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Relationship of Kohn–Sham eigenvalues to excitation energies
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Abstract

In Kohn–Sham density functional theory, only the highest occupied eigenvalue has a rigorous physical meaning, viz., it
is the negative of the lowest ionization energy. Here, we demonstrate that for finite systems, the unoccupied true

Ž .Kohn–Sham eigenvalues as opposed to the those obtained from the commonly used approximate density functionals are
also meaningful in that good approximations to excitation energies can be obtained from them. We argue that the
explanation for this observed behavior is that, at large distances, the Kohn–Sham orbitals and the quasiparticle amplitudes
satisfy the same equation to order 1rr 4. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

In the Kohn–Sham density functional method
w x1,2 , the true interacting-electron system is replaced
by a system of non-interacting electrons in an effec-
tive potential Õ , defined by the requirement thateff

the density of the non-interacting electrons equals
the true density. The single particle orbitals and their
eigenenergies were originally introduced as a mathe-
matical artifact in order to achieve a good approxi-
mation to the kinetic energy, leaving only a rela-
tively small term, the exchange-correlation energy
E , to be approximated in practical implementationsxc

w xof the theory. It was later shown 3–5 that the
energy of the highest occupied orbital is in fact the

Žnegative of the ionization energy provided the po-
.tential is defined such that it vanishes at infinity .

ŽHowever, most approximate functionals such as the
w x.commonly used local density approximation 2 yield

poor approximations to it. The energies of the other
occupied orbitals and of the unoccupied orbitals do
not have a rigorous correspondence to excitation

energies. Nevertheless, it is common practice to
compare eigenvalue differences to optical spectra of
molecules and solids. Since these comparisons are
made using Kohn–Sham eigenvalues obtained from
approximate exchange-correlation functionals, it is
not clear how much of the discrepancy between
theory and experiment would persist if the true
Kohn–Sham eigenvalues were used. In this Letter
we show that there is a surprising degree of agree-
ment between the exact ground-state Kohn–Sham
eigenvalue differences and excitation energies, for
excitations from the highest occupied orbital to the
unoccupied orbitals.

2. Method

The first step in the calculation is the evaluation
of accurate densities. In the case of the 2-electron

w xsystems they were obtained 6 by numerically inte-
Ž w xgrating wavefunctions the wavefunction used 6 is

w x.a minor modification of that in Ref. 7 which yield
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energies that are correct to 14 significant digits for
w xHe. In the case of Be, the density was obtained 8,9

by a combination of variational and diffusion Monte
Carlo techniques, using a wavefunction that recovers
99.2% of the correlation energy in variational Monte
Carlo and 99.9% of the correlation energy in diffu-

w xsion Monte Carlo. Efficient implementations 10,11
of the variational and diffusion Monte Carlo methods
are employed to rapidly sample the many-dimen-
sional space of the wavefunctions.

The true Kohn–Sham potential is then obtained
from the density. For the two-electron systems, it is
obtained directly from the single-particle Kohn–
Sham equation for the sole occupied orbital. For
systems with more electrons, the potential is ex-
panded in a set of functions and the expansion
parameters varied such that the potential yields the

w xtrue density 8,9,12 . All the Kohn–Sham eigenval-
ues can then be obtained by solving the Kohn–Sham
equation.

3. Results

In Tables 1 and 2, we show the excitation ener-
gies of He and Be, respectively, obtained from dif-
ferences of Kohn–Sham eigenvalues and compare
them to the corresponding experimental energies.
Note that a change of the Kohn–Sham potential by a
constant will not affect the calculated excitation en-
ergies, as these are obtained as differences of eigen-

