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Abstract
Several schemes which extend the Kohn-Sham construction to
multideterminantal wavefunctions are possible. The following ones
are presented:

e use of the eigenfunctions of 52
e selection of a reference orbital space
e splitting of the electron-electron interaction operator

With multideterminantal wavefunctions, it is necessary to replace the
dependence of the functionals on the spin-density by that of a depen-
dence on the on-top pair density.

Introduction

The present paper shows some efforts towards extending the approach of
Kohn and Sham [1]. The selection of items presented is personal and by no



means covers the literature on this subject. None of the methods presented
has been widely used. For some of them, however, the existing numerical
material is sufficient to draw conclusions about their performance. Other
methods are only sketched as there is little or no experience with them.
They are presented, as they might give indications for a way to follow.

In the search for approximate energies a mixed treatment is often adopted.
This applies both to wavefunction and to density functional (DF) methods.
The origin of this approach lies in the variety of physical effects to be taken
care of. Finding density functionals which satisfy the Pauli principle is not
a trivial task, although such functionals exist in principle [2]. The Kohn-
Sham solution is to construct a Slater determinant ( of course, satisfying the
Pauli principle) which leads to the desired density, and is used to compute
the (non-interacting) kinetic energy.! On the other hand, when applying
the Kohn-Sham method, the remaining part of the energy is computed by
relatively simple approximations, where only the density and the spin-density
are present. One can find it surprising that the typically quantum-mechanical
effects of exchange and correlation can be quite well described in this way.

In wavefunction methods it is inefficient to use the same approach for
treating on the same level the near-degeneracy effects (present in the va-
lence space) and the dynamical correlation (due to the short-range electron-
electron interaction). For example, one can use a variational method for the
first part, and perturbational one for the second (see, e.g.,[5]).

The present paper tries to show how such hybrid approaches can be used
to produce new Kohn-Sham-like schemes. They all lose the extreme simplic-
ity of the original method (and thus part of its attraction), but eliminate
some of its shortcomings and in some cases also introduce a possibility of
systematic improvement. Several programs manipulating multideterminan-
tal wavefunctions are now available for atoms and molecules. The treatment
is not prohibitive, as long as the number of Slater determinants and the size
of the one-particle (orbital) basis sets are not too large.

Tt is sometimes stated that the orbitals in Kohn-Sham theory are only used to gen-
erate the density. This leads to a question which is sometimes asked in connection with
Hartree theory [3]: ‘Why are the orbitals chosen to be orthogonal?’, showing that the Pauli
principle is implicit in this treatment. Without orthogonal orbitals the energy would be
minimized (for a given density) by choosing all orbitals equal (proportional to the square
root of the density). The kinetic energy thus obtained would be that of von Weizsicker
(see, e.g., [4]), which yields poor energies in practice.



Spin-densities and on-top pair-densities

Some usual constrained-search definitions of the universal DFs ([6], see also
[7]) are given below. The most general one, corresponding to the Hohenberg
and Kohn idea [2] is

Fln] =< U™" | T4+ V,, | g™ >

where T is the operator for the kinetic energy, V.. is that for the electron-
electron interaction, ™" the antisymmetric wavefunction which minimizes
<T+V, > and yields the density n. The ground state energy can be found
by minimizing (over n)

Eln) = Flnl + [ no

where v..; is the external potential. The difficult task of finding an approxi-
mation to F'[n] can be simplified if the prescription of Kohn and Sham [1] is
followed by decomposing it:

Fln] =< ®™" | T | ®™" > +U[n] + Ege[n] (1)

Here ®™" is the antisymmetric wavefunction which minimizes < T > and
yields n. Please notice that ®™" is a Slater determinant. Further,

Uln] = %/n(rl)n(rz)éd%ld?’r? (2)

Equation 1 defines E,.[n], the universal exchange-correlation DF which even-
tually has to be approximated. The universal correlation functional can be
defined in a similar way:

En] = Fln] — (< @™ | T+ Vee | 97 >) (3)

A fundamental step forward to the application of DFs consists in making the
local density approximation (LDA), i.e. assuming that the functionals have

the form
[ ) (4)

Here f is an arbitrary function which can be determined by doing uniform
electron gas calculations. Often, a dependence of f on | Vn | is also in-
cluded. This produces LDA-like approximations, which may improve the
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results without changing the essentially local character of the approxima-
tion.

