-row atoms (Li

to F) are compiled in Table I. They are compared to "experimental' cor-

relation energies, computed from experimental ionization potentials and

HF energies, using estimates for relativistic effects and radiation cor-

rections. It is seen that i) the local density approximation overesti-

mates correlation energies in a conspicuous, but rather well-known way;

the overestimation of LDA is by a factor ~3 for Li, and this factor

decreases, within the first row, to ~2 for F 5} ii) the self-interaction

correction leads to much better agreement with experiment; the SIC eor-

relation energies are still too high for the first row, but the mean de-

viation from experiment is 0.017 hartrees (h) only; iii) the gradient

correction is even slightly better than . SIC; with the exception of Li,

the GC correlation energies are somewhat too small, with a mean devia-

tion from experiment of 0.008 h.

In Table II, we give results for correlation contributions to

ionization energies, AIE. They are taken from separate calculations

for atoms and corresponding ions. The general trends for AIE are cor-

rectly reproduced by all methods. AIE is larger for ionization from

doubly occupied orbitals than from singly occupied ones and it is larger

for ionization from p than from s orbitals. Furthermore it is seen

that i) the LDA values are too large, by a small amount (<0.01 h) for

ionization from a doubly occupied orbital, by significantly larger amounts

(~0.02 h) for ionization from singly occupied orbitals; the enhancement

of AIE from B to N (by 60%), and the slight one from O to F ,
are

not well reproduced by LDA; ii) the SIC values show small errors

(<0.01 h) for ionization from singly occupied orbitals, but are signifi-

cantly too low (by ¢0.02 h) for doubly occupied ones; the trends within

the p series (B to N, and O to F) are incorrect; iii) with the GC

functional, the outcome is similar to LDA: the overestimation of ATE

is somewhat larger (with the exception of H); the trends in the p series,

however, are remarkably well described by GC. In contrast to LDA and

SIC, and in contrast also to experiment, the GC correlation energies

decrease, when going from a neutral atom with atomic number Z _ to the

isoelectronic X*tion with atomic number Z+1 (cf. Tables I and II). The

influence of the gradient correction is overshooting here.

Correlation contributions to electron affinities, AEA, taken again

from separate calculations for atoms and ions, are compiled in Table III.

The characteristic increase of AEAfrom B and C to N,O and F is

well reflected by all methods. i) the LDA values are slightly too large

(by 0.01 h), if the additional electron in the negative ion occupies an

s or an otherwise unoccupied p orbital; if, on the other hand, p pair-

ing is achieved in the negative ion, the LDA estimates are too small
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Table III

Correlation contributions to atomic electron

affinities (in hartrees), for various density
functional approximations (cf. Table I).
The 'experimental' values are the differences

between the (
and gcomputed

recommended) experimental [18

Hartree-Fock electron affinities.

Table IV

Correlation c

energies of f

for various d

(cf. Table I)
the differenc

ontributions to dissociation

irst-row hydrides (in hartrees),
ensity functional approximations

. The ‘experimental’ values are

es between the experimental [19]
and computed Hartree-Fock dissociation en-

ergies [20] .

LDA SIC GC exp

0.045 0.041 0.041 0.037

0.019 0.014 0.020 -0.001

0.037 0.035 0.041 0.028

0.042 0.040 0.050 0.042

0.047 0.045 0.058 0.054

0.043 0.040 0.060 0.057

0.041 0.036 0.063 0.063

ees SSSSSSS SS SS SSS SSS SSS SS SS SSS SS5=
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(by £0.02 h); ii) the SIC results are acceptable for s electron affin-

ities, but are too small by up to ~0.04 h for p affinities; iii) the

GC functional yields larger AEA than the LDA functional (with the excep-

tion of the H atom affinity); the overestimation of AEA for s and

singly occupied p orbitals is now comparable in magnitude to the under-

estimation for the doubly occupied p case; note, however, that the trend

within the p series (an increase of AEA from B to C, and from N

to F), which is not well described by LDA and SIC, is much better

reproduced with CC.

3.2. Molecules

We first consider diatomic molecules, and we take the first-row mono-

hydrides and homonuclear dimers as examples, i.e. molecules containing
one or two first-row atoms, respectively. We give results for correlation

contributions to dissociation energies, AD,., calculated at the experi-
mental bond-lengths R,([20). (In the case of Be, , we chose the best

available theoretical estimate of R,[2i] .) Our results for AD, are

summarized in Tables IV and V.

