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Four density funct ionals -  including that recently introduced by Perdew 
((1986) Phys Rev B33: 8822)--are tested for first-row atoms, hydrides and 
dimers. Calculated contributions of  the correlation energy to the ionization 
potentials and electron affinities of atoms and to the dissociation energies of  
molecules are compared with "empirical"  values which were reevaluated for 
this purpose. An improvement  over Har t ree-Fock is found in all cases if the 
self-interaction or the gradient correction are included in the density func- 
tional, although there is a rather large variation in the accuracy of the 
predictions. 
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1. Methods 

It is well known [1] that the Har t ree-Fock (HF) method is quite reliable in 
predicting some molecular properties such as geometries. There are, however, 
other properties such as dissociation energies, which need a more refined treat- 
ment. This is usually done by using a configuration expansion of the wavefunction. 
Its slow convergence unfortunately reduces the domain of applicability of  such 
methods. 

An alternative has been pointed out by Hohenberg and Kohn [2]. They have 
shown that the ground state energy of a system can be obtained by minimizing 
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a density functional, E[n] :  

E[n] = F[n]+ f d3rn(r) �9 v(r) (la) 

E[no] -- E[n]. ( lb)  

Here no is the exact ground state density of the system, characterized by the 
external potential v. The functional F[n] does not depend on v and is, in this 
sense, universal. 

One can define a HF energy functional in the same way [3]: 

EHF[n] = FHF[n] + ~ d3r n(r). v(r) (2a) 

EHF[nHF ] G EHF[n]  (2b)  

(nnF is the HF density). From (la) and (2a) one can define a universal correlation 
energy functional: 

Eo[n] = E[n]- EHF[n]. (3a) 

From (lb) and (2b) one obtains that: 

Edno] -< E ~ -  < Ec[r/HF] (3b) 

Eo is the correlation energy in the usual definition [4] 

E~ = E[n0] - EHF[ nHv]. (4) 

(It can be shown [5] that one also can define a universal density functional 
yielding Eq. 4). 

In most cases one uses spin-density functionals Ec[nt, n+], where n~ and n+ are 
the spin-up and spin-down densities, instead of the density functionals Eo[n]. 
This generalization was introduced in order to deal with spin-dependent external 
potentials [3]. For spin-independent external potentials one can argue [6] that 
a spin direction can be stabilized by an infinitesimal external magnetic field 
without practically changing the value of the correlation energy. 

The use of density functional presents, in spite of its simplicity, a serious 
drawback: the explicit form of the density functional is not known. In practice, 
one has to assume a given functional form of Ec[n~, n+] and then to determine 
parameters of Eo[n~, n+] from systems were both the density and the correlation 
energy are known. 

The most frequently used choice for Eo[n~, n+] is the local approximation: 

Ec[nt, n~] = f d3rn(r)e(n~(r), n~(r)) (5) 

where the function e depends on the position vector r via n~ and n+. It is common 
to use calculations for the homogeneous electron gas with densities n, and n+ to 
determine e. In this case, nr and n+ being spatially constant, e is the correlation 
energy per electron. Nowadays good electron gas calculations are available [7] 
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and they were used by Vosko, Wilk and Nusair [8] to fit an analytic expression 
in nr and n+. The results obtained from Eq. 5 with this parametrization of e will 
be denoted by VWN. 

Already Hohenberg and Kohn have shown [2] that (5) can be improved by 
making a gradient expansion. One writes: 

Ec[n~ ,n~]=fd3rn .e+fd3rB(n~ ,n~) lVn[2+ ' ' ' .  (6) 

It is more difficult to determine the function B(n~, n+) than e(n~, ns). Early 
attempts [9] were disappointing. Recently Perdew [10] has proposed to use the 
following form: 

B(n, ,  ns) = BRd(n) exp (-b(n)f[Vn[n-7/6)d-l(m).  (7) 

Here BRG is the electron gas expression for the coefficient of the gradient 
expansion, which has been determined by Rasolt and Geldart [11] for the 
paramagnetic case (n, = n+ = n/2): 

B R o ( n ) = n  4/3C(n) 
2 3 C ( n ) = r "~ (C2~" C3rs + c4r2)/( 1 + csrs + C6r s + C7r s) (8) 

with rs=(3/4rrn) 1/3, c1=1.667"10 3, c2=2.568.10  3, c3=2.3266.10-2,  c4 = 
7.389 �9 10 -6, C 5 = 8.723, c6 = 0.472, c7 = 7.389 �9 10 -2 (atomic units). 

