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a b s t r a c t

Using finite basis sets, it is shown how to construct a local Hamiltonian, such that one of its infinitely
many degenerate eigenfunctions is the ground-state full configuration interaction (FCI) wave function
in that basis set. Formally, the local potential of this Hamiltonian is the optimized effective potential
and the exact Kohn–Sham potential at the same time, because the FCI wave function yields the exact
ground-state density and energy. It is not the aim of this paper to provide a new algorithm for obtaining
FCI wave functions. A new potential is the goal.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the Kohn–Sham model (KS) [1,2], one considers a system of
non-interacting fermions having the same ground-state density,
qðrÞ, as a given system of interacting electrons. This is made possi-
ble by a convenient choice of the potential, vKSðrÞ, in which the
non-interacting fermions move.

One can consider a model system of non-interacting fermions
such that its ground-state wave function minimizes the expecta-
tion value of the Hamiltonian of a physical system of interacting
electrons [3,4]. The potential describing this model system is the
optimized effective potential, vOEPðrÞ, and this also gives the name
to the method (OEP). The OEP method has recently been applied to
minimize energy expressions in the framework of KS. In this paper,
however, we understand OEP exclusively as a method to minimize
the expectation value of a physical Hamiltonian.

With similar arguments like in Refs. [5–7] we construct a local
potential for a finite orbital basis, such that all orbital energies are
degenerate. This allows us to choose the full configuration interac-
tion (FCI) wave function as the ground-state wave function. Thus,
we obtain simultaneously the FCI density and energy. This means
that the KS (exact density) and OEP (minimal energy) conditions
can be satisfied within the given basis set.

In this paper we point out that the FCI wave function is the
ground-state wave function of the local Hamiltonian constructed

in this article if a finite basis set is employed. We are only
interested in the potential. We do not suggest a new algorithm
to obtain the FCI wave function.

In Section 2 we describe how to construct a fully degenerate
non-local Hamiltonian. This is a non-local Hamiltonian with all
orbitals degenerate. Furthermore, we show that in a finite basis a
fully degenerate local Hamiltonian can be constructed from the
fully degenerate non-local Hamiltonian. In Section 3 we analyze
the conditions that must be satisfied to construct a fully degener-
ate local Hamiltonian. In Section 4 we give numerical examples for
a fully degenerate local Hamiltonian. Section 5 discusses the conse-
quences of a fully degenerate local Hamiltonian. We argue that the
FCI wave function is a ground-state of the local Hamiltonian. In
Section 6 we draw the conclusions.

2. Fully degenerate Hamiltonians

In this section we show, for a finite basis set, how to construct a
local Hamiltonian that yields exactly the same orbitals and orbital
energies as a given non-local Hamiltonian. The non-local Hamilto-
nian is fully degenerate, i.e. the orbitals are all degenerate.

Assume a system with N electrons and a finite basis set with M
functions. We now search for a potential which makes all orbitals
degenerate. Let us start with a local potential, vðrÞ. This can be the
nuclear potential, vnucðrÞ or this could be the KS or OEP potential,
which include the nuclear potential. We obtain /mðrÞ, the eigen-
functions of the non-interacting one-particle Hamiltonian

h0 ¼ �
1
2
r2 þ vðrÞ ð1Þ
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The eigenvalues are em. We add a non-local potential

vNL ¼
XM

m

j/miðe� emÞh/mj ð2Þ

The eigenfunctions of the Hamiltonian

hNL ¼ �
1
2
r2 þ vðrÞ þ vNL ð3Þ

remain /mðrÞ, and they are all degenerate. Hence, it is possible to
construct a Hamiltonian with a non-local potential that yields the
same orbital energy for all orbitals.

Furthermore, in a finite basis set, we can construct a local poten-
tial, vLðrÞ, such that

h/mjvLj/ni ¼ h/mjv þ vNLj/ni; 8m;n ð4Þ

Thus,

hL ¼ �
1
2
r2 þ vLðrÞ ð5Þ

produces the same (finite) Hamiltonian matrix as hNL, and has all
eigenvalues degenerate. Of course, the eigenstates of

HNL ¼
XN

i

hNLðiÞ ð6Þ

and

HL ¼
XN

i

hLðiÞ ð7Þ

are also degenerate, since they are made of all the determinants
constructed from the /m. Thus, the ground-state FCI wave function
in the space spanned by the /m is also an eigenstate of both HNL and
HL. As usual the eigenvalue of HL has no physical meaning.

3. Conditions for a fully degenerate local Hamiltonian

In the previous section we showed how to construct a fully
degenerate local Hamiltonian, i.e. a local Hamiltonian with all orbi-
tals degenerate. In this section we analyze the conditions that have
to be met to insure that such a local Hamiltonian can be
constructed.