Table 1
Excitation energies of He in hartree atomic units

Transition Final state Experiment Drake DeKS

31s™2s 2 S 0.72833 0.72850 0.7460
12 S 0.75759 0.75775
31s™2p 1 P 0.77039 0.77056 0.7772
11 P 0.77972 0.77988
31s™3s 3 S 0.83486 0.83504 0.8392
13 S 0.84228 0.84245
31s™3p 2 P 0.84547 0.84564 0.8476
12 P 0.84841 0.84858
31s™3d 1 D 0.84792 0.84809 0.8481
11 D 0.84793 0.84809
31s™4s 4 S 0.86704 0.86721 0.8688
14 S 0.86997 0.87014

w xThe theoretical energies of Drake and coworkers 14,15 and
the eigenvalue differences are for infinite nuclear mass and ne-

w xglect relativity. The experimental energies are from Ref. 17 .

Table 2
Excitation energies of Be in hartree atomic units

Transition Final state Experiment DeKS

32s™2p 1 P 0.100153 0.1327
11 P 0.193941
32s™3s 2 S 0.237304 0.2444
12 S 0.249127
32s™3p 2 P 0.267877 0.2694
12 P 0.274233
32s™3d 1 D 0.282744 0.2833
11 D 0.293556
32s™4s 3 S 0.293921 0.2959
13 S 0.297279
32s™4p 3 P 0.300487 0.3046
13 P 0.306314
32s™4d 2 D 0.309577 0.3098
12 D 0.313390
32s™5s 4 S 0.314429 0.3153
14 S 0.315855

The eigenvalue differences are for infinite nuclear mass and
w xneglect relativity. The experimental energies are from Ref. 17 .

values. Of course, the single-electron Kohn–Sham
energies do not distinguish between the energies
within a multiplet. The energies obtained from the
eigenvalue differences, lie between the experimental
singlet and triplet excitation energies with the excep-

Ž .tion of only the 1s ™ 3d 1D excitation for He
Ž q w x.similar results have been obtained for Li . 13 .
The calculated energies are for an infinite mass
nucleus and do not include relativity, whereas the
experimental numbers are, of course, for finite mass
nuclei and are relativistic. In the case of the two-
electron systems it is possible to calculate exceed-
ingly accurate infinite nuclear mass non-relativistic

w xtotal energies 14,15 . The excitation energies ob-
tained from these calculations are also shown for He

Žin Table 1. We observe that now even the 1s ™
.3d 1D excitation energy of He obtained from the

eigenvalue differences agrees with the true calcu-
lated excitation energy to the number of digits shown.
To the best of our knowledge, this remarkable agree-
ment between the Kohn–Sham eigenvalue differ-
ences and the excitation energies has not been no-
ticed before, for any real system, though it has been

w xnoticed for a model semiconductor 16 .
It should be emphasised that the agreement exists

only for accurate Kohn–Sham eigenvalues. Those
obtained from popular approximate density function-

Ž .als, such as the local density approximation LDA
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and various generalized gradient approximations
Ž .GGAs are nowhere close to being sufficiently ac-
curate. In fact, it is not even possible to make such a
comparison with LDA or GGA orbitals because for
neutral atoms the LDA or GGA potentials bind few,
if any, unoccupied orbitals. This, of course, is due to
the fact that the exchange-correlation potential of
these approximate functionals decays considerably
faster than y1rr.

4. Discussion

It should come as no surprise that the higher
excitations are accurately given by the eigenvalue
differences since that follows from the following two
well-known facts. First, the highest occupied eigen-
value is exact, i.e. it is minus the ionization energy
w x3–5 . Second, the higher unoccupied eigenvalues
approach a Rydberg series since the exchange-corre-
lation potential approaches y1rr at large distances.
Hence, it is to be expected that the higher excitations
will be progressively better approximated by the
eigenvalue differences. However, this argument does
not explain the agreement observed for the lower
lying states. Second, the agreement for the higher
lying states is better than can be explained by the
above argument since the manner in which the
eigenvalues approach the Rydberg limit is also in
agreement with the excitation energies. The devia-
tion of the eigenvalues from a Rydberg series is
given by the quantum defect:

y1
d sny , 1Ž .n ( 2en

where e is the nth eigenvalue. Remarkably, it isn
w xfound 18 that the quantum defects of Ne, calculated

from the eigenvalues, agree rather well with the
experimental quantum defects. Clearly some further
explanation is needed.

