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On the significance of ELF basins 
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1. ELF basins 

The electron localization function (ELF) has been 
defined by Becke and Edgecombe1 as a function of 
spatial coordinates which becomes large in the regions 
of space where electron pairs ‘localize’. For a clo-
sed-shell Slater determinant it is given by: 
 
 η(r) = [1 + cy(r)2]–1, (1) 
 
where 
 
 y(r) = [τ(r)–(1/8)|∇∇ρ(r)|2/ρ(r)]ρ(r)–5/3, (2) 
 
 ρ(r) = ∑i =1, N/22|ϕi(r)|2, (3) 
 
is the electron density, N is the number of electrons 
in the system, 
 
 τ(r) = ∑i =1, N/2|∇∇ϕi(r)|2, (4) 
 
is a local kinetic energy, and c is a constant which is 
set to make ELF equal to 1/2 for the uniform elec-
tron gas, but is irrelevant for the definitions of the 
basins of ELF, as these are determined by the direc-
tions of the gradients field of ELF, not their absolute 
values; the direction of ∇∇η is determined by that of 
∇∇y uniquely: 
 
 ∇∇η = –2cy(r)[1 + cy(r)2]–2∇∇y(r). (5) 
 
ELF has been found to be very useful for the inter-
pretation of the chemical bond, as it yields pictures 
for regions for electron pairs often close, sometimes 
to complement to chemical intuition (see, e.g., refs 
2, 3). In a mathematically more rigorous way, such 

regions, ELF basins,4 were defined following the 
spirit of Bader’s Atoms in Molecules (AIM). All 
points in space which lead to the a given maximum 
of ELF, by following the gradient of ELF, belong to 
the same basin. Basins provide a partition of space. 
A priori, as ELF is defined locally, the basins of 
ELF do not have a physical significance, even if 
several physical interpretations have been given to 
ELF (see, e.g., a recent discussion in ref 5). Due to 
the interest in applying ELF, it is worthwhile to try 
to understand the significance of ELF basins. 
 We will consider a different physical picture, 
namely that of regions where the probability to find 
a pair of electrons is maximal, and show that in the 
case of perfectly localized molecular orbital these 
regions are identical to the basins of ELF. 

2. Probabilities 

In contrast to the basin definition, Daudel and his 
coworkers (see, e.g., refs 6, 7) considered ‘loges’, 
domains in space which have a clear physical signi-
ficance. Following this spirit, one can define regions 
of space where the probability of finding a number 
of electrons, ν, is maximal. The probability of finding 
ν electrons in the region Ω will be written p(ν; Ω), 
and a region where it is maximal, Ωy. Numerical ex-
perience has shown that this criterion works well for 
finding regions corresponding to atomic shells,8 or 
bonds and lone pairs in molecules.9,10 
 Recently, it was possible to derive formulas to de-
termine p(ν; Ω) in an efficient way for wave func-
tions described by one or a few Slater determinants.9 
Of course, the probability can be determined also for 
more complicated wave functions, e.g., in quantum 
Monte Carlo,11 by directly computing 
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 p(ν; Ω) = 
N

ν
 
 
 

∫Ωd1d2…dν∫R3\Ωdν + 1..dN|Ψ|2 (6) 

 
where Ψ the wave function, and ∫Ω indicates that the 
integration is to be performed only over the domain 
Ω. 
 For a single Slater determinant the algorithm is 
the following. We first construct the matrix S(Ω), 
with elements, 
 
  S(Ω)ij = ∫Ωϕiϕj, (7) 
 
where ϕi are the orbitals. Let the eigenvalues of S(Ω) 
be λ1, λ2,… One gets for the probabilities: 
 
 p(0; Ω) = ∏i(1–λi), 
 
 p(1; Ω) = ∑jλj∏i(≠j)(1–λi), 
 
 p(2; Ω) = ∑j>kλjλk∏i(≠j,k)(1–λi). (8) 
 
(For programming, a recursive expression can be 
used, cf. ref 9, but we will need here only the equa-
tions above.) 
 By the definition given for Ων, one can, in general, 
expect several solutions to the optimization problem. 
For example, for a pair of electrons, one expects an 
Ων=2 for each chemical bond and for each lone pair 
in the system. Furthermore, while computing the 
p(ν; Ω) is not expensive, the algorithms we presently 
use, are still relatively time consuming. From this 
perspective, it would thus be useful to know whether 
one could use the ELF basins, which are cheaper, as 
a reasonable approximation to Ων=2, or as a starting 
guess. 