To obtain eigenvalues that are all degenerate it is necessary to
satisfy all of Eq. (4). In practice this can done by introducing a basis
for the potential with, say K, functions.

vLðrÞ ¼ vðrÞ þ
XK

t

btgtðrÞ ð8Þ

For convenience we separated vLðrÞ in vðrÞ, the local potential of Eq.
(1), and expanded only the non-local rest in fgtðrÞg, the basis for the
potential. Inserting this equation in the conditions (4) we obtain a
set of equations

XK

t

bt

Z
/kðrÞ/lðrÞgtðrÞdr ¼ dkl e� ekð Þ ;8k 6 l ð9Þ

for which solutions can be sought for bt .
This is possible when Eq. (9) are consistent. However, linear

dependencies in the products of orbitals can produce inconsisten-
cies. Let us, thus, assume the linear dependence

/mðrÞ/nðrÞ ¼
X
k6l

kl–mn

ckl;mn/kðrÞ/lðrÞ ð10Þ

We multiply each condition kl–mn from (9) with the respective
coefficient and sum them up. We obtain

XK

t

bt

Z X
k6l

kl–mn

ckl;mn/kðrÞ/lðrÞgtðrÞdr ¼ dkl

X
k6l

kl–mn

ckl;mn e� ekð Þ ð11Þ

We have now used all conditions of Eq. (9) but the one for the pair
mn. We subtract the remaining condition to obtain

XK

t

bt

Z X
k6l

kl–mn

ckl;mn/kðrÞ/lðrÞ � /mðrÞ/nðrÞ

0
B@

1
CAgtðrÞdr

¼ dkl

X
k6l

kl–mn

ckl;mn e� ekð Þ

0
B@

1
CA� dmn e� emð Þ ð12Þ

Now we use the assumed linear dependency (cf. (10)) to obtain

0 ¼ dkl

X
k6l

kl–mn

ckl;mn e� ekð Þ

0
B@

1
CA� dmn e� emð Þ ð13Þ

If we assume for a moment, that none of the products /i/i are
involved in the linear dependency of Eq. (10), the final equation
(13) is trivially satisfied. In this case m – n and ckl;mn ¼ 0; 8k ¼ l,
and hence the right-hand side is equal to zero.

If only one product /i/i is linearly dependent we obtain
0 ¼ ei � e. This equation can be satisfied by choosing e ¼ ei. How-
ever, if more than one product /i/i is linearly dependent on the
rest of all orbital products, Eq. (13) cannot be satisfied.

In this section we found that the diagonal terms /i/i must be
linearly independent from the rest of all orbital products to guar-
antee a fully degenerate local Hamiltonian.

4. Numerical example

In this section we present numerical examples for a fully degen-
erate, finite basis, local Hamiltonian, i.e. a local Hamiltonian with
all orbitals (finite number) degenerate. We consider He together
with cc-pVDZ, cc-pVTZ and cc-pVQZ as an orbital basis, fvig, where
we removed d- and f-functions. For the potential basis, fgtg, we
choose an even tempered basis of s-type gaussian orbitals with
exponents ranging from 0.1 to 40 000. For the cc-pVDZ orbital basis
we use 5 potential basis functions, for the cc-pVTZ we use 10 po-
tential basis functions and for cc-pVQZ we use 25 potential basis
functions. We use more potential basis functions than needed to
insure that the space spanned by the orbital products is covered
by our potential basis. The singular value decomposition used in
our implementation will pick out only the necessary potential
functions.

The goal is to construct a Hamiltonian matrix, which has all
eigenvalues equal, i.e. there is an orbital basis, in which it is equal
to some e times the unit matrix. We choose e ¼ 1 for convenience.
In a first step we calculate the one-electron matrix, T, and the po-
tential matrices, Gt , in the orbital basis.

Tij ¼ vi �
1
2
r2 � 2

r

����
����vj

� �
ð14Þ

Gt;ij ¼ hvijgt jvji ð15Þ

The goal is to find a set of bt , such that

I ¼ Tþ
XK

t

bt � Gt ð16Þ

holds, where I is the unit matrix. Collecting the matrices Gt in a
super matrix G, where the Gt form the tth column and rearranging
Eq. (16) yields as a solution
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b ¼ ðI� TÞ � G�1 ð17Þ

Since the matrix G is, in general, not square but rectangular, we use
a singular value decomposition to calculate the pseudo-inverse G�1.