Significant progress in the construction of DFs was made by introducing
the dependence of the universal functionals on a supplementary parameter,
the spin-density, n+ —n; (n4+ and n; are the spin-up and spin-down densities,
respectively) [8, 9]. Although this is not the only choice possible [10], it seems
natural to use spin-densities, for obtaining the magnetization of materials, an
information not available in the usual Hohenberg-Kohn theory (which yields
the ground-state energy and density only). Furthermore, by replacing the
functionals of the density by functionals of the density and the spin-density,
more flexibility is introduced in the functionals, which finally leads to better
numerical results. Equations 1 and 3 can then be re-written as:

Flng,n] =< @y | T | @7 > +Un] + Egelng,ny (5)
and . o _
Flng,ny] =< &7 | T+ Vee | Q7 > +Ee[ng, ny] (6)

where CD;”T’Z . is the Slater determinant which minimizes < 7' > and yields
the partial densities n4 and ny. The couple (n,ns —n}) has been replaced in
the equations above by that of (n4,ny) as: n = ns + ny.

While successful approximations to Eg.[n+,n;] and E.[ns,n;] are avail-
able, there is a conceptual problem related to the use of these functionals.
In the case of degeneracy (and of course the problem will appear in a related
form in the case of near-degeneracy) different states have the same energy
but might have different densities. It is very difficult to find an approxi-
mate DF which reproduces this feature of the exact one. The supplementary
information given by the spin-density may even aggravate the problem, as
one may have different degenerate states with the same density, but with
different spin-densities.?

More explicitly, the spin-density is given by Mg times an Mg-invariant
quantity (the ‘normalized spin-density’) [11]. In a triplet, for example, the
state with Mg = 0 will have zero spin-density, although the normalized
spin-density is the same as for the state with Mg = 1. Density functionals
use, however, the spin-density and not the normalized spin-density. Thus
DF's may lead to different energies for spin-densities which belong to a given

2Let W(Mg) be one of the eigenstates (with S, eigenvalue Mg), i = 3. 6(r — ;) the
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multiplet, but yield different Mg. For such a case, the terms of a multiplet
are not degenerate. A recipe to circumvent this problem is to argue that only
one of the states can be computed (e.g. the one with maximal Mg ). It will
now be shown, that this prescription does not solve all the problems due to
having different energies for the different terms of a multiplet. The example
below intends to show that states with different Mg should be treated on the
same footing, as there might be no way of picking out one of them.

Let us consider the dissociation of a molecule into two fragments in the
case where a given spin state remains the ground state for all internuclear
separations, from the equilibrium position to infinite separation. It may well
happen that the dissociation products have different Mg. Examples of such a
molecule is O in the 32; state, with Mg = 1 state dissociating into atoms in
the P state with Mg =1 and Mg = 0 [12]. With LDA-like approximations
non-degeneracy is artificially introduced for states with different Mg. In such
a case two alternatives may be considered.

First, suppose that Mg is kept constant for all internuclear separations.
This restriction on the Kohn-Sham determinant produces fragments with
different Mg. One of the fragments will be in a state with an energy higher
than the other because of the deficiencies of the LDA-like approximation.
On the other hand, a calculation of the isolated fragment will chose the Mg
state with the lowest energy. Thus, at infinite separation, the energy of the
molecule will be higher than that of the isolated fragments. For the example
mentioned above, let us suppose that the energy of the O atom is lower
for Mg = 1 than that for Mg = 0. The energy of Oy (Mg = 1) will be
higher than that of two O atoms, each with Mg = 1. In conclusion, this first
approach has shown not to respect size-consistency.

In the second approach, one can argue that DF theory is only for ground

density operator, which commutes with the ladder operators S’+ and S’_; then

<‘I’(M5)|ﬁ|‘IJ(Ms)> — <‘I’(M5)|ﬁ|AS+AS_‘I'(M5)>
<U(Ms)|¥(Ms)> <U(Ms)|S4S_¥(Ms)>
<S_¥(Ms)|n|S_¥(Ms)>
<S_W(Mg)|S_W(Mg)>
<U(Ms—1)|n|¥(Ms—1)>
<\I’(M5—1)|\I’(M5—1)>

which shows that ¥(Mg) and ¥(Mg —1) yield the same density although they must yield
different spin-densities, one integrating to 2Mg, the other to 2(Mg — 1).



states, and that energy optimization should be considered. Size-consistency
can now be rescued, but one has to pay the price of the unphysical change
of Mg at a certain internuclear separation. Even if apparently one may not
be interested in the change of Mg, the latter indicates a change in the spin-
density (which integrates to Mg/2) which is unphysical too, and would be
usually interpreted as a change of ‘magnetization’.

