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ABSTRACT: Orbitals having negative orbital energies in density functional theory
define a space for generating correlated wave functions and contributions to the
correlation energies. The most important contribution from such states comes from the
valence orbitals, while the Rydberg orbitals make a much smaller contribution. This
provides a significant correction to the correlation energy obtained from a functional
based on the uniform electron gas with a gap when there is a near degeneracy between
the ground state and a two-particle excited state. © 1999 John Wiley & Sons, Inc. Int ] Quant
Chem 75: 885-888, 1999
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the local approximation the uniform electron

Introduction gas with an enforced gap [2]. Locally, the gap

was defined as G = |Vn|® /n?. This choice of
the gap is based upon (a) the exact asymp-

R ecently, a correlation energy density func- totic behavior of the electron density (in the
tional has been proposed [1]. It relies on the asymptotic region G becomes equal to the
following ideas: ionization energy) and (b) the observed
piecewise exponential behavior of the den-

1. Atoms and molecules have energy gaps, the sity [3-5].
uniform electron gas, used as the reference in 2. The self-interaction correction, as given by

the construction of density functionals, does Becke [6].
not. This can be corrected by considering for 3. The incorporation of the requirements of
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construction of correlation functionals (cor-
rect slowly and rapidly varying density lim-
its, uniform scaling to high-density limit).

For atoms the functional gives quite good re-
sults when combined with the practically exact
exchange treatment via the Krieger—Li-Iafrate
(KLD approach [8]. Kurth and Perdew have re-
cently reported quite encouraging results obtained
with this functional for molecular atomization en-
ergies when combined with their new exchange
functional [9]. One of the central approximations
made was the neglect of any contribution to the
correlation energy from states lying below the ion-
ization energy limit. In Ref. [1] it was suggested
that these contributions would generally be a small
fraction of the correlation energy except for those
atoms with a near degeneracy, in which case fur-
ther wave function calculations would be required
to include this contribution. The aim of this article
is to explore the validity of this approximation by
explicitly calculating the contribution to the corre-
lation energy from the states below the ionization
limit. For our test we chose He, Li*, Be, and B, as
in the first two only dynamical correlation is sup-
posed to be present while in the last two cases the
degeneracy present at infinite nuclear charge is
believed to be felt [10].*

Technical Details

In order to obtain the correlation energy, we
considered two approaches. In the first, we diago-
nalized the Hamiltonian in a small subspace. In
the second, we used perturbation theory. We de-
fine a zeroth-order one-electron Hamiltonian hav-
ing a local potential defined as in the KLI ap-
proach [8]. Thus, up to first order, the energy is the
expectation value of the physical Hamiltonian ob-
tained with the KLI Slater determinant. As the KLI
wave function is slightly different from the Har-
tree—Fock one, there will be a small difference
between this expectation value and the Hartree—
Fock energy. Furthermore, there is a small contri-
bution of single excited zeroth-order Slater deter-
minants to the second-order perturbation energy
term. (Our perturbation energy series is very close

* Using many-determinant wave functions is not new [11].
Using Kohn-Sham calculations for configuration interaction
calculations was suggested by Fritsche [12], with the argument
that the zeroth order already gives the correct density.

to that of Gorling and Levy [13].) As we are
interested in the contributions to the second-order
energy of the states below the ionization limit, we
will consider the contributions coming from or-
bitals having negative orbital energies. (In the
Kohn—Sham theory, the energy of the last occu-
pied orbital is equal to minus the exact ionization
energy [14].)

We performed our calculations in even-tem-
pered Slater-type basis sets (of 1s, 2p, and 3d
type). Their exponents are {; = ¢, f' ', where 1 < i
<9, =02 and f=15.

Results

In order to understand the results obtained, we
would like to recall that the virtual KLI (and
Kohn—-Sham, KS) eigenvalues behave differently
from the canonical Hartree—Fock equivalents.
While in Hartree—Fock most of the virtual eigen-
values are positive, in KLI or KS, an infinity of
negative eigenvalues appear, which can be under-
stood from the asymptotic —1/r behavior of the
potentials. In fact, it turns out that the difference
between the highest occupied KS eigenvalue and
of the unoccupied ones is quite close to experimen-
tal excitation energies [15]. Davidson noticed that
the correlating (natural) orbitals are in the same
spatial region as the (strongly) occupied ones [16].
In order to achieve this, they usually will be linear
combinations of the KLI or KS orbitals, with posi-
tive eigenvalues. For valence states, however, the
unoccupied states may well be in the same spatial
region as the occupied ones and contribute to the
correlation energy.

