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C. Gutlé,1 J. L. Heully,2 J. B. Krieger,3 and A. Savin4
1Laboratoire de Chimie The´orique, CNRS and Universite´ Pierre et Marie Curie, F-75252 Paris, France

2Laboratoire de Physique Quantique, Univerite´ Paul Sabatier, F-31062 Toulouse, France
3Physics Department, Brooklyn College, CUNY, Brooklyn, New York 11210

4Laboratoire de Chimie The´orique, CNRS and Universite´ Pierre et Marie Curie, F-75252 Paris, France
~Received 28 December 2001; revised manuscript received 19 March 2002; published 19 July 2002!

Coupled-cluster calculations starting from exchange-only local-density approximation~XLDA !, Krieger-Li-
Iafrate ~KLI !, and Kohn-Sham~KS! wave functions are compared with those using the Hartree-Fock~HF!
determinant as a reference. The total energies are found to be close, the difference being maximally 2 mhartree
in the systems studied~the first terms in the He, Be, Ne, Mg, Ar isoelectronic series!. The convergence is,
however, sensitive to the choice of the reference: KLI and KS converge, in general, faster than HF in spite of
being a worse approximation in the first two orders of perturbation theory. The improvement of convergence
due to the use of the KLI or KS references is more pronounced in the systems showing near degeneracy, such
as in the Be series. For XLDA, the convergence properties are either comparable to those of KLI or oscillatory,
depending on the system. In a second part, the numerical results are analyzed~in the HF and KLI cases! by
using first-order developments with respect to nuclear chargeZ at largeZ.
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I. INTRODUCTION

Usually, many-body calculations are performed using
Hartree-Fock operator as a single-particle reference, s
this method yields the energetically lowest one-determin
guess for the wave function; in addition, it benefits from t
Brillouin theorem as a technical simplification. However,
is well known that Hartree-Fock~HF! orbitals very poorly
describe excited states. Kelly@1# has recognized the impor
tance of the choice of virtual orbitals in calculating the co
relation energy, and proposed to use the Hartree-Fock o
als of the system with one electron removed. Davidson@2#
has further analyzed the role of the virtual orbitals in pert
bation theory by partitioning differently the Hamiltonia
such that the reference Hartree-Fock determinant is rot
through unitary transforms. Alternatively, the Kohn-Sha
~KS! potential seems to have a convenient ordering of virt
states~see, e.g.,@3#!. It has been proposed by Fritsche@4# to
use the KS wave function as a reference for correlated
culations. This choice ensures, in addition, the exact den
at zeroth order. Go¨rling and Levy@5# developed a perturba
tion theory for the correlation energy, where the external
tential is constrained to keep the ground-state density cor
at each order. The KS potential is, however, not known
general. As a first approximation to it, it seems reasonabl
use the optimized effective potential~see, e.g., the work o
Talman and Shadwick@6#, or more recently Engel and co
workers @7,8#!, or the Krieger-Li-Iafrate~KLI ! @9# approxi-
mation to this exact-exchange potential~see, e.g., Enge
et al. @10# for application to molecules!. Exact-exchange
Kohn-Sham methods@11# have been used too. Moreove
using the KLI potential is consistent with density-function
theory schemes if we prospect further for methods coup
wave function with density@12#. Shankar and Narasimha
@13,14# have performed correlated calculations using orbit
obtained in theXa local approximation. More recently, ca
culations have been performed using approximate den
1050-2947/2002/66~1!/012504~14!/$20.00 66 0125
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functional potentials@15,16#. Xa and KLI potentials are quite
different in the asymptotic region, the first decaying exp
nentially, the last proportional to 1/r ~for neutral systems!.
Thus, the virtual orbitals are expected to be quite differen
the two approximations.

In preceding papers@17,18#, we made preliminary calcu
lations at the level of second order perturbation theory us
KLI and KS orbitals in Slater basis sets. In the present pa
we go further with numerical coupled-cluster calculations
ing singly and doubly excited states~CCSD! and compare
the results obtained starting with orbitals from the exchan
only local-density approximation~XLDA ! and KLI method
to those obtained with HF orbitals. When possible, comp
sons with KS wave functions were also made. The final p
of the paper discusses the dependence of the correlation
ergy upon the nuclear chargeZ ~in the largeZ limit ! and
upon the choice of the unperturbed system~HF, KLI!. Con-
cerning the second point, we noticed a difference of sens
ity upon the potential in the approximation used~CCSD or
second-order of perturbation theory!. We would like to point
out that the problem mentioned by Bonettiet al. @19# is of no
importance here: while they use second-order perturba
theory to construct a local potential, we make correlated c
culations starting with a given potential.

II. COUPLED-CLUSTER CALCULATIONS

A. Technical details

The systems under investigation here are chosen to
closed-shell atoms and their first isoelectronic cations
cause accurate numerical calculations in that field are
sible, using the nonrelativistic CCSD program by Salomo
son and co-workers@20#. Furthermore, the behavior of thes
series with nuclear chargeZ is known from Linderberg and
Shull @21# and finally we possess very precise estimations
the exact correlation energies by Chakravortyet al. @22# to
be compared with.
©2002 The American Physical Society04-1
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FIG. 1. Second-order and coupled-cluster correlation energiesEc as a function of the nuclear chargeZ. Thin line, second order; thick line
coupled clusters; full line, He series (ZP@2,11#); long dashed line, Be series (ZP@4,13#); dashed line, Ne series (ZP@10,20#); dashed
dotted line, Mg series (ZP@12,23#); dotted line, Ar series (ZP@18,27#). Note that in the HF case, the second-order and coupled-clu
curves are almost indistinguishable at the scale of the figure, except for the Be series. Same remark for the He series in the KLI
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The HF and XLDA potentials are obtained from the no
relativistic self-consistent-field program@23#, and the KLI
potentials from the Li program@24#. The KS potentials were
generated by Colonna and co-workers@25,26# ~in the He and
Be series! and Filippi et al. @27# ~for the neon atom!.

In the numerical coupled-cluster program@20#, we in-
cluded all the single and double excitations giving nonz
contributions in a multipole expansion of 1/r 12 as a sum of
spherical harmonics products up to angular momentuml
514. We used 200 orbitals per symmetry so that the vale
and Rydberg states are well described, as we expected
KLI potential to produce more bounded states than the
potential does. The potentials were projected on an expo
tial grid of a thousand points scaled with the nuclear cha
Z and the number of electrons in the system. We expect
our results the numerical accuracy of a few tenths of mh
trees in the He, Be, and Ne series and 1 mhartree in the
and Ar series. They are given without radial or angular
trapolations as we estimate this effect to be below 0.1 m
tree and thus irrelevant for the purpose of our paper, whic
the comparison between different potentials.

B. Energies

In this section, we present our results for the energies
correlation energies. First, we comment on the effect
changing the nuclear charge in a series~system-specific poin
of view! while keeping the same variant of potential~HF,
XLDA, KLI, or KS ! for the calculations. Then we specify t
a given system and vary the type of potential~reference-
specific point of view!. Some general trends are noted, to
commented in Sec. III~when HF and KLI potentials are
used! with the help of a simplified model developed for th
purpose.