It may seem surprising, but the second choice seems to be closer to a solu-
tion towards escaping the dilemma mentionned above. In this case one asks if
LDA-like approximations really produce spin-densities. In fact, a one-to-one
correspondence between single-determinant spin-densities and on-top pair-
densities suggests that it is the latter which really appears in usual density
functional calculations. This correspondence was first used in calculations
with correlation energy DFs [13]-[15] 3, later also in exchange-correlation
density functionals [18]. A more detailed discussion of the new interpreta-
tion of spin-density functional calculations is given in [19]. Here only some
significant features will be mentioned.

The pair-density (in the normalization of McWeeny [20]) is defined for
any N-electron wavefunction ¥ by

Poerm) =N(N=1) 3 [drydiry | W P
014--50N
The on-top pair-density is Py(r,r). If the wavefunction is given by a single
Slater determinant yielding spin-densities n+(r) and n,(r) the on-top pair-
density is simply given by:

Py(x,r) = 2ny(x)n, (r) (7)

Together with n = n; + ny, it means that the couple (n4,ny) can be re-
placed for single-determinant functions by the couple (n, P,), without loss of
generality. First, @,szi of equations 5 and 6 can be replaced by ®"% the
Slater determinant which minimizes < 7' >, yields the density n, and the
on-top pair-density P,. The conditions P, > 0 and P, < n?/2 have to be
imposed (as we consider Slater determinants, cf. eq. 7). Next, the depen-

dence of the functionals £, and E, on ny and n; can be substituted by the

3The pair-density was probably first used with density functionals by Colle and Salvetti
[16]. Please note that the equivalence of using pair-densities and spin-densities was also
used in order to eliminate the dependence on the pair-density in favor of the spin-densities.
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dependence on n and P. Clearly, all Kohn-Sham calculations can be seen as
being performed by using functionals which have the on-top pair-density as
supplementary information (and not the spin-density).

The advantage of using P, instead of using the spin-density can be seen
for example in the case of multiplets: as P, does not change with the change
of the spin function * all terms of a multiplet will now have the same energy.

In the following some suggestions will be made, all based upon the idea of
using more than a single Slater determinant. This requires a special consider-
ation of the on-top pair-density. The energy of a system under consideration
should be found by minimizing (now in a search over n and P,)

Eln, P, = Fln, P)] + / et (8)

When searching over P, the domain of allowed values has to be defined. While
P, > 0 always holds, the condition used in the alternative interpretation of
the Kohn-Sham equations, derived from Slater determinants (P, < n?/2)
is not satisfied by all types of wavefunctions.® The existence of such cases
can be shown for P, of singlet states approximated by a wavefunction in
which two electrons singly occupy different orbitals. (An example of such
a singlet state is the ground state of Ce, [22].) Taking for simplification
just two electrons and two orthogonal orbitals, x; and ys, the wavefunction
considered is

2721 (1)x2(2) + x2(1)xa (2)]
multiplied by a normalized spin-function. The density is

n:|X1‘2+|X2‘2

and the on-top pair-density:
Py=4]x ‘2|X2 ‘2

which can reach n? (at a point r where | x1(r) |=| x2(r) |).
In practice, the class of P, to be taken care of, does not pose a problem,
as a wavefunction is used to construct both the density (as in a standard

4Cf. footnote 2 showing the invariance of the density
5Slater determinants can be always used to generate any density and spin-density,
derived from an antisymmetric wavefunction [21, 23]
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Kohn-Sham calculation) and the on-top pair-density. Special care has to be
taken, however, when defining the exchange-correlation or correlation func-
tionals depending on n and P, as only Slater determinants are usually used
for their parametrization, yielding values only for 0 < P, < n?/2. (For
example, such functionals are obtained by using the ground state energies
of the uniform electron gas with various degrees of polarization.) While it
would be necessary to perform calculations for different systems (e.g. other
states of the uniform electron gas), it is possible to choose the easy way: to
extrapolate the results obtained for 0 < P, < n?/2 to P, > n?/2 [18].6

It was mentioned above, that a Slater determinant is introduced in the
expression of the kinetic energy, in order to enable finding simple approxima-
tions to the universal DF. In the following, a few suggestions will be made,
how to extend this prescription, in the hope of finding better working den-
sity functionals. Another - and maybe more important motivation - is to
find a way to a systematic improvement of results. For example the varia-
tional character of configuration interaction (CI) calculations, insures that
the quality of the energy cannot be worsened by augmenting the set of Slater
determinants used. As will be seen below, following this philosophy is also
possible in the DF context, after extending the Kohn-Sham scheme.