3. Perfectly localized orbitals 

As it is well known, there are unitary transforma-
tions which yield molecular orbitals which are ‘local-
ized’, in the sense that |ϕi|

2 is large only in a given 
region of space, Li. In contrast to basins, or the Ων, 
these regions are not well-defined, except in the lim-
iting case when orbitals are ‘perfectly’ localized, φi: 
φi are non-zero only for r ∈ Li. 
 Please note that as all Lk that are not localized in 
Lk are zero in Lk, the electron density in Lk is only 
given by the φk localized in it. 
 These perfectly localized orbitals never occur in a 
molecule, as this requires a sudden jump of Li on the 

border of Li, which makes φi non derivable (infinite 
kinetic energy). To see it, one has to realize that the 
density will be nonzero in the molecule, also around 
the borders of Li, and thus φi has to drop from a 
value which squared yields the density, inside Li, to 
0 outside Li. Furthermore, in contrast to p(ν; Ω) 
which can be defined for any wave function, the pic-
ture of electron pairs resulting from localized orbi-
tals, cannot. (The definition of ELF can be also 
generalized to any wave function, see, e.g., refs 3, 
5.) The perfectly localized orbitals yield neverthe-
less a useful picture, to which we are accustomed. 

4. Comparison of ELF basins with domains of 
maximal probability for perfectly localized  
orbitals 

We will now consider a closed shell Slater determi-
nant constructed from perfectly localized orbitals. In 
this case, 
 
  Sij (Lk) = δijδjk. (9) 
 
Thus, the matrix S(Lk) is diagonal, having only two 
of its diagonal elements (for the two spin-orbitals 
localized in Lk) equal to 1, while all the others are 0. 
From (8), 
 

 
1, 2,

( ; )
0, 2,kp L

ν
ν

ν
=

=  ≠
 (10) 

 
which is the best one can achieve for a probability. 
Thus, Lk is one of the Ων=2. In a next step, one can 
consider a deformation of Lk, e.g., by choosing Ω 
such that it contains most of Lk, but not all of it. In 
this case, (9) is not valid any more, and the λi will 
not all be equal to 0 or 1. (For example, one can 
consider L1 + δΩ, which changes S11 and S33 to 
S11(Ω) = 1–δ1, S33(Ω) = 0 + δ3, which yields λ1 = 1–δ1 
and λ3 = δ3.) According to (8), p(2; Ω) must now 
decrease. 
 Similarly, one can show that the ELF basin corre-
sponds to Lk. To obtain this result, consider first r 
inside Lk. As both spin-orbitals localized in Lk have 
the same spatial part, the density is simply given by 
ρ(r) = 2|φk|

2. Introducing it into (1), it yields η = 1 
inside Lk. At the border ∇∇φk becomes infinite, and 
thus η = 0. One can imagine a slight smoothing, in 
order to obtain the basin which is the region of ‘large’ 
η, Lk. 
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 Finally, one can consider, as Bader and Stephens,12 
and more recently Ponec and Chavez,13 or Ayers14 
the domains which minimize the fluctuation, or vari-
ance, 
 
 σ2(Ω) = ∑νν2p(ν; Ω) – [∑ννp(ν; Ω)]2, (11) 
 
or related quantities, such as σ2(Ω)/∑νp(ν; Ω). 
 From the values obtained for p(ν; Lk) one sees that 
choosing Ω = Lk also minimizes σ2 or σ2(Ω)/∑νp(ν; Ω). 

5. Conclusion 

Although ELF is locally defined, and the probability 
to find two electrons in a region of space Ω is not, it 
was shown that for perfectly localized orbitals, the 
domains where the probability to find two electrons 
is maximal corresponds to the basin of ELF. This 
regions are also those of minimal electron fluctuation. 
 One can now ask what happens in a realistic case. 
In some trivial cases, like He2, symmetry will also 
impose the same regions for Ων=2 as for the basins of 
ELF. Numerical calculations (cf. refs 8, 10, 13) 
show that in many situations the basins of ELF are 
close to the regions of maximal probability. 
 There are, however, cases, where one may expect 
a different result, e.g., when localized orbitals can-
not be uniquely defined for a given criterion, like in 
the Ne atom: localized orbitals or Ων=2 will yield 
domains dividing the space into a core region, and 
four other valence region reminding of sp3 orbitals, 
while ELF is symmetry adapted and gives only a 
spherical shell. Notice, however, that Ων=8 is also an 
important p(ν; Ω) (cf. ref 8) and that Ων=8 ressem-
bles to the ELF basin. Another example is that of the 
uniform electron gas.15 The probability of finding a 
pair of electrons in a sphere will be maximal for a 
finite radius, while ELF, being uniformly 1/2 in the 

whole space does not define a basin with a finite, 
non-zero, volume. (Notice that minimizing σ2(Ω)/ 
∑νp(ν; Ω) has a unique solution, the whole space.) 
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