1. System-specific point of view

In Fig. 1, the HF and KLI correlation energiesEc are
plotted with respect to nuclear chargeZ, both at second-orde
01250
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perturbation theory and CCSD levels. At largeZ, we observe
that the correlation energies are nearly constant withZ in the
He and Ne series and linearly decreasing in the Be, Mg
Ar series. This behavior was expected for the exact corr
tion energy from Linderberg and Shull@21#. We find it here
still valid in the approximations of second-order perturbati
theory and coupled cluster. Furthermore, it is valid whate
the choice of the unperturbed Hamiltonian~HF, XLDA, and
KLI !. More precisely, in case of linearity~Be, Mg, Ar series!,
the slopes are ordered Be.Ar.Mg.

2. Reference-specific point of view

The numerical results are reported in Tables I and II
the He and Be series, respectively. Ne, Mg, and Ar series
available as supplementary data in Ref.@34#. If we consider a
given system in one of these tables, the first row deals w
HF reference, the second with XLDA, the third with KL
and the fourth with KS reference~if the KS potential was
available!.

a. Energies of the references. The second column specifie
the expectation values of the Hamiltonian (EHF , EXLDA ,
EKLI , or EKS) with different determinants~HF, XLDA, KLI,
or KS, respectively! to be compared now. We expectedEHF
to be smaller or equal toEXLDA , EKLI , andEKS by defini-
tion. In fact EHF and EKLI are found relatively close.EHF
5EKLI in the He series@9#; for the cases studied, we pointe
out differences (EKLI2EHF) up to 1 mhartree in the Be se
ries, of 2�3 mhartree in the Ne series~we will present the
results asx�y, wherex corresponds to the beginning of th
series, andy to the end!, 4�5 mhartree in the Mg series, an
7�8 mhartree in the Ar series. A slight increase ofEKLI
2EHF with nuclear charge is present; it is however expec
to disappear asZ→`. EKS2EHF is larger than EKLI
2EHF . It is probably due to a constraint of exact dens
added to that of locality (EKS2EHF is 0.03�0.07 mhartree
in the He series, 2�12 mhartree in the Be series!. This
difference has been used by Valderramaet al. @28# to define
4-2
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TABLE I. Total energies in the He series~a.u.!. Consider a given nuclear charge~Z! in the first column.
We present the~monodeterminantal! first-order energy (EV) in the second column, the second-order ene
(EV

(2)) in the third column, the third-order energy (EV
(3)) in the fourth column, the coupled-cluster energ

(ECCSD(V)) in the fifth column, and an estimation of the exact total energy (Eexact) @22# in the sixth column.
V specifies the potential used for the calculation:V5HF in the first row, XLDA in the second row, KLI in the
third row ~and KS in the fourth row when it was available!.

Z EV EV
(2) EV

(3) ECCSD(V) Eexact

2 ~HF! 22.8617 22.8990 22.9009 22.9037 22.9037
~XLDA ! 22.8578 22.9125 22.9053 22.9037
~KLI ! 22.8617 22.9100 22.9056 22.9037
~KS! 22.8616 22.9101 22.9056 22.9037

3 27.2364 27.2766 27.2780 27.2799 27.2799
27.2330 27.2851 27.2814 27.2799
27.2364 27.2839 27.2813 27.2799
27.2364 27.2840 27.2813 27.2799

4 213.6113 213.6530 213.6541 213.6556 213.6556
213.6080 213.6592 213.6567 213.6556
213.6113 213.6585 213.6566 213.6556
213.6113 213.6586 213.6566 213.6556

5 221.9862 222.0289 222.0298 222.0310 222.0310
221.9830 222.0338 222.0319 222.0310
221.9862 222.0333 222.0318 222.0310
221.9862 222.0333 222.0318 222.0310

6 232.3612 232.4045 232.4053 232.4062 232.4062
232.3580 232.4086 232.4070 232.4062
232.3612 232.4082 232.4070 232.4062
232.3612 232.4082 232.4069 232.4062

7 244.7362 244.7799 244.7806 244.7814 244.7814
244.7330 244.7834 244.7821 244.7814
244.7362 244.7831 244.7821 244.7814
244.7361 244.7831 244.7820 244.7814

8 259.1111 259.1552 259.1559 259.1566 259.1566
259.1080 259.1583 259.1572 259.1566
259.1111 259.1580 259.1571 259.1566
259.1111 259.1580 259.1571 259.1566

9 275.4861 275.5305 275.5311 275.5317 275.5317
275.4830 275.5332 275.5323 275.5317
275.4861 275.5330 275.5322 275.5317
275.4861 275.5330 275.5322 275.5317

10 293.8611 293.9057 293.9062 293.9068 293.9068
293.8580 293.9082 293.9073 293.9068
293.8611 293.9080 293.9072 293.9068
293.8611 293.9079 293.9072 293.9068

11 2114.2361 2114.2809 2114.2814 2114.2819 2114.2819
2114.2330 2114.2831 2114.2823 2114.2819
2114.2361 2114.2829 2114.2823 2114.2819
012504-3
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TABLE II. Total energies in the Be series~a.u.!. Same legend as in Table I.

Z EV EV
(2) EV

(3) ECCSD(V) Eexact

4 214.5730 214.6493 214.6538 214.6668 214.6674
214.5723 214.6983 214.6713 214.6667
214.5681 214.6997 214.6712 214.6667
214.5712 214.7022 214.6710 214.6667

5 224.2376 224.3254 224.3314 224.3482 224.3489
224.2367 224.3824 224.3556 224.3481
224.2326 224.3841 224.3557 224.3481
224.2350 224.3893 224.3547 224.3482

6 236.4085 236.5059 236.5134 236.5341 236.5349
236.4075 236.5711 236.5435 236.5340
236.4035 236.5731 236.5436 236.5340
236.4047 236.5830 236.5414 236.5341

7 251.0823 251.1883 251.1973 251.2219 251.2229
251.0813 251.2620 251.2330 251.2218
251.0773 251.2642 251.2332 251.2219
251.0771 251.2816 251.2288 251.2220

8 268.2577 268.3716 268.3820 268.4107 268.4118
268.2566 268.4539 268.4234 268.4106
268.2527 268.4563 268.4236 268.4107
268.2506 268.4848 268.4153 268.4110

9 287.9341 288.0555 288.0674 288.1001 288.1012
287.9330 288.1465 288.1143 288.1000
287.9291 288.1491 288.1145 288.1000
287.9249 288.1907 288.1005 288.1004

10 2110.1110 2110.2396 2110.2530 2110.2898 2110.2910
2110.1099 2110.3396 2110.3054 2110.2897
2110.1060 2110.3423 2110.3057 2110.2897
2110.0991 2110.4043 2110.2801 2110.2904