Eigenfunctions of 52

The simplest generalization of the Kohn-Sham approach (which, however,
does not allow a systematic improvement) is to require that ®™" to be an
eigenfunction of S? (and not only of S, as it is often done in practice):

Fln] =< &% | T | &7 > +U[n] + By s(n] (9)
and . A A .
F[n] =< @;’f’_q” | T+ Ve | @Qfg’ > —Uln] + E.s[n| (10)

Here nmg" is the antisymmetric wavefunction which minimizes < T >, yields
n and is an eigenfunction of 52 and S,. Note that now, the minimizing

wavefunction is not necessarily a Slater determinant. The index S in E,. g[n]

6Correlation energy functionals of n and P> have also been set equal to zero for P, >
n?/2 [13].



and E.g[n] does not show a dependence on any specific eigenvalue of S2,
but merely distinguishes these functionals from E,.[n] and E.[n| as defined
previously.”

For a spin-independent Hamiltonian, the present approach does not re-
strict the generality of the Hohenberg-Kohn theorem. The exact ground
state being an eigenfunction of 5’2, the minimum value of the DF will be the
same as that obtained for the exact functional without the $? restriction.
Furthermore, as the Hamiltonian is spin-independent, there is no restriction
on the universality of the DF.8

Extending E,.s and E.s to spin-density functionals leads to problems
when a projected wavefunction nmg" is used. For example, the ground state
of the Hs molecule has for each internuclear separation, R, Mg = 0. This
condition is, of course, satisfied with the projected wavefunction which yields
zero spin-density. For R — oo the energy of two hydrogen atoms should be
obtained. Even if the density is correct, the spin-density of two hydrogen
atoms (each with Mg = +1/2) would be non-zero. The dissociation energy
obtained by following the potential curve, or by subtracting the energy of
the isolated atoms from that of the molecule would be thus different. The
difficulty mentioned here is, however, only apparent, if one considers that the
DF depends not on the spin-density but on the on-top pair-density instead.
In the preceding example of Hy, at large internuclear separations Ps(r,r)
tends to zero, as the probability of finding the two electrons around the same
location r vanishes.

An universal functional can be thus constructed, using the density and
the on-top pair-density. For exchange-correlation one has,

F[TL, P2] =< Zl,;nQ,S | T | min g > -{-U[TL] + Ezc,S[na PQ]a (11)

n,Ps,

while for correlation-only the equation is,

Fln, Pl =< &% o | T+ V.. | ®0%0 ¢ > +E,s[n, Py. (12)

"This difference would disappear in a local approximation using the uniform electron
gas as a reference.

8Extending this approach from spin to spatial symmetry would lead to a difficulty.
Allowing for any type of symmetry (as it was done above for spin symmetry) means
that the group possessing only the identity must be included too; this is nothing but the
ordinary case. On the other hand, having a dependence on the specific symmetry would
violate the universality requirement of the DF. An alternative way is to build a DF for
every symmetry [24].



Here ® ¢ not only is the antisymmetric wavefunction which minimizes
3 3

< T >, is an eigenfunction of $? and yields the density n(r) but also yields
the on-top pair-density Py(r,r).

Of course, the preceding equations do not contain a double-counting of
the correlation energy, as the functionals E,. s[n, P»] and E, s[n, P, are just
defined by them. When the uniform spin-polarized electron gas is used to
fix these functionals with the LDA ansatz the usual LDA expression will be
obtained, because the electron gas states are eigenvalues of S? (cf. footnote
7). As one now has an approximation, correlation can be over- or underes-
timated. Some confusion may arise about introducing correlation by having
more than one determinant appearing in ® in the above formulas. It should
be noticed, however, that for degenerate states the correlation energy often
cannot be defined as the difference between that obtained with the exact
(non-relativistic) wavefunction and the one obtained with a single determi-
nant, as the latter often does not describe a specific state. This problem is
avoided by using a reference of proper symmetry.