We now argue that the explanation lies in the fact
that the Kohn–Sham orbitals and quasiparticle am-

Ž .plitudes defined below satisfy the same equation,
Ž . Ž 4.not only up to order 1rr but up to order 1rr

inclusive. Of course the differences of the quasiparti-
cle energies yield the true excitation energies. Con-
sider an N-electron system in its i th state C N,i

obtained by exciting an electron from the highest
occupied level of the ground state C N. If we keep0

st Ž .the 1 electron fixed, we have an Ny1 -electron
function which we can expand in any complete basis
set, with the expansion coefficients f being func-
tions of the position of the 1st electron. Choosing the
complete set to be the eigenstates of the Ny1
electron system, we have

`

N Ny1C r ,r , . . . , r s f r CŽ . Ž .Ýi 1 2 N i j 1 j
js0

= r , . . . , r . 2Ž . Ž .2 N

The expression on the right hand side must be
antisymmetric because the left hand side is. We will
refer to the f as quasiparticle amplitudes but wei j

note that they are not the usual Dyson quasiparticle
amplitudes.

At large distances, the quasiparticle amplitudes
f obey the equationi0

=
2 ZyNq1 Q a 1Ž .

y y q y qOO fi03 4 5ž /ž /2 r r 2 r r

s E N yE Ny1 f , 3Ž .Ž .i 0 i0

where Q and a are the quadrupole moment and the
dipole polarizability of the ground state C Ny1 of the0
Ž .Ny1 -electron system. Further it can be shown
that

f ; f rr 2 for j/0 . 4Ž .i j i0

Ž . Ž .Eqs. 3 and 4 are generalizations of equations
w xobtained by Almbladh and von Barth 19 for the

Ž .ground is0 state of the N-electron system.
At large distances, the Kohn–Sham orbitals fi

satisfy the equation

=
2 ZyNŽ .

y y qÕ r qOO exp f se f .Ž . Ž .xc i i iž /2 r

5Ž .
Now consider the densities resulting from the

many-body quasiparticle equations and the Kohn–
Sham equation:

` 1
MB 2 2r s f ™ f 1qOO as r™` ,Ýi i j i0 4ž /ž /rjs0

6Ž .
N

KS 2 2r s f ™f 1qOO exp as r™` .Ž .Ž .Ý0 j N
js1

7Ž .
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Equating the ground state many-body and Kohn–
Sham densities we obtain:

° N Ny1e s E yEŽ .N 0 0

1
f s f 1qOON 00KS MB 4~ ž /ž /r sr ´ r0 0

1 Q a 1
Õ sy q y qOO .xc¢ 3 4 5ž /r r 2 r r

8Ž .
The first of these follows from the fact that the
exponential decay is governed only by the right hand

Ž . Ž .side of Eqs. 3 and 5 and is the well-known result
that the highest occupied KS eigenvalue yields the

w xionization energy 3–5 . The second of these follows
Ž . Ž .from Eqs. 6 and 7 . The third follows from relat-

ing the coefficients of a 1rr expansion of the den-
sity or equivalently the highest KS orbital to a 1rr
expansion of Õ . If the KS and the quasiparticlexc

Ž n.orbitals are equal to OO 1rr , then it is easy to show
Ž nq1.that the potentials must be equal to OO 1rr

Of course all the KS orbitals satisfy the same
equation, while the quasiparticle amplitudes all sat-
isfy different equations, but the quasiparticle equa-
tions differ from each other and from the KS equa-