11 2134.7884 2134.9240 2134.9389 2134.9798 2134.9810
2134.7873 2135.0329 2134.9968 2134.9796
2134.7834 2135.0358 2134.9971 2134.9797

12 2161.9661 2162.1085 2162.1249 2162.1699 2162.1711
2161.9649 2162.2264 2162.1884 2162.1697
2161.9611 2162.2295 2162.1887 2162.1698

13 2191.6440 2191.7931 2191.8110 2191.8601 2191.8613
2191.6428 2191.9200 2191.8800 2191.8600
2191.6390 2191.9234 2191.8804 2191.8600
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near degeneracy.EXLDA2EHF is also more important: 4�3
mhartree in the He series, 5 mhartree in the Be ser
20�11 mhartree in the Ne series, 17�13 mhartree in the
Mg series, 22�20 mhartree in the Ar series.

b. Total energies. At this stage, it would be usual t
present the correlation energies. The definition is, howe
01250
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not unique in our case. It is most often defined inab initio
approaches as the difference between the exact nonrela
tic and Hartree-Fock energies@29#, but in density-functional
theory, EKS is used instead ofEHF ~see, e.g., Levy@30#!;
EXLDA @13# or EKLI @12# can be used as well. In order t
compare the results obtained starting from different ref
4-4
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COUPLED-CLUSTER CALCULATIONS USING LOCAL . . . PHYSICAL REVIEW A 66, 012504 ~2002!
ences, we present in the tables the total energies. For a g
system, the following levels of approximation are reporte
second and third orders of perturbation theory (EV

(2) and
EV

(3)) in columns 3 and 4, respectively, coupled clus
(ECCSD(V)) in column 5 and exact (Eexact) estimation@22# in
column 6. We recall that the potentialsV used are HF in the
first row, XLDA in the second, KLI in the third, and KS in
the fourth.

The second-order total energies are found extremely
sitive to the potential used~see column 3 and Fig. 1!.

As a rule, the second-order energies based on XLD
KLI, and KS are lying much below those obtained with H
The differencesEHF

(2)2EKLI
(2) range in 11�2 mhartree in the

He series, 49�127 mhartree in the Be series, 89�28 mhar-
tree in the Ne series, 94�75 mhartree in the Mg series, an
158�144 mhartree in the Ar series. With the XLDA pote
tial, the second-order energies are even lower than those
KLI or KS. EHF

(2)2EXLDA
(2) ranges in 13�22 mhartree in the

He series, 50�130 mhartree in the Be series, 119�30 mhar-
tree in the Ne series 106�78 in the Mg series, and 166�148
in the Ar series. Third-order perturbation theory~see column
4! slightly lessens the above differences. For instance,EHF

(3)

2EKLI
(3) spans 4.7�1 mhartree in the He series, 17�69

mhartree in the Be series, 19�10 mhartree in the Ne series
25�29 mhartree in the Mg series, and 37�42 mhartree in
the Ar series.

In striking contrast to second and third orders, the agr
ment between coupled-cluster results starting from differ
references is very good~see column 5!. This is of course not
surprising, taking into account Thouless’s theorem@31#. Of
course, the choice of the reference is immaterial in the
series, as CCSD is exact for two-electron systems. Howe
as electrons are added to the system and higher-order
tations omitted~triple, quadruple, etc.!, CCSD is expected to
stray from the full configuration interaction~CI!. As a con-
sequence, different choices for the reference should
longer be strictly equivalent: In fact,ECCSD(HF) and
ECCSD(KLI ) are found to differ by 0�20.2 mhartree in the
Be series, 2�0.2 mhartree in the Ne series, 0.5�20.2
mhartree in the Mg series, and 0.8�0.4 mhartree in the Ar
series.ECCSD(HF)2ECCSD(XLDA) is zero in the Be series
1�0.1 mhartree in the Ne series, 0.2�20.2 mhartree in the
Mg series, and 0.1�0.4 mhartree in the Ar series.

Concerning the absolute accuracy of the CCSD meth
the CCSD~HF!, CCSD~XLDA !, and CCSD~KLI ! calcula-
tions are compared to the estimated exact values@22#. As
expected, all values are identical in the He series. T
discrepancies with respect to the exact values
20.7�21.4 mhartree in the Be series,29.5�20.7 mhar-
tree in the Ne series (29.5 mhartree for the Ne atom!,
26.8�22.7 mhartree in the Mg series, and214.8�23.0
mhartree in the Ar series. By comparingECCSD(HF)
2ECCSD(KLI or XLDA) with Eexact2ECCSD(HF or KLI or XLDA)
given just above, we conclude that the absolute error of
CCSD method is in any case much more important~up to
one order of magnitude! than the change induced by varyin
the reference between HF, XLDA, and KLI. This invaria
indicates a compensatory role of the monoexcitations
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diexcitations, the latter being still dominant~see Table III!:
the contribution from the monoexcitations to the correlati
energy is below 1% with HF and KLI, it is below 10% wit
XLDA ~in addition, it is generally found negative when th
KLI and XLDA potentials are used, whereas it is alwa
found positive with the HF potential!. Thus, unfortunately,
changing the reference potential in the CCSD procedure d
not make up for the missing higher than double excitatio
In a nutshell, it seems thatE(2) is strongly reference depen
dent whereasECCSD is not. Note that the same observatio
holds not only for the total energies, but also for the cor
lation energies~see Fig. 1!. Moreover, it is to be noticed tha
the KS potential behaves quite similarly to KLI with respe
to the preceding points.

C. Convergence

Those concerned with improving methodology in qua
tum chemistry are concerned with not only accuracy;
rapidity of convergence is also a valuable criterion. In t
preceding section, we observed that CCSD calculations
formed with HF, XLDA, KLI, and KS potentials were close
However, as will be seen below, they present very differ
convergence schemes. We plotted in Figs. 2–4 for the
Be, and Ne series, respectively, the changes of the total
ergy during the coupled-cluster iterations, with respect to
converged value and when starting from different potent
~HF, KLI, XLDA; and KS when it was available!. For the
Mg and Ar series, see Ref.@34#.

As a rule, ~a! we observe thatECCSD(HF) is generally
approached from above whereasECCSD(XLDA) and
ECCSD(KLI ) are approached from below;~b! the convergence
is usually significantly faster with KLI and KS than HF. I
particular, the well-known pathological Be atom@32# is al-
ready converged to 1025 a.u. at the third coupled-cluste
iteration using KLI. By contrast, we should go up to iteratio
29 using HF to get a comparably converged result. In or
to understand point~a! we have to remember that the secon
order perturbation theory was used as a guess for conver
the numerical coupled-cluster equations iteratively. On
other hand, according to Tables I and II, tables from R
@34# for the Ne, Mg, and Ar series and Fig. 1, the relatio
EHF

(2).ECCSD(HF) and EKLI
(2) ,ECCSD(KLI ) generally hold

~with the exceptions of Ne, Na1, and Mg21, where EHF
(2)

,ECCSD(HF)). We have not studied in detail the source
the difference between the convergence behavior when u

TABLE III. Percentage of monoexcitations in the correlatio
energies, using KLI, XLDA, and HF potentials in the He, Be, N
Mg, and Ar series. In the notationx�y, x designates the first andy
the last term of the series.