Another problem, related to the extension of the class of wavefunctions is
the feasibility of calculations (which are straightforward with Slater determi-
nants in usual Kohn-Sham calculations). For spin-projected Slater determi-
nants formulas are available for the first- and second-order density matrices
(see, e.g. [25]-[27]). With these formulas the only supplementary quantities
needed are some spin-symmetry determined coefficients, which can be readily
obtained. Thus the density, kinetic energy and on-top pair density can be
obtained without significant supplementary effort.

There is still a need for a systematic numerical study of the present ap-
proach. Fig. 1 presents the potential curve for the Hy molecule produced
in a simplified non-self-consistent scheme [28]. First, an unrestricted single-
determinant wavefunction was produced in a standard LDA calculations.’
The energy was then recomputed for the projected wavefunction. The ex-
change-correlation functional used was dependent on the gradient of the den-
sity [31], but the spin-dependence was replaced by that on P, by using eq. 7.
For small internuclear separations, the single determinant is an eigenfunction
of S2. Thus no difference is to be noticed with respect to usual calculations.
For larger separations, however, usual calculations tend to produce Slater
determinants which break spin symmetry. Enforcing the latter produces a

9The orbitals are numerical, produced by A. Becke’s NUMOL [30].
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lowering of the energy, improving the agreement with exact data [29].1°

Extended orbital space

The wavefunction used in ordinary Kohn-Sham theory is a Slater determi-
nant (cf. egs. 5 and 6). This means that there are as many spin-orbitals as
electrons. It is possible, however, to enlarge the orbital space in a system-
atic manner, allowing the construction of more than one Slater determinant
within the space of spin-orbitals. For single-particle operators, like the kinetic
energy, this supplementary freedom is not used (as a rule) and an alternative
definition of the density functional (of the correlation energy) has to be used:

Fln, P =< &% | T+ V, | @70 > +E[n, P

<i>n"“P"2 is the antisymmetric wavefunction which yields the density n, the on-

top pair density P, minimizes < T + V,, > and is defined in a reference
space (which can be defined in various ways, see below). As @;’fip’; is (except

in the trivial case) more complex than the Hartree-Fock wavefunction, F,
will describe a part of the correlation energy (that not obtainable in the
reference space). Of course, the definition of the reference space must take
care not to limit the universality of the density functional. Furthermore, the
choice has to insure a high degree of transferability when approximations, like
LDA, are made. For example, using a large space defined by a set of highly
localized functions in the uniform electron gas, would leave an important
part of the correlation energy to be described by E,. On the other hand,
the same space would allow a very good description of an atomic system.
Transfering E, from the uniform electron gas to the atom would give an
important contribution to the correlation energy both from the wavefunction
part < ~nm,§?2 | T+ V. | ~nm,§?2 > and from E,.

19Tt may seem surprising at first sight that the energy is lowered by imposing a re-
striction on the wavefunction (that of being an eigenfunction of S2). On the other hand,
another restriction (that of having a single Slater determinant) has been lifted. The low-
est eigenvalue of the Hamiltonian in the space of determinants needed to insure that the
wavefunction is an eigenfunction of S? will be not higher than the expectation value of
the Hamiltonian with any of the determinants.
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Once the reference space is defined, the energy can be obtained by the
usual minimization procedure,

E, = mlipn{F[n, Py —f-/vmn}
n,[2

= min{ min < ® [T+ V| ® > +E,[n, P +/Ueztn}

n,Py P—n,Ps

= <O | T 4 Vop+ Vg | 9™ > +E,[n(®™™), Py($™")] (13)

(Ci> is the wavefunction constructed in the reference space, and ®™" is that
obtained in the minimization procedure which also gives the final n and P).
Changing the size of the orbital space is a way to systematically improve
the calculation: in the limit of the full orbital space E, goes to zero and the
calculations to be performed using F, are full CI calculations, ™" being the
full CI wavefunction. It should be noticed, however, that approximating E,
usually destroys the upper bound property of the wavefunction calculation.

The arbitrariness of the choice of the orbital space leads to several schemes.
One of them uses the space of natural orbitals with large occupation num-
bers [32]-[34]. The threshold separating the large from the small occupation
numbers can be chosen freely, ensuring the required flexibility in the size of
the orbital space.!! The physics behind this approach is given by the fact
that short-range correlations are described by orbitals with small occupation
numbers (corresponding to large wavevectors k in the uniform electron gas)
while near-degeneracy effects can be described by a the natural orbitals with
large occupation numbers (with k up to a value lying not far above kg in
the uniform electron gas).

