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Laboratoire de Chimie Théorique, CNRS et Université Pierre et Marie Curie, 4, place Jussieu, F-75252 Paris, France

Received 8 October 2004; accepted 14 October 2004

Available online 27 June 2005

Abstract

ELF is a function of the 3D-coordinates which is large in the regions where orbitals localize. It is closely related to LOL and the Fermi hole

mobility function. While it has been used with considerable success for analyzing the chemical bond in molecules and crystals, it seems to

have some intrinsic limits, which are discussed.
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1. Definition of ELF

Since Becke and Edgecombe have introduced the

electron localization function (ELF) [1], several appli-

cations have demonstrated its usefulness (cf., e.g. [2,3]). It is

a function of the spatial coordinates, (x, y, z). For an

independent-particle model, ELF can be computed from the

orbitals, as its definition is:
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where the sum is over all singly occupied (spin-) orbitals

ji(r). It turns out that, in general, ELF shows only little

dependence on the method used, as long as the orbitals

properly reflect the Pauli principle (cf., e.g. Fig. 5 in Ref.

[4]). Even a simple method, such as EHT can yield

reasonable ELF plots (see, e.g. Ref. [5]), while it is not
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clear how to use ELF in a zero differential overlap method

like MNDO.

It will be shown below how the definition of ELF can be

obtained from localized orbitals. Usually localized orbitals

are obtained from canonical ones by a unitary transform-

ation. Let us try to find a quantity, which is able to detect the

regions where orbitals localize, without requiring the

knowledge of the localized orbitals. In other words, we

seek for a function, which is invariant to unitary transform-

ations, so that it can be computed from the set of orbitals, no

matter whether they are canonical or obtained by a

localization procedure. It is not that we try to avoid the

unitary transformation of orbitals: in general, it is not a

computationally demanding task. The main reason is the fact

that often the symmetry of system is not consistent with the

number of localized orbitals. For example, in B6H2K
6 there are

14 cage electrons, so that 7 localized orbitals would be

doubly occupied. It is impossible, however, to symmetrically

distribute 7 localized orbitals over the octahedral cage. There

will be (sometimes infinitely) many possibilities to localize

orbitals in such cases (see, e.g. Ref. [7]): Numerics decide

which localization is chosen. The price to pay for

avoiding this problem is that an average picture is obtained.

For example, for the Ne atom, instead of obtaining 4 valence

‘sp3-hybrids’, arbitrarily oriented in space, one obtains a

valence ‘shell’. A further detail to notice is that localized

orbitals can be determined by infinitely many unitary

transformations, so that we have some freedom in using the

term ‘localization’).
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Fig. 2. The ratio between the localized orbitals and the square root of the

density, squared (dashed curves), and their sum, equal to 1, full line, as a

function of the position.
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Fig. 1. The localized orbitals (squared), with dashed curves, and their sum,

the density (full curve), as a function of the position.
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Let the localized orbitals be fi. In the region where fi

is localized, jfij
2 is close to the density r (see Fig. 11).

This effect can be enhanced by showing jfij
2=rZ

jfi=
ffiffiffi
r

p
j2 which is close to 1 in the localization region,

and close to 0 outside it (see Fig. 2). Of course, r is

invariant to orbital transformations, as is the sum over all

jfi=
ffiffiffi
r

p
j2.2 As

P
jfi=

ffiffiffi
r

p
j2 is always equal to 1, it does not

seem to be useful, too. We can, however, try the trick

applied by Bader and co-workers to the density [6],

to extract more information: we will take derivatives.
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Þj2 is a function which has significant values

only on the border of the region where fi is localized, as

fi=
ffiffiffi
r

p
changes only little both inside and outside the

domain where fi is localized, cf. Fig. 2. Let us define

now wZ
P

jVðfi=
ffiffiffi
r

p
Þj2. This quantity is positive, is

large in the regions between those where orbitals

localize: it describes ‘walls’ between which the orbitals

localize, the electron pairs being confined to the ‘wells’

(cf. Fig. 3). Please notice that w is a function of the

position, as are the fi, and is invariant to unitary

transformations, due to the appearance of the sum. As

the first-order density matrix is given by
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explicitly showing the invariance.