The exponential factor in (7) is due to the introduction of a cut-off for small 
k-vectors (k <f lVnl /n)  in a wave-vector decomposition of C(n), Eq. (8). Such 
a cut-off procedure was first suggested by Langreth and co-workers [12, 13], in 
order to approximately account for higher order contributions in the gradient 
expansion. The function b(n) in the exponent is given by 

b(n) = (9"rt ') l /6C(n --> o o ) / C ( n )  ( 9 )  

and the cut-off parameter f has been fitted by Perdew to reproduce the "exact" 
value of the correlation energy of the Ne atom ( f=0 .11) .  

The factor d l(m) accounts for the spin-dependency of the gradient term: 

d(m) = 2'/3{[(1 + m)/2] 5/3 + [(1 - m)/215/3} ~/2 (10) 

m = ( n ~ - n O / n  

This form of d(m) was suggested by Hu and Langreth [13] from considering the 
scaling properties of the dielectric function of the uniform electron gas in the 
small k-case. 

Improving on this approximation for d(m) seems to be possible, using the results 
of Rasolt [14] for the gradient expansion of the spin-polarized electron gas in 
the high density limit. We have tested the effect of such an improvement. It 
appears to be minor, even smaller than suggested in Ref. [13]. The maximum 
deviation is 5 per cent for m = 0.8. This deviation leads to a change into the right 
direction for atomic correlation energies, but the change is not large enough (up 
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to 5 mhar t rees) to  deserve further investigation. In the following, we thus only 
consider the results using approximation (10). Our notation for the gradient 
corrected density functional suggested by Perdew (Eqs. 6-10) will be GCP. 

Previously to Perdew, Langreth and co-workers [12, 13] have used a simplified 
form of (7) which corresponds to replacing C(n) by its value in the random-phase 
approximation (RPA), C RPA~ C(oe) in Eq. (8): 

B(n~, n+) = (41472. 7"g5)-l/3n -4/3 exp (-bflVnln-V/6)d-l(m). (11) 

For the local term (the first one on the right-hand side of (6)) they also suggested 
a RPA parametrization of e [15]. Moreover, they introduced a cut-off into the 
wave-vector decomposition of the local term which is meant to be relevant for 
finite systems only; this leads to an additional term of the form: 

f d3r IVnrn-4/3{[(l+m)/212/3+[(1-m)/212/3}. (12) (512~rS/9)-l/3f 2 

We will denote the results obtained with the method of Langreth et al. (Eqs. 6, 
11, 12; f = 0 . 1 7 )  by GCL. 

Another type of correction to the local approximation (5) which can be applied 
to atoms and molecules is known as the self-interaction correction. There are 
different variants. We use here that of Stoll, Pavlidou and Preuss (SPP) [16, 17]: 

Ec[n,., n~.] = f d3r [ne(n,r, n~) - n~e(n~, O) - n~e(O, n~)]. (13) 

Within SPP one electron systems have vanishing correlation energy (in contrast 
to VWN, GCL or GCP). 

We now give some details concerning the practical implementation of the methods 
mentioned above. Our procedure adopted for the calculation of the correlation 
energy is the following: We first perform a restricted HF calculation, from which 
we obtain the densities n,(r) and n+(r). Next we perform the integrations numeri- 
cally. 

The choice of HF densities used for the computation of Ec[n] is not critical. One 
could obtain a better approximation to no by applying the variational procedure 
to E[n] = EHF-{-Ec[n] .  This has been previously done for VWN and SPP [18-23] 
and the result was that the use of this optimized density instead of the HF one 
practically did not change the results. This can be explained in the following way: 

a) the effect of the correlation potential (obtained from the variation of Ec[n]) 
is small compared to that of the Fock potential, so that the density change is 
relatively small; 

b) the conservation of the number of particles implies that ~ d3r �9 n(r) = N for 
any n. As the integrand in the density functional is not much different from n 
(between n In(n) and n 4/3) o n e  can expect a cancellation through integration. 