Series EKLI
(2) ECCSD(KLI ) EXLDA

(2) ECCSD(XLDA) ECCSD(HF)

He 0 0 10�6 8�6 20
Be 1�0 1�0 4�2 5�2 20
Ne 0�1 0�1 5�3 4�3 20
Mg 1 1 4�2 3�2 20
Ar 1 1 3�2 3�2 20
4-5
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FIG. 2. DistanceDEc,CCSD to the coupled-cluster correlation energyEc,CCSD during the iterations; we used successively the HF~dashed
line!, XLDA ~dotted line!, KLI ~full line!, and KS~large dots! orbitals. Note that in the He series, the XLDA, KLI, and KS curves a
superimposed below zero.
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the HF or the KLI potentials@point ~b!#. However, we would
like to mention some thoughts on this subject. One poss
explanation for the convergence behavior is the star
point, which is different in HF and KLI@point ~a! above#.
Another possible explanation is related to the energy
nominators which appear when computing the correction
the expansion coefficients of the wave function. As the d
ference between the occupied and unoccupied orbital e
giesDe is larger in HF than KLI, one may expect a small
change from one iteration to the next in HF with respect
KLI. A further example going in this direction is the potenti
Vmodel to be defined at Sec. III B 2 for Ne61. In that case,
De is intermediate between HF and KLI’s. At the same tim
the convergence curve ofVmodel ~see Fig. 3! lies between
those of HF and KLI.
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We add that the calculations based on the KS poten
~for the cases treated here! behave quite similarly to those
based on KLI, in contrast with HF. The calculations based
XLDA potential often behave similarly to those based
KLI, but an oscillatory convergence is observed in som
cases~see Ne in Fig. 4!.

III. INTERPRETATION A LARGE Z

The energies were calculated in Sec. II B numerically,
different systems and by using different approximations.
order to refine our previous interpretation, we reinvestig
here the same calculations, analytically and at largeZ.
Linderberg and Shull@21# have already performed aZ ex-
pansion of the full-CI equations. They showed that for so
FIG. 3. Four-electron systems~same legend as in Fig. 2!. Vmodel potential of Sec. III B 2 is marked with crosses~only for Ne61). Note
that in the Be series, the XLDA, KLI, and KS curves are superimposed.
4-6
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FIG. 4. Ten-electron systems~same legend as in Fig. 2, except KS for Ca101 not available!. Note that for Ca101, the XLDA and KLI
curves are superimposed.
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systems where near degeneracy is present~Be, Mg, and Ar
series in our case!, the exact correlation energy has a prin
pal contribution linear withZ at large Z. By contrast, in
closed-shell systems~He and Ne series in our case! this term
is zero and the next one in the development a constant.
purpose now is to follow the same procedure in case of
proximate methods for calculating the correlation energ
~perturbation theory and coupled cluster based on diffe
potentials! and see to what extent the results are changed
and KLI will be discussed in the present. Only the conc
sions are reported in Secs. III A and III B; for more deta
the reader is referred to Appendixes A and B@35#. We cau-
tion the reader that in this section all the energies are
cussed in atomic units to make the comparisons with Se
easier. However, the corresponding appendixes are mo
concerned with modified hartree units as they are more c
venient for developments withZ.

A. A unique reference for defining the correlation energy
to first order in Z

In Sec. II B 2, we compared the total energiesE obtained
with different potentials instead of discussing the correlat
energiesEc , as more usually done in quantum chemist
The reason for this choice was the nonuniqueness of
definition of the correlation energy when the model Ham
tonian is changed. However, in this section, we limit o
analysis of the correlation energy at largeZ to first order inZ
as it will be sufficient to reproduce qualitatively most of th
results of Sec. II B. Under this limitation, the correlatio
energy is uniquely defined. More precisely, the unique re
ence is found in Appendix A to be theN-hydrogenic system
@36# with associated energyẼ0,HZ21Ẽ0

(1)Z1O(Z0) (Ẽ0,H

and Ẽ0
(1) given in Table IV!. Thus, to first order inZ, the

correlation energies may be compared in a series as we
the total energies, whatever the reference Hamiltonian.
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B. The correlation energy in approximate methods
to first order in Z at large Z

1. System-specific point of view

A general feature of the correlation energy within a ser
is the following. First, it has no quadratic component inZ.
Then, the linear coefficient inZ can only result from intra-
valence excitations in the hydrogenic spectrum@37# ~cf. Ap-
pendix B!. Thus, in closed-shell systems~He and Ne series!,
no Z-linear contribution to the correlation energy is expect
~within these series, the first nonzero contributions should
a constant!. This result is in accordance with our full calcu
lations ~see, for instance, Fig. 1 forV5VHF andVKLI): the
second-order and CCSD correlation energies are nearly
stant within the He and Ne series, at least at largeZ. By
contrast, in incomplete shells and closed subshells~Be, Mg,
Ar series!, where near degeneracy is present, the correla
energy has a nonzeroZ coefficient leading to the mainly
Z-linear~at largeZ) curves plotted in Fig. 1, both in coupled
cluster and second-order perturbation theory approximatio
The correspondingZ-linear coefficients are also given i
Table V in second-order perturbation theory to be compa
with the exact ones estimated by Chakravortyet al. @22#. In
particular, we note that the slopes are ordered Be,Ar,Mg,
as observed in the calculations reported in Sec. II. Furth
more, theseZ-linear contributions are due to diexcitation

TABLE IV. Z-quadraticẼ0,H and linearẼ0
(1) components of the

monodeterminantal ground-state energy~in a.u.! in the He, Be, Ne,
Mg, and Ar series.

Series Ẽ0,H Ẽ0
(1)

He 21 0.625
Be 21.25 1.571001
Ne 22 8.770830
Mg 22.111111 10.567378
Ar 22.444444 17.980333
4-7
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only, all monoexcitations in the valence space being zero
to angular symmetries. This property is not only satisfied
the series studied, it is specific to spherically symmetric s
tems~cf. Appendix D!.

2. Reference-specific point of view

In the presence of near degeneracy, the approximate m
ods fall into two categories~see Appendixes A and B fo
details!: ~a! the methods depending on the choice of the
tential to first order inZ ~for instance, a finite-order pertur
bation theory!, ~b! the methods independent of the potent
to first order inZ ~for instance, coupled cluster or truncate
CI, provided the criterion for the truncation is not chosen
depend upon a model Hamiltonian!. Notice that if perturba-
tion theory~a! is pushed on as far as infinite order, and if
converges to the exact result, it should of course beco
independent of the potential.

For second-order perturbation theory@type ~a!# the in-
equalitiesEHF

(2).Eexact.EKLI
(2) are satisfied to first order inZ

in the Be, Mg, and Ar series, as already observed in the
calculations of Sec. II. According to Sec. III A, the sam
holds for the correlation energies~see Table V!. Actually, the
first order inZ Mo” ller-Plesset-like expression for the corr
lation energy~derivation in Appendix B!