We now have to come back to the case where the

localization is not unique. In such a case w will show an

‘average’ effect. For example, in the uniform electron gas,
1 All figures are schematic. They were drown for six non-interacting

particles in a one-dimensional box, by taking into account in all definitions

that only one dimension is present.
2 While in Fig. 1, where the localized orbitals are produced for non-

interacting particles in a box, the electron density shows minima which

might be used to detect the regions where the orbitals are localized, this is

not the case in molecular systems, where as a rule, the electron density

shows maxima on the nuclei alone (cf. [6]), not permitting the separation

we are following here.
the translational invariance produces an average value for w.

This depends on the density of the gas which in three

dimensions is given by:3 w/whomðrÞZ ð3=5Þð3p2Þ2=3r2=3.

Taking into account the density variations within electronic

systems, it seems that we might get a better measure

for localization by using whom as a standard, e.g. by using

w/whom (cf. Fig. 4).

ELF is obtained from w/whom via a transformation which

has the maxima where w/whom has the minima:
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Thus, ELF is small in the boundary regions of the localized

orbitals, and is large (close to 1) within the regions of

localization, cf. Fig. 5. For the uniform electron gas of any

density it is equal to 1/2, it is invariant to unitary

transformations, and is symmetry-adapted (via g(r,r 0) and

r(r)Zg(r,r)).
2. Variations on the same subject

Many other interpretations of ELF are possible. One of

them is to recognize that 1/2rw is the excess of the local,

positive definite kinetic energy, due to the Pauli principle

(and, of course, 1/2rwhom that of the uniform gas) [13]. As

in independent-particle models the higher-order reduced

density matrices can be described using g, it is possible to

give also further interpretations based on higher-order

density matrices, as the original one given by Becke and

Edgecombe [1] and others [3,14,15]. While all these

interpretations are equivalent in independent-particle sys-

tems, this is not the case for the physical, interacting,

system. There is not yet enough experience to distinguish

between the different interpretations when using
3 In one dimension, as used in the figures, it is given by: p2/3r2.
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Fig. 5. The electron localization function, as a function of the postion,

showing the regions where the orbitals localize by values close to 1.
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Fig. 3. The derivatives of the ratio between the localized orbitals and the

square root of the density, squared (dashed curves), and their sum, w, full

curve, which yields walls between the regions where orbitals localize, as a

function of the position.
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the interacting system. Two ways were mainly considered

up to now: The first one is to use the definition based on the

difference between the local kinetic energy. This definition,

making no use of the second-order density matrix is easy to

use. One might prefer, however, the second one, which is to

keep to non-interacting systems, as the Kohn-Sham system

(the non-interacting system yielding the exact density) is

accessible from experimental data, as it can be defined when

the density of the system is known.

There are functions closely related to ELF. One has been

put forward by Luken and Culberson before the advent of

ELF, and has been called the Fermi hole mobility function

[11]. They plot the difference wKwhom. Another one is

recent, proposed by Schmider and Becke [12], and consists

in dropping the term 1/8(jPrj2/r) which reflects the local

kinetic energy in the absence of the Pauli principle. It is

called LOL (localized orbital locator). In Fig. 6 these

quantities are compared for the one-dimensional system

having three particles in a box. As most of the experience

gathered up to now is with ELF, and there is no evidence yet
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Fig. 4. The ratio between the function w (cf. Fig. 3 and text) and the same

function defined in a uniform electron gas, as a function of position,

showing the regions where the orbitals localize by low values.
that there will be any significant improvement by using the

different functions, the following discussion will be based

on ELF.
3. Limits

The most evident way to analyze ELF is via its graphical

representation. We have to take into consideration that even

a three-dimensional function is not easy to visualize. In

practice, one considers 2D-cuts, or plots of iso-surfaces.

Thus, often, several plots have to be shown in order to

provide all the significant elements. In order to condense

information, one has to find the salient features. Following

again Bader [6], it is possible to try to characterize the

functions by using the stationary points [8], e.g. to find

the positions in space where ELF is maximal, and to use the

value of ELF in these points.

Although the maxima have shown to be useful in

applications (cf., e.g. [9]) it turns out that there is no

absolute scale for ELF. For example, not all maximal

values of ELF are close to 1 for the atomic shells (see,
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Fig. 6. ELF (full curve, cf. Fig. 5) and functions related to it: LOL (short-

dashed curve), and the difference between the Fermi hole mobility function

for the given system and the uniform electron gas (divided by 100 to fit into

the same graph, long-dashed curve), as a function of the position.