For the hydrides (Table IV), it is seen that i) the LDA values

are too large at the beginning of the row and become too small at the

end of the row; the exceptionally large error for BeH (0.02 h) has to

do with the exclusion effect; this effect, which cannot be simulated by
an LDA-type scheme, leads to a nearly vanishing experimental ADe for

BeH (cf. e.g. [6]); the large errors for OH and FH (again 0.02 h)

may be connected to the difficulties of LDA with the description of

the O° and F ions (cf. Table III); ii) the SIC values are only mar-

ginally different from the LDA ones; in particular, the experimental
trend of increasing AD, from BeH to FH is not correctly reproduced:
a fictitious maximum for NH appears bothin LDA and. SIC; iii) the GC

functional yields consistently higher ADe values than LDA (with the

single exception of LiH); an important outcome is that the increase of

ADe is largest at the end of the row, so that the maximum of AD, for NH

disappears, and the GC results are in accordance with the experimental
trend.

For the dimers (Table V), it is seen that i) the LDA values have

small errors (<0.01 h) for s bonding, but much larger ones for p bond-

ing (up to 0.15 h); the AD, results are consistently too small in the

latter case; the maximum deviation appears for C,, where the experi-
mental ADe has its maximum (the LDA maximum is for N,); ii) the SIC

values show no improvement over LDA; on the contrary, the AD, values

are even slightly smaller than LDA; the maximum of ADe is for N,
(instead of C,) again, and, as in LDA, Be, is not bound at Rg;
iii) the GC functional yields AD. values which are consistently larger

(except for H,) than the LDA ones. For H, to Be,, 4De is now only

slightly too high (by <0.005 h), and the sign of the dissociation energy

is correct now for Be, ; for B, to F,, ADe is still too small, but

the deviations from experiment are reduced by a factor ~2 compared to

LDA and SIC. Our dissociation energies are too low for the dimers B,
to F,. Note that in LDA calculations with local exchange (instead of

HF exchange) dissociation energies are usually too high (22].
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Table V

Correlation contributions to dissociation energies
of homonuclear dimers (in hartrees), for various

density functional approximations (cf. Table I).
The ‘experimental’ values are the differences be-

tween the experimental [19] and computed Hartree-

FocR dissociation energies, with the exception of

Be, , where the CI contribution to the dissociation

energy [21] has been taken.

Molecule LDA SIC GC exp

H, 0.051 0.049 0.042 0.041

Li; 0.028 0.028 0.036 0.032

Bez 0.005 0.003 0.020 0.015

Bz 0.012 0.006 0.051 0.081

C, 0.051 0.046 0.104 0.203

N, 0.085 0.081 0.138 0.174

Or 0.040 0.035 0.100 0.145

Fy 0.021 0.018 0.061 0.111

Table VI

Correlation contributions to atomization

energies (in hartrees) for various density
functional approximations (cf. Table I).
The ‘experimental’ values are from Ref. [20] .

Molecule LDA SIC GC exp

CH, 0.15 0.13 0.20 0.14

NH; 0.13 0.12 0.18 0.15

OH, 0.09 0.08 0.13 0.11

FH 0.04 0.04 0.06 0.06
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We now turn to polyatomic molecules. Total correlation energies for

a number of closed-shell polyatomic molecules have been given in [23];
by combining these energies with the atomic correlation energies of

Table I, the discussion of correlation contributions to atomization en-

ergies, AE, , becomes possible. Results for the isoelectronic series

CH, , NH; ,H,O, HF are given in Table VI. It is seen that i) LDA and

SIC yield similar values; the trend of AE, is in rough agreement with

experiment: the steep increase from FH to NH, is correctly reproduced,
but the slight decrease from NH, to CH, is not caught; ii) GC is not

superior here to LDA and SIC; on the contrary, GC seems to unduly
favour molecules with a large number of bonds: for CH, , the overesti-

mation of AE, is 0.06 h with GC, while it is only 0.01 h with LDA.

A similar situation arises for the isoelectronic molecules C,H, and N,.
The correlation contributions to the atomization energy should decrease

by 0.01 h when going from N, to C,H,, but it increases instead by
0.03, 0.02 and 0.06 h, when the LDA, SIC, and GC functionals are

used, respectively. The strong overestimation of correlation-energy
changes for increasing number of bonds within an isoelectronic series,
with the GC functional, could indicate a too small gradient correction

in the internuclear region (where the gradient is small).

4. CONCLUSIONS

The gradient-corrected density functional (GC) of Langreth and coworkers

has been tested for the correlation energies of first-row atoms and mol-

ecules. It has a distinct advantage over the local-density method (LDA),
as far as total correlation energies are concerned: it is comparable in

performance here with self-interaction corrected local density func-

tionals (SIC). With respect to correlation contributions to atomic and

molecular properties, the GC functional seems to be superior to both

LDA and SIC, in general. Some weaknesses of GC are apparent, how-

ever, from a consideration of isoelectronic series of atoms and mol-

ecules: the gradient correction seems to overshoot for correlation en-

ergies of positive ions (high gradient), while it seemingly has too

small an effect for internuclear regions (low gradient).
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