Z (
D

valence u^F̃0,Hu(
i , j

1

r i j
uF̃D,H&u2

DẽD,m
(1)

1O~Z0! ~1!

has a dependence upon the model Hamiltonian only thro
the linear components of the valence energy gapsDẽD,m

(1) ~the
numerator matrix elements only involve Slater determina

based on hydrogenic orbitals: the ground stateF̃0,H and in-

travalence diexcitationsF̃D,H). The relevantDẽD,m
(1) are given

in Table VI for the Be, Mg, and Ar series. For all thes
systems, the energy gaps in the valence space are f
smaller with KLI than HF potential. The difference may b
attributed to the asymptotic behaviors of these potentials
r→`. Namely, at largeZ, the HF potential has the physicall
correct~attractive! asymptote@2(Z2N11)#/r for the occu-
pied orbitals and the too repulsive behavior2(Z2N)/r for
the virtuals, resulting in too large gaps between the high
occupited molecular orbital~HOMO! and the lowest unoccu
pied molecular orital~LUMO!; on the contrary, KLI has the

TABLE V. Exact Z-linear component of the correlation energ
~in a.u.!: column 1, series; column 2, second-order perturbat
theory ~KLI reference!; column 3, valence CI@22#; column 4,
second-order perturbation theory~HF reference!.

Series ẼKLI
(2) -Ẽ0 Ẽc ẼHF

(2)-Ẽ0

He 0 0 0
Be 20.015356 20.011727 20.005981
Ne 0 0 0
Mg 20.004270 20.003574 20.002473
Ar 20.008642 20.006927 20.005704
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unique ~as it is local! attractive asymptote@2(Z2N
11)#/r , resulting in smaller HOMO-LUMO gaps. For ex
ample, consider the 2s-2p energy gap for Ne61: it repre-
sented in the full calculations of Sec. II, 658 mhartree w
KLI versus 1713 mhartree with HF. To first order inZ, we
obtain the same relative orders of magnitude: 838 mhar
with KLI versus 2152 mhartree with HF. The sensitivity o
the methods~a! on the orbital energies suggests, in particul
the existence of a potential producing energy gaps inter
diate between those of HF and KLI and yielding the ex
correlation energy already at second-order perturba
theory. As an illustration, let us construct such a potential
Ne61, by using an arbitrary prescription. Consider a class
potentials satisfying

Vmodel~r !5102F2
1

10r
1

1

10
ṼKLI

(1) ~10r !1ae2(10r 2b)2G ,
~2!

whereṼKLI
(1) is defined by Eq.~C5! of Appendix C anda and

b are parameters. For Z510, 102@21/(10r )
11/10ṼKLI

(1) (10r )# obtained via hydrogenic orbitals is a rela
tively good approximation toVKLI . As seen in Fig. 5, the
approximateVKLI has practically reached its asymptote f
r 51 a.u. The densities of the 2s and 2p hydrogenic orbitals
being maximal for 10r 55.236 07 and 4. a.u., respectivel
we understand thatVKLI has roughly the same attractive b
havior upon these two orbitals, resulting in a too sm
HOMO-LUMO gap and a too strong total energy at secon
order peturbation theory, as discussed above. One idea
increasing the HOMO-LUMO gap would be to add an attra
tive component toVKLI acting on 2s specifically, and letting

n
TABLE VI. Z-linear contributions to the valence energy ga

DẽD,m
(1) ~in a.u.! in the Be, Mg, and Ar series using KLI and H

potentials.

Series Excitation DẽD,KLI
(1) DẽD,HF

(1)

Be 2s→2p 0.083841 0.215252
Mg 3p→3s 0.075034 0.131543

3d→3s 0.177976 0.254918
Ar 3s→3d 0.234040 0.320602

3p→3d 0.141209 0.214558

FIG. 5. PotentialVi(r ) for Ne61 times electron-nucleus distanc
r; i 5KLI in full line and i 5model in crosses.
4-8
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2p unchanged. This component was chosen as a Gaus
function centered at 10r 50.763 932 a.u. in Eq.~2! ~see also
Fig. 5!, because at this distance the radial density of 2s has a
secondary maximum whereas it is small for 2p. With this
potential, a520.275 935 andb50.109 424~for instance!,
we obtained EVmodel

(2) 2EVmodel
5ECCSD(Vmodel)

2EVmodel

521.7237 hartree. This correlation energy is of the orde
magnitude ten times of that obtained with HF or K
(2178.8 and2179.8 mhartree, respectively! as we used a
no time the variational principle for generatingVmodel.
However, it is still about 1% of the total energ
2110.2890 hartree~the exact@22# being 2110.2910 har-
tree!. As expected, the HOMO-LUMO gap forVmodel ~1124
mhartree! is greater than KLI’s~658 mhartree! and lower
than HF’s ~1713 mhartree!. Too strong correlation energie
are thus not systematically obtained at second-order pe
bation theory, provided that local potentials are used. Mo
over, asb is increased~the 2s is lowered and the gap en
larged!, it will become too weak.

In approximations of type~b!, the equations were foun
strictly potential independent to first order inZ, as for the
exact correlation energy~cf. Appendix B!. To be specific, in
the Be and Mg series, as there is only one valence pair t
excited, the coupled-cluster approximation is equivalent t
simple and double CI, which gives precisely the ex
Z-linear coefficient of the correlation energy. For the Ar s
ries ~eight valence electrons!, we should obtain a differenc
to first order inZ between the exact and the CCSD corre
tion energies due to the presence of higher than double
citations in the hydrogenic spectrum.

IV. CONCLUSIONS AND OUTLOOKS

Correlated calculations using different potentials~HF,
XLDA, KLI, KS ! and systems~He, Be, Ne, Mg, Ar series!
were compared quantitatively in the first part~Sec. II! and
qualitatively ~at largeZ) in the second part~Sec. III! of the
paper.

a. System-specific point of view. We found from the above
two approaches that approximate correlation energies
highly charged closed-shell ions could be partitioned int
system-specific contribution~linear with Z) in case of near
degeneracy and a mostlyZ-independent contribution. Then
we can imagine the latter nonspecific part to be given
proximately by a universal model Hamiltonian, the homog
neous electron gas for argument’s sake. Another poss
continuation of the preceding analysis would be the ext
sion to molecules. However, in that case the partition is
so obvious: in heteronuclear molecules, severalZ come into
play, and even in homonuclear molecules, we have the p
lem that the degeneracy degree of the model system w
be affected by internuclear distances.