Ž 5.tion only at order OO 1rr .
The question now arises: is the fact that the

highest occupied eigenvalue is correct, plus the fact
that the Kohn–Sham and the quasiparticle potentials
agree to order 1rr 4, sufficient to pin down the
unoccupied eigenvalues with sufficient accuracy? We
conjecture the answer is yes, at least for sufficiently
smooth potentials. In order to provide evidence for

Table 3
Comparison of the Kohn–Sham eigenvalues for He with those
with those of two model systems that have the same occupied
eigenvalue and have potentials that agree with the He potential to
order 1r r and 1r r 4

Orbital Model Helium
4Ž . Ž .OO 1r r OO 1r r

1s y0.9037 y0.9037 y0.9037
2s y0.1748 y0.1588 y0.1577
2p y0.1594 y0.1284 y0.1266
3s y0.0696 y0.0648 y0.0645
3p y0.0653 y0.0566 y0.0561
3d y0.0621 y0.0557 y0.0556
4s y0.0370 y0.0350 y0.0349

our conjecture we constructed two model potentials
both of which yield the true occupied Kohn–Sham
eigenvalue for Helium. The first of these potentials
agrees with the true Kohn–Sham potential to order
1rr while the second agrees up to order 1rr 4. The
procedure used to construct the model potentials has
similarities to the standard procedure used to gener-
ate pseudopotentials but we do not impose the
norm-conservation condition.

Motivated by the long-range asymptotic behavior
w xof many-body wavefunctions 20,21 , we construct

these potentials by choosing the Kohn–Sham orbital
to be

3 qia yz rcA rq1 e 1q , 9Ž . Ž .Ý iž /rq1Ž .is1

where zs 2 E , asZ rzy1, Z sZyNq1,( ion eff eff

Z is the nuclear charge, N is the number of electrons
and E is the ionization energy. The Kohn–Shamion

potential that yields this orbital is obtained simply by
solving the single-particle Shrodinger equation for¨
the potential. The first potential, is obtained by set-
ting q sq sq s0 and agrees with the true1 2 3

Kohn–Sham potential to order 1rr. The second
potential, has values of q ,q ,q chosen to match the1 2 3

true Kohn–Sham potential to order 1rr 4.
In Table 3, we compare the eigenvalues obtained

from the two model potentials with the KS eigenval-
ues for He. It is apparent that the eigenvalues of the
second model are closer, by a factor of 20 or more,
to the eigenvalues of He than are the eigenvalues of
the first model. The differences of the eigenvalues of
the second model and those of He are of comparable
magnitude to the differences of the true He Kohn-
Sham eigenvalue differences from the excitation en-
ergies. Hence, it appears that our conjecture is cor-
rect. We have performed the same test for Liq and
find similar results.

In conclusion we have discovered that excitations
from the highest occupied orbital are in surprising
agreement with differences of Kohn–Sham eigenval-
ues and we present a plausible explanation for this
finding. The present results indicate that useful infor-
mation about excited states could be obtained from
ground-state single-particle energies provided that
the approximate functional used, yields single-par-
ticle energies that are sufficiently close to the true
Kohn–Sham values. Unfortunately the popular LDA
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and GGA functionals are nowhere near sufficiently
accurate. The exact exchange-only potential, ob-

Ž .tained from the optimized effective potential OEP
w xmethod, does better 22 since it decays as y1rr at

large distances but it is much inferior to the true
Kohn–Sham potential. Hence it is necessary to com-
bine it with an accurate correlation potential but
unfortunately all existing correlation functionals,
which we have studied, yield potentials that bear

w xlittle resemblance 8,9 to the true correlation poten-
tial. The Kohn–Sham eigenvalues are also the start-
ing point for two more accurate methods for calculat-
ing excitation energies, namely time-dependent den-

w xsity functional theory 23–25 and density functional
w xperturbation theory 22,26,27 . Again, the success of

Žthese methods for all excitations except those within
the same principal quantum number shell as the

.highest occupied level relies on having functionals
that yield good approximations to the true Kohn-
Sham eigenvalues.
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