For a few systems it is possible to test Eq. (3b), i.e. to compare Eo[n0] and 
E~[nHF]. We have done such a test and found that the two values confining Ec 
(for the exact density functional) are so close that for practical reasons it is 
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Table 1. Density dependence of Ec[n]. The upper value is obtained with 
the correlated density of Benesch [24], the lower one within a near-HF 
density (mhartrees, reversed sign) 

System VWN SPP GCP EXP 

H- 72.0 37.2 38.1 40 
73.6 38.1 39.8 

He 112.8 58.5 44.3 42 
112.9 58.5 44.5 

Li + 135.2 70.1 46.6 44 
135.3 70.1 46.7 

Ne 8+ 203.0 104.5 84.7 47 
203.0 104.4 84.5 

411 

sufficient to use Ec[nHF]. The values in Table 1 support this statement. There we 
show the values of Eo[no], calculated for VWN, SPP and GCP, with no given by 
Benesch [24]. The difference between Ec[nnF] and Eo[no] is at least one order 
of magnitude smaller than the errors introduced by the approximate form of the 
density functional. (As we are not interested in highly ionized systems we do not 
regard the values for Ne s+ as especially critical; there are, however, other errors 
which will be discussed below.) 

For molecules one should use the HF and the exact densities at the respective 
equilibrium distances, for the determination of E~. As the HF method is quite 
successful in generating molecular geometries and the density functionals are 
quite insensitive to the small changes in the geometry (as for small changes in 
the densities [21, 22]) we make only a single HF calculation at the experimental 
geometry [25] for generating the density. 

Our previous experience [21, 22] has shown that only moderate basis sets are 
needed to produce reliable values for Ec[n~, n+]. This can be viewed as an 
important advantage of the density functional method. However, in order to 
avoid a supplementary source of uncertainty, we used large contracted Gaussian 
basis sets [26]: (8s2p)/[5s2p] for H, (13s4p)/[7s4p] for Li and Be and 
(13s8p2d)/[7s4p2d] for B to F. For negative ions these basis sets were augmented 
by adding an even-tempered s or p function (for H and Li, viz. B to F). We did 
not use polarization functions in the ethane calculation. 

2. Results 

We present the correlation energies obtained with VWN, SPP, GCL [27] and 
GCP in Table 2. The "empirical" correlation energies have been obtained in the 
following way: 

a) atoms and ions: we subtract the following quantities from the (negative) sum 
of the experimental~ ionization energies [28, 29]: 
- -  Dirac-Fock energy 
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Table 2. Total correlation energies (in mhartrees, with reversed sign) 