b. Reference-specific point of view. Changing the potentia
from HF to XLDA, KLI, or KS had qualitatively no effect on
the behavior of the correlation energy within a series. Qu
titatively, it was of weak effect on the CCSD total energy
regard of the accuracy of the method itself. This result s
ports, in particular, that the terms not included in CCS
such as triple excitations~which are needed in complex poly
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electronic atoms and molecules for attaining chemical ac
racy!, cannot be avoided by a judicious choice for the pote
tial. By contrast, the second-order perturbation theory w
found very sensitive to the model Hamiltonian. As a rule, t
local potentials studied here yielded very bad second-o
energies whilst the HF-based results remained relativ
good approximations to the exact energies. In a forthcom
paper, it will be shown that significant dependence upon
potential is obtained in both perturbation theory and coup
clusters when the active space is limited to a small ene
band. In that case, some potentials will prove more suita
for describing the system-specific contribution mention
above in Sec. IV A. For the present, we also pointed out
notably faster convergence of CCSD with local potentials.
particular, the Be atom converged in a very few iteratio
The reasons why such a fast convergence was obtaine
CCSD when some local potentials are used should be c
fied and exploited. Some approximations to the coupl
cluster equations may also be conceivable, by inspec
more carefully the behavior of local potentials in the fir
iterations. Another possible continuation to this work wou
be to try the KLI orbitals in multireference calculations, an
see how they behave with respect to the intruder-state p
lem for the ground state of Be@33#.
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APPENDIX A: THE UNPERTURBED HAMILTONIAN
WITH REFERENCE TO THE N-HYDROGENIC

SYSTEM UNDER Z EXPANSION

The HamiltonianH of the system withN electrons and
nuclear chargeZ is partitioned as

H5Hm1V, ~A1!

whereHm is the model Hamiltonian

Hm5(
i 51

N F2
1

2
¹ i

21Vm~r i !G , ~A2!

and the spherically symmetric potentialVm acting on thei th
particle of radial coordinater i stands either forVHF or VKLI .
The solutions of the independent-particles equation~A2! are
the Slater determinantsF I ,m constructed fromN orbitals
f i ,m(r ) of energye i ,m and satisfying the one-particle equ
tion

F2
1

2
¹21Vm~r !Gf i ,m~r !5e i ,mf i ,m~r !. ~A3!

Among all theF I ,m’s, the ground-stateF0,m corresponding
to the N orbitals with lowest energy is chosen as a start
point for the perturbation. In case of degeneracy, we
4-9
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always choose one of the degenerate determinants arbitr
to be F0,m . In order to make explicit theZ dependence a
largeZ in Eq. ~A1! and its solutions, we follow the treatmen
of Linderberg and Shull@21# and change to modified Hartre
units.H is transformed toH̃,

H̃5(
i 51

N F2
1

2
¹̃ i

22
1

r̃i
1

1

2 (
j 51

N
1

Zri j̃
G , ~A4!

and similarly forHm,

H̃m5(
i 51

N F2
1

2
¹̃ i

21Ṽm~ r̃ i !G , ~A5!

with

Ṽm~ r̃ !52
1

r̃
1

1

Z
Ṽm

(1)~ r̃ !1OS 1

Z2D . ~A6!

In Eq. ~A6!, the first term21/r arises from the nucleus
electron attraction only whereasṼm

(1)( r̃ ) is the 1/Z-order
component of the potential modeling electron-electron rep
sions. The expressions forṼm

(1)( r̃ ) are detailed in Appendix

C whenVm5VHF or VKLI . Now, at largeZ, ẽ i ,m andf̃ i ,m( r̃ )
can be developed around their infinite-Z hydrogenic values
ẽ i ,H and f̃ i ,H( r̃ ), respectively, which are solutions of th
N-hydrogenic Hamiltonian

H̃H5(
i 51

N F2
1

2
¹̃ i

22
1

r̃i
G . ~A7!

We obtain

ẽ i ,m5 ẽ i ,H1
1

Z
ẽ i ,m

(1)1OS 1

Z2D , ~A8!

f̃ i ,m~ r̃ !5f̃ i ,H~ r̃ !1
1

Z
f̃ i ,m

(1)~ r̃ !1OS 1

Z2D , ~A9!

whereẽ i ,m
(1) andf̃ i ,m

(1)( r̃ ) areZ-independent first-order correc
tions given by nondegenerate perturbation theory applie
Eq. ~A3! turned to modified Hartree units@f̃ i ,m

(1)( r̃ ) is not

normalized#. Then, theF̃I ,m’s are constructed fromN orbitals
f̃ i ,m( r̃ ) expanded as in Eq.~A9!; Z ordering of the corre-
sponding expression leads to

F̃I ,m5F̃I ,H1
1

Z
F̃I ,m

(1) 1OS 1

Z2D , ~A10!

whereF̃I ,H andF̃I ,m
(1) ~linear combination of the determinan

differing from F̃I ,H by one spin orbital exactly! areZ inde-
pendent. The eigenvalues associated withF̃ I ,m are also ex-
panded as
01250
rily
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ẼI ,m5ẼI ,H1
1

Z
ẼI ,m

(1) 1OS 1

Z2D , ~A11!

where ẼI ,H and ẼI ,m
(1) are Z independent. By expanding th

energy of the monodeterminantal ground-state wave func

F̃0,m to order 1/Z, we find

Ẽ05^F̃0,muH̃uF̃0,m&5^F̃0,HuH̃uF̃0,H&1OS 1

Z2D , ~A12!

i.e.,

Ẽ05Ẽ0,H1
1

Z
Ẽ0

(1)1OS 1

Z2D , ~A13!

where

Ẽ0,H5^F̃0,HuH̃HuF̃0,H&

and

Ẽ0
(1)5^F̃0,Hu( i , j~1/r̃ i j !uF̃0,H&.

~The numerical results forẼ0,H and Ẽ0
(1) in the He, Be, Ne,

Mg, and Ar series are reported in Table IV.! Obviously, the
choice for H̃m is immaterial in Ẽ0 to order 1/Z @see Eq.
~A12!#. Thus, the correlation energies obtained with differe
potentials~for instance,V5VHF , VKLI! obey the definition
Ẽc5Ẽ2Ẽ0, unique to order 1/Z @the unique reference bein
the N-hydrogenic system, cf. Eq.~A7!#. As a consequence
the correlation energiesẼc can be compared directly to orde
1/Z, whenVm is varied and the total energiesẼ are submit-
ted to different approximations.