With the cc-pVDZ orbital basis we are able to obtain the unit
matrix with an accuracy of 10�14. For the cc-pVTZ orbital basis
the accuracy is 10�11 and for cc-pVQZ the accuracy is 10�7. Figs.
1–3 display the expanded part of the potentials (cf. Eq. (8)) that
yield the unit matrix in the given orbital basis. Strong oscillations
are found close to the nucleus, as was reported in similar calcula-
tions [5,6]. In comparison we also show a very accurate KS poten-
tial in Fig. 4 [8].

When comparing the corrections to the electron–nucleus po-
tential we notice that vL having the FCI wave function as a solution
(Figs. 1–3) is quite different from the accurate KS one (Fig. 4). Not
only the shape largely differs, but also the order of magnitude
(Please notice the change of scale between figures.) Furthermore,
no convergence towards the correct KS potential can be seen.

5. Discussion

In this paper we want to obtain the OEP and KS potential for He
in a given finite basis set. The KS potential is that potential that
yields the FCI density [2]. In this respect the FCI density must be
known to determine the KS potential. The OEP potential, on the
other hand, is that potential whose ground-state wave function
minimizes the expectation value of the physical Hamiltonian [3].

In general, vKSðrÞ and vOEPðrÞ are not identical. It is well known,
that the OEP potential of helium, for a complete basis, is the Har-
tree potential. At the same time it is clear that the KS potential
must differ, since the Hartree potential does not yield the exact
density.

Both, for the KS and the OEP models, there is no interaction be-
tween fermions and thus, in general, the ground-state of the sys-
tem can be described by a single Slater determinant. In the case
of degeneracy of two or more single Slater determinants, any linear
combination of the degenerate single Slater determinants is also a
ground-state.

-80

-60

-40

-20

0

20

40

distance in Bohr
0 1 2 3 4 5

Fig. 1. The displayed potential is the local potential minus the nuclear potential,
vLðrÞ � vnucðrÞ (for the potential basis see text). It yields the unit matrix in the cc-
pvdz orbital basis.
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Fig. 2. The displayed potential is the local potential minus the nuclear potential,
vLðrÞ � vnucðrÞ (for the potential basis see text). It yields the unit matrix in the cc-
pvtz orbital basis.
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Fig. 3. The displayed potential is the local potential minus the nuclear potential,
vLðrÞ � vnucðrÞ (for the potential basis see text). It yields the unit matrix in the cc-
pvqz orbital basis.
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Fig. 4. A very accurate KS potential for He minus the nuclear potential.
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In the previous sections we showed how to construct a fully
degenerate local Hamiltonian for a finite basis set. As a conse-
quence, each and every wave function is a ground-state of the local
Hamiltonian. The OEP procedure demands to pick that wave func-
tion that minimizes the expectation value of the physical Hamilto-
nian. Doubtless, this must be the FCI wave function.

There is no wave function that yields a lower energy than the
FCI wave function. Consequently, the potential constructed in the
previous sections is the OEP potential in the given finite basis set.
At the same time this potential yields the FCI density. Conse-
quently, the potential is also the KS potential.

The potential that we constructed is not unique. It will differ if a
different potential basis gtðrÞ will be used. The choice of e, the en-
ergy at which all orbitals are degenerate, will also influence the po-
tential. Finally, the exact density can also be obtained from the
local potential of a Schrödinger-like equation for

ffiffiffiffiffiffiffiffiffi
qðrÞ

p
[10].

To obtain the OEP or KS wave function it does not suffice to
solve Eq. (17) and diagonalize the corresponding local Hamilto-
nian. More effort is needed. The FCI wave function must be con-
structed in the usual way [11,12].

6. Conclusion

In the optimized effective potential (OEP) and the Kohn–Sham
(KS) models one usually tries to avoid degeneracies. In this paper,
however, we focus on the consequences of degeneracies. In an ap-
proach similar to the ones taken in Refs. [5,6] we construct a fully
degenerate local Hamiltonian. This means that all orbitals have the
same energy.

The independent particle Hamiltonian constructed with vLðrÞ
(cf. Eq. (5)) simultaneously yields the ground-state density for this
basis set (the FCI density) and the lowest possible expectation va-
lue of the physical, interacting Hamiltonian (the FCI energy). Thus,
the model Hamiltonian corresponds to both the KS and OEP solu-
tions. Consequently, we have constructed a KS and OEP potential
at the same time. We did not construct the FCI wave function,
which may be obtained from standard procedures [11,12].

We believe that the conditions outlined in Section 3 can not be
satisfied with very large basis sets. In Section 4 we see already for
the cc-pVQZ basis a deviation of 10�7. We conjecture, that Eq. (9)
cannot be satisfied, when the size of the basis set increases, due

to the over-completeness of the orbital products basis. This has
also been noticed when attempting to construct the density matrix
from the density [7,9].
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