System N VWN SPP GCL GCP EXP 

H 1 22 0 6 2 0 

He + 1 29 0 6 2 0 

H-  2 74 38 50 39 40 

He 2 112 59 46 45 42 

Li + 2 135 70 30 47 44 

Li 3 151 72 51 54 45 

Be + 3 174 81 34 57 47 

Li-  4 183 95 86 81 73 

Be 4 225 116 88 95 94 

B + 4 253 131 78 103 111 

B 5 290 147 117 128 125 

C + 5 321 162 105 137 139 

B 6 315 154 152 149 145 
C 6 359 176 150 165 156 

N + 6 391 191 138 175 167 

C-  7 387 184 192 190 183 

N 7 430 204 187 206 189 

O + 7 463 219 174 217 195 

N -  8 487 243 248 249 265 

O 8 535 267 247 268 258 

F + 8 572 285 236 282 260 

O-  9 591 303 312 310 331 

F 9 641 328 311 331 323 

Ne + 9 680 348 300 346 321 

F-  10 696 360 378 373 400 

Ne 10 746 386 378 395 387 

H 2 2 95 49 55 47 41 

LiH 4 219 113 98 93 83 

BeH 5 266 130 114 113 93 
BH 6 350 181 165 163 153 

CH 7 423 215 207 208 199 

NH 8 499 249 251 255 243 

OH 9 602 309 317 320 316 

FH 10 704 364 381 380 387 

Li 2 6 330 171 139 134 122 
Bee 8 454 235 196 199 205 

B 2 10 592 300 285 285 330 

C 2 12 769 398 405 399 514 
Nz 14 945 489 511 506 546 

02 16 1110 570 594 599 657 

F 2 18 1302 674 684 697 746 

CH 4 10 593 307 372 328 293 
NH3 10 627 325 382 350 338 
HzO 10 664 344 383 365 367 

C2H 2 14 882 457 510 475 476 
C2H 6 18 1088 564 693 613 553 
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- -  Breit correction 
- -  vacuum polarization 
- -  self-energy. 
These values have been calculated with programs of  Grant and co-workers [30, 31 ] 
(cf. Table 3). 

b) molecules: we add the differences between the HF [32] and experimental [25] 
dissociation (atomization) energies to the correlation energies of  the constituent 
atoms (cf. Table 4). As we consider only molecules consisting of  first-row atoms, 
we do not expect that the differences considered in b) are altered by relativistic 
effects by more than ~ 1 0  -3 atomic units. 

Of  course, there are uncertainties in both the experimental and the HF-limit 
energy values, used[ in the calculation of  the correlation energy. We believe them 
to be at most  -0 .005  atomic units. The latter value appears as experimental 
uncertainty for the ionization energy of  Ne [28] or in the estimation of  the 
HF-limit o f  CH4 and NH3 [32]. 

It is worth mentioning that sometimes the correlation energy is defined in a 

Table 3. Values used in the calculation of the 'empirical' energies of atoms and ions, in atomic units: 
Dirac-Fock energy (DF), Breit correction (B), vacuum polarization (VP), self-energy (SE), sum of 
experimental ionization energies (EXP) [28, 29] 

System DF B VP SE EXP 

He -2.8618 0.0001 -0.0000 0.0000 -2.9038 

Li -7.4335 0.0003 -0.0000 0.0001 -7.4786 

Be -14.5759 0.0007 -0.0000 0.0003 -14.6693 

B -24.5366 0.0015 -0.0000 0.0007 -24.6593 

C -37.7051 0.0027 -0.0001 0.0015 -37.8574 

N -54.4325 0.0047 -0.0001 0.0026 -54.6140 

O -74.8657 0.0069 -0.0002 0.0044 -75.1126 

F -99.5023 0.0099 -0.0004 0.0068 -99.8092 
Ne -128.6919 0.0154 -0.0006 0.0100 -129.0543 

Li + -7.2372 0.0003 -0.0000 0.0001 -7.2804 

Be + -14.2802 0.0007 -0.0000 0.0003 -14.3266 

B + -24.2452 0.0015 -0.0000 0.0007 -24.3544 

C + -37.3090 0.0029 -0.0001 0.0015 -37.4436 

N + -53.9203 0.0044 -0.0001 0.0027 -54.0799 

O + -74.4287 0.0073 -0.0002 0.0044 -74.6121 

F + -98.9254 0.0101 -0.0004 0.0068 -99.1689 

Ne + -127.9647 0.0140 -0.0006 0.0101 -128.2617 
Ne 8+ -93.9828 0.0121 -0.0006 0.0101 -94.0083 

H-  -0.4879 0.0000 -0.0000 0.0000 -0.5277 

Li-  -7.4290 0.0003 -0.0000 0.0001 -7.5014 

B- -24.5267 0.0015 -0.0000 0.0007 -24.6696 

C-  -37.7251 0.0027 -0.0001 0.0014 -37.9041 

N-  -54.3538 0.0044 -0.0001 0.0026 -54.6114 

O-  -74.8456 0.0067 -0.0002 0.0041 75.1663 
F-  -99.5513 0.0107 -0.0004 0.0068 -99.9347 
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Table 4. Values of Hartree-Fock (HF) [32] and experi- 
mental (EXP) dissociation [25,39] and atomization [32] 
energies, in atomic units 

Molecule HF EXP 

H 2 0.1336 0.1747 
LiH 0.0551 0.0925 
Bell 0.0806 0.0795 
BH 0.1029 0.1311 
CH 0.0915 0.1339 
NH 0.0780 0.1325 
OH 0.1124 0.1700 
FH 0.1617 0.2252 