APPENDIX B: THE CORRELATION ENERGY ẼC TO
ORDER 1ÕZ IN APPROXIMATE METHODS

We ask now the question of the dependence of appr

mateẼc on the basis of determinantsF̃I ,m , eigenfunctions of
the one-particle model HamiltoniansH̃m ~such as, e.g., HF
KLI !. The Hamiltonians considered always give at zero
order inZ the same operator as the real HamiltonianH̃ @the
N-hydrogenic HamiltonianH̃H , cf. Eq. ~A7!#:

H̃m
(0)5H̃(0)5H̃H . Thus, the correlation energy has n

zeroth-order component. The first order in 1/Z is necessarily
different, asH̃2H̃(0) contains a two-body operator, whil
H̃m5H̃H11/Z H̃m

(1)1O(1/Z2) is a one-body operator. Th
exact energy does not depend, of course, on the choice o

basis of theF̃I ,m ~and thus on the choice ofH̃m). However,
approximate correlation energies can depend onH̃m . For
example, consider the second-order perturbation theory:

Ẽ0,m
(2) 2Ẽ05(

IÞ0

u^F̃0,muH̃uF̃I ,m&u2

Ẽ0,m2ẼI ,m

, ~B1!
4-10
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whereF̃I ,m differs from F̃0,m by one or two excitations. To
order 1/Z,

^F̃0,muH̃uF̃I ,m&5 K F̃0,H1
1

Z
F̃0,m

(1)UH̃H1
1

Z (
i , j

N
1

r̃ i j
UF̃ I ,H

1
1

Z
F̃I ,m

(1) L 1OS 1

Z2D
5

1

Z S ^F̃0,m
(1) uF̃I ,H&ẼI ,H1^F̃0,HuF̃I ,m

(1) &Ẽ0,H

1K F̃0,HU(
i , j

N
1

r̃ i j
UF̃I ,HL D

1OS 1

Z2D for I

Þ0 ~B2!

and

Ẽ0,m2ẼI ,m5Ẽ0,H2ẼI ,H1
1

Z
~Ẽ0,m

(1) 2ẼI ,m
(1) !1OS 1

Z2D .

~B3!

If the statesI and 0 are not degenerate,Ẽ0,m2ẼI ,m is a

constant independent ofZ, and u^F̃0,muH̃uF̃I ,m&u2/(Ẽ0,m

2ẼI ,m) is proportional to 1/Z2; this will not be considered
now. If the state I is degenerate with the state 0

^F̃0,muH̃uF̃I ,m& can be nonzero butẼ0,m2ẼI ,m51/Z(Ẽ0,m
(1)

2ẼI ,m
(1) )1O(1/Z2) and thusu^F̃0,muH̃uF̃I ,m&u2/(Ẽ0,m2ẼI ,m),

being proportional to 1/Z, has to be kept. We will say tha
only intravalence excitations can contribute to order 1/Z to
the correlation energy. Thus, via the energy denominat
the first-order correlation energyẼ0,m

(2) 2Ẽ0 can depend on the

choice ofH̃m . We mention also at this stage thatI can in fact
only designate double excitations (D). Actually, we showed
in Appendix D that the only nonzero monoexcitations co
tributing to the correlation energy are those involving orb
als of the same angular symmetry. As a symmetry occ
only once in the valence shell, they are exactly zero to or
1/Z ~even for potentials that do not satisfy exactly Brillouin
theorem as KLI!.

There is a whole class of approximations, such as CI
ing only singly and doubly excited states, CCSD, etc., wh
the energy and the expansion coefficients are obtained
equations of the type

(
J

^F̃I ,muH̃2Ẽ0uF̃J,m&c̃J,m5XI , ~B4!

whereF̃J,m belongs now to a subset of determinants andXI
may be zero or may be a function of terms of the ty

^F̃0,muH̃uF̃L,m& (0ÞL) multiplied by expansion coefficient
01250
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c̃L,m and c̃I ,m ~this is often done to guarantee size cons
tency!. Z expansion of the above equations~B4! is obtained
by replacement ofH̃ with Eq. ~A4!, F̃ I ,m with Eq. ~A10!, Ẽ0

with Eq. ~A13!, andc̃J,m with c̃J,H11/Zc̃J,m
(1) 1O(1/Z2), c̃J,H

and c̃J,m
(1) being Z independent. Zeroth order then yield

(ẼI ,H2Ẽ0,H) c̃I ,H50, meaning that nonzeroc̃I ,H correspond

to thoseF̃I ,H that are degenerate withF̃0,H . We are inter-
ested now in analyzing the first-order terms. They may a

either from first-order matrix elementŝF̃I ,muH̃uF̃J,m& (1)

multiplied by zeroth-order coefficientsc̃J,H ,

^F̃ I ,muH̃uF̃J,m& (1)c̃J,H

5S ^F̃ I ,m
(1) uF̃J,H&ẼJ,H1^F̃ I ,HuF̃J,m

(1) &ẼI ,H

1K F̃ I ,HU(
i , j

N
1

r̃ i j
UF̃J,HL D c̃J,H ~B5!

or zeroth-order matrix elements^F̃I ,muH̃uF̃J,m& (0) multiplied
by first-order coefficientsc̃J,m

(1) ,

^F̃I ,muH̃uF̃J,m& (0)c̃J,m
(1) 5ẼI ,Hd I ,Jc̃J,m

(1) . ~B6!

In particular, the first-order correlation energy involves bo
terms developed in Eqs.~B5! and ~B6!, with I 50 and J

Þ0. In that case, Eq.~B5! is nonzero only ifc̃J,HÞ0, i.e.,J
belongs to the degenerate set. It follows thatẼJ,H5Ẽ0,H in
Eq. ~B5!, canceling the dependence upon the poten

through the first-order normalization condition^F̃0,m
(1) uF̃J,H&

1^F̃0,HuF̃J,m
(1) &50. Equation~B6! brings no contribution as

JÞ0. In brief, we showed that first-orderẼc is determined
only in terms of zeroth-order coefficientsc̃I ,H , with I in the
degenerate set. For suchI ’s, Eq. ~B5! is nonzero only ifJ
belongs to the degenerate set. Then, Eq.~B5! reduces again
to its last term, independent of the potential, due to the n

malization condition^F̃I ,m
(1) uF̃J,H&1^F̃I ,HuF̃J,m

(1) &50. Equa-
tion ~B6! will never bring a contribution as eitherIÞJ and it
is zero, orI 5J ~in the degenerate set! and Eq.~B6! occurs in

Eq. ~B4! as ^F̃I ,HuH̃H2Ẽ0,HuF̃I ,H&c̃I ,m
(1) 50. We have thus

shown that there is no dependence onH̃m when determining
Ẽc with Eq. ~B4! to first order in 1/Z. Note that such was
trivially also the case for full CI.

APPENDIX C: EXPRESSIONS FOR THE FIRST-ORDER
POTENTIALS V HF

„1… AND V KLI
„1…

Let us defineña( r̃ ) andña,H( r̃ ) as the densities of theath
orbitals fa( r̃ ) and fa,H( r̃ ), respectively: ña( r̃ )
5fa

!( r̃ )fa( r̃ ) and ña,H( r̃ )5fa,H
! ( r̃ )fa,H( r̃ ). We have the

relation ña( r̃ )5ña,H( r̃ )1O(1/Z2). The corresponding tota
spin densities are thus ñ( r̃ )5(aPocc

N/2 ña( r̃ ); ñH( r̃ )

5(aPocc
N/2 ña,H( r̃ ) and we haveñ( r̃ )5ñH( r̃ )1O(1/Z2).
4-11
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1. V h
„1…

When V5VHF or VKLI , the electron-electron repulsio
potential contains a Coulombian part of the Hartree type

Ṽh~ r̃ !5
1

ZE ñ~r 8!

u r̃2 r̃ 8u
dr 85

1

ZE ñH~r 8!

u r̃2 r̃ 8u
dr 81OS 1

Z2D .