Another definition of the orbital space is obtained in analogy to a class
of wavefunctions computations often quoted as the Complete Active Space
Self-Consistent Field (CASSCF) method (see, e.g. [35]). In this definition
all wavefunctions are generated within a space of N (> N) spin-orbitals.
Both the orbitals and the coefficients of the Slater determinants are chosen
in order to minimize the energy. For a density functional, this leads to the
minimization of < T + V,, > instead, for a given density (and possibly a
given on-top pair-density). By enlarging N (starting from N) it is possible

' Numerical results show that a typical separation threshold is 0.01 atomic units for
errors in the dissociation energies of diatomic molecules of 0.01 hartree. These values were
obtained with E,. depending only on n (no dependence on P»).
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to produce the sequence of wavefunction calculations (the first one being of
the Hartree-Fock type) insuring the possibility of improvement of the method
(14, 36].

For local approximations, it is important to have a local measure of the
orbital space. In the present context, one could choose for it [36]

YN i) |2
SV pi(r) 2

where ¢ are the orbitals used, ordered after their appearance with increasing
N.'2 m(r) can take values between one and infinity. Thus F[n, P;] becomes

m(r) =

F[n, Py,m] =< pmin | T+V,, | omin +E‘c[n, Py, m)|

n,Pa,m n,Py,m

where énmlpnzm is the antisymmetric wavefunction minimizing < T+V,>in
the space of N orbitals yielding n, P, and m. The existence of a wavefunction
producing n, P, and m is guaranteed by construction (cf. eq. 13). Further-
more, any m can be produced in homogeneous electron gas calculations as it
is given in this case by the ratio of a maximal k to kg to the third power.

A few applications have been performed by using for E, the approxima-
tion:

Eow [ 6(n,m)f(ng, g, | Vg |, V)

Here ¢ is a factor that includes the dependence on m(r). It is equal to one
for N = N and decreases as N becomes larger; m — 0 for N — oo. The
function m used is obtained from unpolarized uniform electron gas calcula-
tions. For f(ns,n,,| Vny |,| Vny |) the expression of Vosko et al. [37] was
used for the local part, and the gradient correction was taken from [38]. The
quantities ns,ny, | Vns |,| Vn, | appearing in f are not spin-densities, but
were constructed from n and P, (cf. eq. 7). The CASSCF calculations were
done with the program Molpro [39].

Fig. 2 shows the results of a series of calculations on He and Ne®* using
this method [14]. The two curves on the lower half of the picture show the

12Tt should be noticed that the orbitals change with N. It is possible, however, to follow
the orbitals from one calculation to the other, e.g. by symmetry or computing the overlaps.
In fact, the orbitals from the calculation with smaller N can be used as starting orbitals
in the calculation with larger N.
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errors of the pure wavefunction (CASSCF) calculation.’® The upper half of
the figure shows the errors present after addition of the DF to the CASSCF
energy. The value obtained in the space of only one orbital is, of course, at
the Hartree-Fock level. While the DF correlation energy (with ¢ = 1) yields
a good energy for He, the error made for Ne®* is nearly as large as without
DF (but of opposite sign). When the orbital space is increased, the error
remains small for He, and decreases for Ne3*. 1

Splitting of the electron-electron interaction

The physical background for a transfer of density functionals in LDA-like
approximations seems to rely on the transferability of short-range electron-
electron interactions. This can be studied explicitly by splitting the operator

A

Vee into a short-range (V;) and a long-range (V}) part:
Vee = Vs + Vi

This separation can be done in position space, for example with a Yukawa-like

potential: A
Ve=> ws(i, ) (14)
i<j
Lo et
vs(4,J) =

Tij
where 7;; is the interelectronic distance. Alternatively, such a splitting can
be done in momentum space, for example by using a momentum which de-
fines the separation of large from small values. Both types of definitions
are common in physics (see, e.g., [40, 41]) and a few suggestions have been
made to use only the short-range part of V.. for the transfer of LDA-like
density functionals (see, e.g., [42, 43]). Naturally, the remaining part of Vie
will contribute to the energy, and there is a need of a method well-suited for

13An error of & 1 mhartree remains even for the maximal N which can be attained in
the basis set used here; in particular, orbitals with higher angular momentum are missing.