Li 2 0.008 0.039 
Be 2 -0.012 0.004 
B2 0.033 0.113 
C 2 0.031 0.232 
N 2 0.195 0.364 
02 0.051 0.192 
F 2 -0.039 0.061 

C H  4 0.531 0.668 
NH 3 0.324 0.473 
H20 0.261 0.370 

C2H2 0.481 0.644 
C2H 6 0.893 1.133 

different way. For  example,  Pople and Binkley [33] use the spin-unrestricted H F  
(instead o f  the restricted HF)  value to that scope. With this definition the absolute 
values may  decrease (e.g., by -0 .005  atomic units for C to F). A small difference 
can also appear  when defining the radial part  o f  the np-orbitals.  In the numerical  
D i r ac -Fock  calculations above there is a difference only between np+ and np_ 
orbitals. For  the light elements considered this means that all np-orbitals  have 
practically the same radial part. An energy lowering can be p roduced  by relaxing 
this condi t ion allowing different np-funct ions  for single or double  occupat ion  
( -0 .002  atomic units for O, F and their isoelectronic ions). 

Let us now discuss the values presented in Table 2. The most  striking feature is 
the (roughly linear) increase o f  - E o  with the number  o f  electrons. This trend is 
c o m m o n  to both  the experimental  and calculated values. 

There are, o f  course, differences in the correlat ion energies o f  isoelectronic 
systems. Let us first discuss them qualitatively. 

a) The separat ion of  the positive charges in the system causes a decrease of  
density and thus reduces electron correlat ion (see, e.g. Ne to CH4). This experi- 
mental  t rend is reproduced  by V W N  and SPP, not  by GCL.  This is not  a failure 
o f  the gradient  approximat ion,  as G C P  reproduces  experimental  values even 
slightly better than SPP. 
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b) The change of the nuclear charge of the atom, at constant electron number, 
is related to, but less pronounced than a) Positive ions (Li § to F § show larger 
absolute values of the correlation energies than the neutral atoms - a trend which 
is reproduced by VWN, SPP and GCP. Negative ions are more subtle: experi- 
mental values do not show a systematic trend; from He to N the negative ion 
has a smaller correlation energy than the corresponding isoelectronic neutral 
atom. For O to Ne the opposite is true. While VWN, SPP and GCP predict a 
more strongly correlated neutral atom, the contrary is generally observed with 
GCL. 

Even in those case, s where the density functional correlation energies exhibit the 
correct trend with Z, the slope of the curves Eo(Z) is often inaccurate, e.g. for 
the two-electron systems it is too large, while the opposite is true for four-electron 
systems [10, 34]. 

c) The error for the two-electron systems mentioned in b) leads to errors in the 
core correlation energies for atoms and molecules. Thus molecular correlation 
energies may be too large compared to isoelectronic atoms within the density 
functional approximation (see, e.g. Li2 and C). This error does not appear when 
considering only valence energies as in pseudopotential calculations. 

d) Finally there is a very important effect, namely the structure of the excitation 
spectrum of  the molecule. The role of low-lying states can be easily dealt with 
in CI-type methods, but is difficult to include in density functionals. We believe 
that this effect is responsible for the incorrect Z-dependence and the errors in 
the dissociation energies of C2, N2, etc. This effect is of opposite sign to that of 
c). 

Let us now look at differential effects: contributions of the correlation energy to 
ionization energies (AIE), electron affinities (AEA) and dissociation energies 
(ADe). They are shown in Figs. 1-4. A first glance at these figures shows that the 
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Figure 1. Contribution of the correlation energy to the ionization potential (AIE), full line: VWN; 
dotted line: SPP; long-dashed line: GCL; short-dashed line: GCP; circles: "empirical" 
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Fig. 2. Contribution of the correlation energy to the electron affinity (AEA), full line: VWN; dotted 
line: SPP; long-dashed line: GCL; short-dashed line: GCP; circles: "empirical" 

contributions to the correlation energies are not overestimated by more than 
100% (at least for GCP and SPP, with the exception of  ADe of  Bel l ) .  Thus 
inclusion of  the correlation energy by these density functionals ensures an 
improvement over HF. 