~C1!

The part of the potential modeling exchange is reference
cific, and we specify its expression below whenV5VHF or
VKLI .

2. V x,HF
„1…

In the Hartree-Fock approximation, everyi th orbital has
its own exchange potentialṼx,i ,HF( r̃ ):

Ṽx,i ,HF~ r̃ !5 ṽ i~ r̃ !5 ṽ i ,H~ r̃ !1OS 1

Z2D , ~C2!

where

ṽ i~ r̃ !52
1

Z (
aPocc

N/2
f̃a~ r̃ !

f̃ i~ r̃ !
E dr 8

f̃a
!~r 8̃!f̃ i~r 8̃!

u r̃2 r̃ 8u

52
1

Z (
aPocc

N/2
f̃a,H~ r̃ !

f̃ i ,H~ r̃ !
E dr 8

f̃a,H
! ~r 8̃!f̃ i ,H~r 8̃!

u r̃2 r̃ 8u

1OS 1

Z2D ~C3!

and

ṽ i ,H~ r̃ !52
1

Z (
aPocc

N/2
f̃a,H~ r̃ !

f̃ i ,H~ r̃ !
E dr 8

f̃a,H
! ~r 8̃!f̃ i ,H~r 8̃!

u r̃2 r̃ 8u
.

~C4!

3. V x,KLI
„1…

In the KLI approximation, the exchange potenti
Ṽx,KLI( r̃ ) is an average of Hartree-Fock potentials over
cupied orbital densities,

Ṽx,KLI~ r̃ !5 (
bPocc

N/2
ñb~ r̃ !

ñ~ r̃ !
~ ṽb~ r̃ !1 c̃b! ~C5!

and the constantsc̃b are

c̃b5H E ~Ṽx,KLI~ r̃ !2 ṽb~ r̃ !!ñb~ r̃ ! if bÞHOMO

0 otherwise,
~C6!

wherec̃b(b5HOMO) is chosen such thatṼx,KLI( r̃ ) has the
asymptotic behavior21/r̃ at large r̃ . For the Ne and Ar
series~systems with more than two valence electrons!, at
infinite Z, there are rigorously several degenerate highest
01250
e-

-

c-

cupied orbitals with zero constants to guarantee the cor
asymptotic behavior of the potential. However, as the 1Z
calculations are used here to compare with our complete
culations, we considered implicitly that the hydrogenic orb
als were filled as the full KLI orbitals for finiteZ. As a
consequence, for Ne series, onlyc̃2p50 and for Ar series
only c̃3p50. With these conventions, the fitted full calcul
tions coincide with the 1/Z expansion for the orbital energie
to be used in Eq.~1!.

APPENDIX D: ANGULAR SELECTION RULE FOR
SINGLE EXCITATIONS

Let F be any Slater determinant andFa
r a monoexcited

determinant constructed fromF by substituting the virtual
orbital f r for the occupied orbitalfa . In this section, we
find the conditions for havinĝFuHuFa

r &50. According to
the Slater rules, the monoelectronic part must be zero un
diagonal, i.e., l a5 l r and ma5mr . The bielectronic part
splits into

K FU(
i , j

1

r i j
UFa

r L 5(
b

occ

2K fafbU 1

r 12
Uf rfbL

2K fafbU 1

r 12
Ufbf r L . ~D1!

Let us manipulate the right-hand side of Eq.~D1! assuming
that a and r are fixed and 1/r 12 is expanded as a product o
spherical harmonicsYl k

mk. For the first term on the right-han

side, we considered only the sum over the subshellsmb , and
found the proportionality relation

(
mb

^fafbuf rfb&

}E E dV1dV2 (
mb52 l b

l b

(
k50

`

(
q52k

k
4p

2k11
~Yl a

ma* Yl r

mrYk
q!

3~V1!~Yl b

mb* Yl b

mbYk
q* !~V2! ~D2!

5E E dV1dV2(
k50

`

(
q52k

k
2l b11

2k11
~Yl a

ma* Yl r

mrYk
q!

3~V1!Yk
q* ~V2! ~D3!

5E dV1~2l b11!~Yl a

ma* Yl r

mr !~V1!A4p. ~D4!

To obtain Eq.~D3! from Eq. ~D2!, the normalization of the
subshell mb @(mb52 l b

l b (Yl b

mb!Yl b

mb)5(2l b11)/(4p)# has

been used. To obtain Eq.~D4! from Eq. ~D3! the integration
overV2 has been done. The only nonzero result correspo
to ans symmetry forYk

q , i.e.k5q50. Now, focusing on the
integral overV1, the only nonzero term is obtained forYl a

ma

5Yl
mr, i.e., l a5 l r andma5mr

r

4-12
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We proceed similarly for the second term on the rig
hand side of Eq.~D1!:

(
mb

^fafbufbf r&

}E E dV1dV2 (
mb52 l b

l b

(
k50

`

(
q52k

k
4p

2k11
~Yl a

ma* Yl b

mbYk
q!

3~V1!~Yl b

mb* Yl r

mrYk
q* !~V2! ~D5!

5 (
mb52 l b

l b

(
k50

`

(
q52k

k
4p

2k11
~21!qA2l b11

4p

3~21!maA~2l a11!~2k11!S l a l b k

2ma mb qD
3S l a l b k

0 0 0DA2l r11

4p
~21!mbA~2l b11!~2k11!

3S l b l r k

2mb mr 2qD S l b l r k

0 0 0D ~D6!

5 (
k50

`

~2l b11!A2l r11A2l a11S l a l b k

0 0 0D
3S l b l r k

0 0 0D (
mb52 l b

l b

(
q52k

k S l a l b k

2ma mb qD
3S l r l b k

2mr mb qD ~21!2(l b1 l r1k)~21!ma1mb1q ~D7!
01250
-
5 (

k50

`

~2l b11!S l a l b k

0 0 0D S l b l r k

0 0 0D
3d~ l a2 l r !d~ma2mr ! ~D8!

Equation ~D6! comes from Eq.~D5! by expressing the
integrals over three spherical harmonics in terms of
Wigner 3-j symbols. For Eq.~D7! the terms are rearranged
then, we change the signs in a row and permutate two
umns in the third 3-j symbol. For Eq.~D8! the third 3-j
symbol vanishes unlessma5mb1q, i.e., (21)ma1mb1q51.
The orthogonality relation of the 3-j symbols over the sub
shellsmb andq,

(
mb52 l b

l b

(
q52k

k S l a l b k

2ma mb qD S l r l b k

2mr mb qD
5~2l a11!21d~ l a2 l r !d~ma2mr !,

has been used@d(x)51 if x50, 0 otherwise#. Finally, the
integral is nonzero only ifl a5 l r andma5mr . In a nutshell,
we have the following proportionality relation true, indepe
dent of the orbitals:

^FuHuFa
r &}d~ l a2 l r !d~ma2mr !. ~D9!
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