Another observation comes from the study of
the adiabatic coupling of the electron—electron in-
teraction which shows that the dependence on the
interaction strength parameter A is roughly given
by aA?/(1 + b)), where a and b are system-depen-
dent constants (see, e.g., Ref. [17] and references
therein): a corresponds to the second-order correla-
tion energy, while b turned out to be positive
(small in the He series, becoming more and more
important as the nuclear charge increases in the Be
series and is related to the near-degeneracy effect
in the Be series). As the physical correlation energy
is given at A = 1, we expect the magnitude of the
second-order energy to be larger than that of the
correlation energy.
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Our present calculations confirm these observa-
tions. For He and Li* second-order perturbation
theory yields a correlation energy of 1 and 2
mhartrees, respectively, when only orbitals with
negative energies are considered. When the contri-
butions of all the states are taken into account, we
obtain at second order 46 and 45 mhartrees for He
and Li*, respectively. (These values are in good
agreement with the fitted values of the constants a
for He and Ne®* given in Ref. [17]: 47.5 and 46,
respectively.) The second-order energies in the Be
series are quite large, 118 and 134 mbhartrees, for
Be and B, respectively. (This also is in agreement
with the fitted values of a given in Ref. [17] for Be
and Ne®": 123 and 285 mhartrees, respectively.)
The second-order energies in the space of the or-
bitals with negative energies are 57 and 78
mhartrees for Be and B*, in contrast to the results
obtained for He and Li*. A configuration interac-
tion calculation considering just the two near-de-
generate configurations 1s?2s% and 15?2 p? yields
34 and 54 mhartrees for Be and B*. These values
are smaller than those obtained when the orbitals
are optimized (Davidson et al. [18] report 44 and
59 mhartrees from a complete active space calcula-
tion). This shows that the KLI orbitals are good but
not perfect for describing the near-degeneracy ef-
fect. We noticed nonnegligible contributions in sec-
ond-order perturbation theory coming from 1s*pp’
configurations which are indicative of orbital re-
laxation effects. We finally mention that density
functional second-order perturbation theory lim-
ited to the 2s> — 2p* excitation yields too much
correlation energy (46 and 72 mhartrees for Be and
B*) while the Hartree—Fock equivalent seems not
to yield enough [19].

We have also performed exploratory calcula-
tions with accurate Kohn—Sham orbitals (from Ref.
[17]D for He and Be and obtained similar trends.
The results for He were practically unchanged,
while there were differences of a few millihartrees
for Be, e.g., 39 mhartrees in the 2 X 2 configuration
interaction calculation (instead of 34 mhartrees).

Conclusion

Our calculations show that KLI Rydberg or-
bitals seem to contribute little to the second-order
correlation energy and may be quite safely ne-
glected. On the other hand, the valence unoccu-

CORRELATION ENERGY CONTRIBUTIONS

pied orbitals may have a significant contribution.
Taking these few states into consideration, correct
for the deficiency of electron gas correlation en-
ergy density functionals previously remarked,
namely that there may be systems which are more
strongly correlated than the uniform electron gas,
and thus cannot be fully described by gap, gradi-
ent, or self-interaction corrected electron gas [2].
While such a treatment makes computer programs
more complex than they are for usual Kohn—Sham
calculations, they should not be much more time-
consuming, as only valence basis sets are needed.
Finally, in its present form, this combined many-
determinant and density functional method does
not allow for systematic improvement, in contrast
to previously proposed methods (see, e.g., [20, 21])
We note, however, that, if needed, the method
presented here can be easily extended to such a
method, by introducing the gap in the uniform
electron gas not at the Fermi level but at an arbi-
trary level above. By changing this level, one has a
continuous transition toward the full wave func-
tion calculation.
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