We notice that both experimentally and with density functionals AIE and AEA 
show higher values for a change in orbital occupancy from one to two (Z = 2, 
4, 8-10 for AIE; Z = 1, 7-9  for AEA; Li has a special behaviour due to the linear 
Z-dependence)  than from zero to one (Z = 1, 3, 5-7 for AIE; Z = 5, 6 for AEA). 
The magnitude of  this effect is underestimated by the density functionals in most 
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H 2 LiH BeH BH CH NH OH FH 

Fig. 3. Contribution of the correlation energy to the dissociation energy of hydrides (ADe), full line: 
VWN; dotted line: SPP; long-dashed line: GCL; short-dashed line: GCP; circles: "empirical" 
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Fig. 4. Contribution of the correlation energy to the dissociation energy of dimers (AD,), full line: 
VWN; dotted line: SPP; long-dashed line: GCL; short-dashed line: GCP; crosses: GCP corrected with 
correlation energies from configurations required for proper dissociation [38]; circles: "empirical" 

cases. Deviations from experiment of up to 0.03 hartree arise for the changes: 
l s ~  ls 2, 2 s~2s  2, 2p3~ 2p 4 (cf., e.g., AEA of C and N). 

It is difficult to favour one of the methods for computing AIE and AEA. Some 
examples: SPP gives the best value for AIE (B to N) but decreases with increasing 
Z. GCL is best for AEA (N to F) but gives errors of 0.03 hartrees for AIE (B to 
N). GCP is good for AEA (H to C) but still produces errors of 40% for AEA 
(N to F). We may recall that it is quite difficult to obtain accurate AEA values: 
a C1 calculation with a ( lOs9p8dSf6g4h2i)  Slater type orbital basis and single 
and double excitations does not recover more than - 7 5 %  of AEA for B to F [35]. 

We now discuss the molecules. For the first row molecules VWN, SPP, and GCP 
give values which are not far apart. For the hydrides of N to F only the gradient 
corrected functionals produce ADe which do not decrease from NH to HF. The 
values obtained are still too low and are comparable in accuracy with CI results 
with (8s4pld/4s lp)  basis (for N to F /H)  [36]. The density functional methods 
are in error for Bell. Its experimentally negative AD e might be due to an exclusion 
effect [37]. 

The most disappointing results seem to be connected with the ADe values for the 
dimers (Fig. 4). The worst case is C2, where the density functionals fail by more 
than 0.1 atomic units. The maximum is experimentally at C2 and not at N2, as 
calculated by the density functional approximations. We believe that this error 
can be traced back to the one-determinant restriction. In order to support this 
assertion we look at the values given by Lie and Clementi [26, 38]. They have 
used a density functional adjusted to reproduce atomic correlation energies 
(He, Ne). Since there are valence state configurations which contribute to the 
molecular correlation energy but not to that of  the atoms, they proposed to add 



418 A. Savin et al. 

this supp lementa ry  term to the value ob ta ined  with their densi ty funct ional .  I f  

we mimic  their  procedure  and  correct in the same m a n n e r  the G C P  values, we 

obta in  a significant improvement .  The m a x i m u m  is located a t  C2 and  not  at N2 

any  more. The error for C2 is 0.01 hartrees, for N2 even less. The values for the 

cases were a good agreement  was found  are of course worsened,  bu t  the error is 

still lower than  0.02 hartrees. 

3. Conclusions 

We have presented correlat ion energies for first-row atoms and  molecules ob ta ined  

with different density func t iona l  approximat ions ,  inc lud ing  the recently presented 

gradient  corrected vers ion of  Perdew. We canno t  give a clear preference to one 
of the approx imat ions  considered.  The gradient  corrected ones are sometimes 

superior,  bu t  the error can be still too large for chemical  applicat ions.  It seems 

that  at present  density funct ionals  are not  able to substi tute the role of multi-  
de te rminanta l  wave-funct ions.  On the other hand  it seems feasible to substant ia l ly  

reduce the error of densi ty  funct ionals  by using only a few configurations.  The 

de te rmina t ion  of a procedure  which avoids double  count ing  of the correlat ion 

energy and  which is systematical ly improvable ,  is still an  open  quest ion,  however.  
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