14A comparison with the results presented in [32] shows that the error is small with just
one orbital in the wavefunction calculation. This is due to the choice of the threshold which
uses the information about the largest occupation number not used in the wavefunction
calculation.
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long-range interactions [44, 45]. Recently some progress has been done along
these lines [46]. It is possible to define functionals for short-range exchange
and correlation (or correlation only)

Es,mc[n] = F[’I’L] - (<

By eln] = Fla] — (< &4 | T4 V7 | 9704 > + < ain | 7, | ain )

* > +Usn))

where

Us[n] = %/n(rl)n(rz)vs(rl,rg)d3r1d3r2

dminl js the antisymmetric wavefunction yielding n and minimizing < T+
V; >. The analogy to egs. 1 and 3 is evident: here T has been replaced by
<T+V;>. The ground state energy, can be obtained by minimizing over
all antisymmetric wavefunctions ®:

Ey, = mr}n(F[n] + /mjezt)
—min(< @ | T+ Vi | @ >+ [ n(@)vews + Ui[0(®)] + Eyaeln(@))

= min(< @ | T+ Vi [ @ > + [ n(@)veat < QT [V, | 977 > 1B, [n(@))

As the choice of V; (V}) remains arbitrary, it is possible to switch from
the usual Kohn-Sham case (V V;e, V, = 0) to the usual wavefunction (full
configuration interaction) calculation (V = 0,V; = V..). For example, by
choosing a Yukawa-type interaction for v, (cf. eq. 14), it is possible to change
continuously the exponential parameter from zero to infinity, allowing for a
smooth tuning of the separation in the Hamiltonian. The local approximation
(eq. 4) can be made for E,. s and for E, ; by using uniform electron gas data.
While the formula for the exchange energy per particle can be obtained
analytically,

2 3 41 3+ a? 9 14+a®> a2
ez,sz—;kp(g—atcm a—i— ¢ In " _Z)

where a = 1u/(2kr) and kr = (372n)'/3, a numerical computation is needed
for the correlation energy. Such a calculation was performed in the coupled-
cluster approximation, changing only the electron-electron interaction in the
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formulas of Ref. [47]. The results of this calculation can be found in the
Table.

Fig. 3. shows the energy errors obtained within the local approximation
for Yukawa-like interaction, at different values of the exponential parameter
i, for the He atom.!® The curve shows the results obtained with Eis. (An
analogous trend is observed when E. is used, cf. Ref. [46]). The error
rapidly drops off with increasing u from 0 (corresponding to an usual LDA
calculation) to p & 2. Beyond this value practically no change can be noticed
in the energy. A possible explanation for this behavior might be that u = 2
is already large enough to exclude all DF contributions. In other words, one
already obtains a pure variational wavefunction calculation.

Fig. 4 shows, however, that this hypothesis is wrong: the error in the
energy is clearly much smaller than the DF contributions for y = 2 (E,.s =
0.274 hartree, and E,., = 0.046 hartree). In fact, it turns out that much
higher values of y are needed to approach the full wavefunction calculation
and to switch off the DF contributions.

The example of the He atom shows that the short-range interaction can
be transfered from the uniform electron gas. At the same time it illustrates
how a systematic control of the computation is possible: one simply has to
repeat the calculation with a larger p, and check the stability of the result.
Of course, experience can replace this check, as it often does in other calcu-
lations. Present experience seems to show that (for neutral systems) u = 2
is a good compromise for good accuracy and a maximum DF contribution.
Experience must also show how much effort is needed to obtain the mini-
mizing wavefunction (which now is not a single Slater determinant). Usually
the need of large basis sets is attributed to the pole in ‘A/ee for R;; — 0 (see,
e.g. [48]). This behavior can be eliminated in V;, however, as can be seen,
for example, by analyzing the Yukawa potential. One thus can be optimistic
about the application of this approach.

15Technical details are as in Ref. [46], with the exception of the functional given in
Table 1. The role of the electron gas calculation (of Fermi hypernetted chain type in Ref.
[46]) is only marginal.
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Conclusions

By introducing a wavefunction into the universal density functional Kohn
and Sham have considerably simplified the search for approximations of the
universal DFs. In other words, certain features are more easily described by
a wavefunction than by LDA-like DFs. While the main feature introduced by
the Slater determinant of Kohn and Sham is antisymmetry, there are proba-
bly also other properties which are taken care of more easily by wavefunctions
than by DF's, for example spin symmetry properties or near-degeneracy ef-
fects. In order to treat these, more than a single Slater determinant is often
needed, which in turn requires extending the original Kohn-Sham formalism.
A few of these possibilities have been presented in this chapter.