A. Savin / Journal of Molecular Structure: THEOCHEM 727 (2005) 127–131130
e.g. [1] or [10]). This can be understood from the

‘averaging’ effect mentioned above: only pure s-shells

show values close to 1. Shells where s and p orbitals co-

exists, yield values closer to 0.8, while those where s, p and

d orbitals are present yield values closer to 0.6 [10].

Furthermore, inner shells penetrate the valence shell and

lower the value of ELF (cf. Ref. [4], where the changes in

the values of ELF due to the use of pseudopotentials are

analyzed). In pseudopotential methods, the presence of

different orbitals in the same spatial region is being taken

care of by using non-local forms. As functions like ELF are

local, it is much more difficult to provide a proper

separation. It turns out, however, that ELF works better

than many other methods for detecting shells, as for

example the Laplacian of the density does not yield a

shell structure in some heavier atoms (cf. [6]), while ELF

does.

A related effect is the disappearance of the separation

between maxima by symmetry. An example is the HCCH

molecule, where only a ring (and not three maxima) can be

seen between the two C atoms [8]. When symmetry is

broken, the three maxima re-appear, but the maxima can be

only inconspicuous. A typical example is given by lone

pairs, which are often not well separated, reminding of

remains of atomic shells (cf. the F lone pairs [8]). A more

disturbing feature is that sometimes, when one would expect

separated maxima, just a single maximum appear. An

example is given by the N2 molecule, where just one

maximum is found between the two N atoms. This is

analogous to the merging of close peaks in spectra, and one

might expect it to be more important when the peaks are

closer (e.g. as N is smaller than C, one might expect it to

occur rather in N2 than in HCCH). In general, one should

look into the bifurcation diagram which shows for what

range of values the ELF ‘peak’ exists before merging with

another one [18]. When this range is small, one should not

attribute much significance to the maxima.

Another feature borrowed from Bader’s topological

analysis of the density, is the definition of basins[6,8] to

define regions of space. This is done by following the

gradient path which will lead to an ELF maximum, and

collect all points which lead to the same maximum, to a

‘basin’. For ELF, which describes electron pairing, one

would expect that by integrating the electron density within

a basin one gets a number close to 2 (or to a number

corresponding to the merged basins, e.g. 8 for the L-shell in

atoms). For example, for all functions shown in Fig. 6, the

basins are defined on the intervals: (0,0.35),(0.35,0.65) and

(0.65,1), yielding by integration of the density in each

interval roughly the two electrons.4 This expectation is quite

often fulfilled, but one cannot be too demanding. In addition

to reasons evident from the previous discussion about the
4 Such basins would be obtained in this case also by taking the density, or

its second derivative.
problem of the disappearance of maxima (and thus

‘merging’ of basins), there is a deep physical reason

which limits the usefulness of any division into basins:

quantum mechanically, one can define an average number

of electrons in a basin, but this will not be a sharp number in

general. To this purpose, one takes the one-body operator

which is 1 for a particle in the basin, and 0 otherwise (see,

e.g. [16–18]). Its average value gives the number of

electrons in the basin. The knowledge of the second-order

density matrix allows also the computation of its standard

deviation. The latter is in general non-negligible, and can

become even significant in the cases when the maxima are

only weakly separated [18]. While these results where

obtained with ELF, an exploratory calculation shows that

the sphere which divides the inner shell of Be from the

valence shell in the sense of minimum standard deviation of

the number of electrons in the shells is very close to the shell

separator given by ELF [19].
4. Conclusions

While ELF has been used—and certainly will continue to

be used—with much success for helping chemical under-

standing, one also must be aware of its limitations, some of

which have been discussed in the present paper. While it has

simple interpretations (a new one, in terms of localized

orbitals has been given here), it is not clear which to take

when using many-body wave functions: the different

interpretations coincide only for independent particles.

Another limitation comes from the local nature of ELF,

into which non-local features are projected. Finally, the idea

of separating the space into regions containing a pair of

electrons has a very important physical limitation: the

Heisenberg uncertainty principle. These limitations are not

necessarily a handicap for using ELF or similar functions:

while we should not give up searching for good tools for

chemical understanding, we may ask that some of the pre-

quantum mechanics positions of chemistry should be

revised.
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