Another advantage of extending the Kohn-Sham formalism to a num-
ber of Slater determinants is the possibility of generating a practical scheme
allowing systematic improvement in the meaning used in wavefunction cal-
culations: a sequence of calculations which are expected to yield better and
better results. For the prescriptions presented here there is - as always - a
higher price to pay for a better quality. Nevertheless, as DF's are well suited to
transfer the effects due to short-range interaction between electrons, adding
them should considerably reduce the effort with respect to pure multideter-
minant wavefunction calculations.
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Figure 1. Potential curve for the hydrogen molecule obtained within usual
(unrestricted) Kohn-Sham calculations (UKS) and after projection to proper spin
symmetry (PUKS [28]). The exact potential curve [29] is also shown.
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Figure 2. Errors of CASSCF (open circles, lower half of the figure) and
CASSCF+DF (full circles, upper half of the figure) calculations for different size
of the orbital space; for He (full lines) and Ne8* (dashed lines) [14]. When only one
orbital is present, the result obtained corresponds to the Kohn-Sham calculation
with pure correlation energy functional. For two orbitals a second s orbital has
been added; this is followed by the addition of a set of p orbitals, a third s orbital,

a second set of p orbitals, the last point shown corresponding obtained by finally
adding a set of d orbitals.
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Figure 3. Energy difference between the calculated (local density approx-
imation for Yukawa short-range electron-electron interaction) and ‘exact’ total
energies with density functionals for exchange and correlation for the He atom, as
a function of the Yukawa exponential factor; in atomic units.
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Figure 4. Error in the total energy of the He atom calculation (full curve,
cf. Fig.3) compared with the exchange-correlation (dotted curve) and with the
correlation (dashed curve) contributions to the energy; as functions of the Yukawa
exponential parameter (exchange-correlation DF)
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Table. Ratio between the short-range correlation energy and the total
correlation energy of a uniform electron gas, obtained in a coupled-cluster
calculation of the uniform electron gas with Yukawa-type interaction (r; =
[3/(47n)]'/3, p is the Yukawa exponent in eq. 14, in atomic units ).
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0.0
0.2
0.5
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

1.000
0.992
0.966
0.914
0.809
0.713
0.631
0.559
0.498
0.445
0.400
0.360
0.326
0.296
0.270
0.247
0.227
0.209
0.193
0.179
0.167
0.155
0.145
0.135
0.127
0.119
0.113

1.000
0.976
0.916
0.806
0.615
0.475
0.373
0.298
0.244
0.202
0.171
0.146
0.126
0.110
0.097
0.086
0.077
0.069
0.062
0.057
0.051
0.047
0.043
0.040
0.037
0.034
0.032

1.000
0.950
0.835
0.655
0.409
0.273
0.195
0.145
0.113
0.090
0.073
0.060
0.051
0.043
0.038
0.033
0.029
0.025
0.023
0.020
0.019
0.017
0.015
0.014
0.013
0.012
0.011

1.000
0.894
0.690
0.446
0.221
0.130
0.085
0.060
0.044
0.034
0.027
0.021
0.018
0.016
0.014
0.011
0.010
0.009
0.008
0.007
0.006
0.006
0.005
0.005
0.005
0.003
0.003

1.000
0.836
0.573
0.325
0.142
0.079
0.050
0.034
0.026
0.019
0.015
0.012
0.011
0.008
0.008
0.007
0.005
0.005
0.004
0.004
0.004
0.004
0.003
0.003
0.003
0.003
0.003

1.000
0.781
0.483
0.250
0.101
0.053
0.033
0.022
0.016
0.013
0.009
0.008
0.006
0.005
0.005
0.003
0.003
0.003
0.003
0.003
0.002
0.002
0.002
0.002
0.002
0.002
0.002

1.000
0.730
0.414
0.201
0.076
0.039
0.023
0.016
0.011
0.009
0.005
0.005
0.004
0.004
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.000
0.000
0.000
0.000
0.000
0.000

1.000
0.682
0.361
0.165
0.060
0.029
0.017
0.012
0.008
0.006
0.004
0.004
0.002
0.002
0.002
0.002
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1.000
0.535
0.231
0.093
0.031
0.015
0.008
0.005
0.003
0.003
0.003
0.003
0.003
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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