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Coupled-cluster calculations starting from exchange-only local-density approxinifti@? ), Krieger-Li-
lafrate (KLI), and Kohn-Sham(KS) wave functions are compared with those using the Hartree-BRdEk
determinant as a reference. The total energies are found to be close, the difference being maximally 2 mhartree
in the systems studietthe first terms in the He, Be, Ne, Mg, Ar isoelectronic seri@he convergence is,
however, sensitive to the choice of the reference: KLI and KS converge, in general, faster than HF in spite of
being a worse approximation in the first two orders of perturbation theory. The improvement of convergence
due to the use of the KLI or KS references is more pronounced in the systems showing near degeneracy, such
as in the Be series. For XLDA, the convergence properties are either comparable to those of KLI or oscillatory,
depending on the system. In a second part, the numerical results are aray#edHF and KLI casesby
using first-order developments with respect to nuclear chargelargeZ.
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[. INTRODUCTION functional potential$15,16]. X, and KLI potentials are quite
different in the asymptotic region, the first decaying expo-

Usually, many-body calculations are performed using thenentially, the last proportional to rL{for neutral systems
Hartree-Fock operator as a single-particle reference, sincehus, the virtual orbitals are expected to be quite different in
this method yields the energetically lowest one-determinanthe two approximations.
guess for the wave function; in addition, it benefits from the In preceding paperfl7,18, we made preliminary calcu-
Brillouin theorem as a technical simplification. However, it lations at the level of second order perturbation theory using
is well known that Hartree-FockHF) orbitals very poorly KLl and KS orbitals in Slater basis sets. In the present paper,
describe excited states. Kell{£] has recognized the impor- We go further with numerical coupled-cluster calculations us-
tance of the choice of virtual orbitals in calculating the cor-ing singly and doubly excited stat¢é€CSD and compare
relation energy, and proposed to use the Hartree-Fock orbithe results obtained starting with orbitals from the exchange-
als of the system with one electron removed. Davidggln  only local-density approximatiotXLDA) and KLI method
has further analyzed the role of the virtual orbitals in pertur-to those obtained with HF orbitals. When possible, compari-
bation theory by partitioning differently the Hamiltonian sons with KS wave functions were also made. The final part
such that the reference Hartree-Fock determinant is rotate@f the paper discusses the dependence of the correlation en-
through unitary transforms. Alternatively, the Kohn-Shamergy upon the nuclear charge (in the largeZ limit) and
(KS) potential seems to have a convenient ordering of virtuakpon the choice of the unperturbed systéir, KLI). Con-
states(see, e.g.[3]). It has been proposed by Fritschg to  cerning the second point, we noticed a difference of sensitiv-
use the KS wave function as a reference for correlated calty upon the potential in the approximation usggiCSD or
culations. This choice ensures, in addition, the exact densitgecond-order of perturbation thepryVe would like to point
at zeroth order. Gting and Levy[5] developed a perturba- out that the problem mentioned by Bonetial. [19] is of no
tion theory for the correlation energy, where the external poimportance here: while they use second-order perturbation
tential is constrained to keep the ground-state density corregfieory to construct a local potential, we make correlated cal-
at each order. The KS potential is, however, not known inculations starting with a given potential.
general. As a first approximation to it, it seems reasonable to
use the optimized effective potenti@ee, e.g., the work of Il. COUPLED-CLUSTER CALCULATIONS
Talman and Shadwick6], or more recently Engel and co-
workers[7,8]), or the Krieger-Li-lafrate(KLI) [9] approxi-
mation to this exact-exchange potentigee, e.g., Engel The systems under investigation here are chosen to be
et al. [10] for application to moleculgs Exact-exchange closed-shell atoms and their first isoelectronic cations be-
Kohn-Sham method$§11] have been used too. Moreover, cause accurate numerical calculations in that field are fea-
using the KLI potential is consistent with density-functional sible, using the nonrelativistic CCSD program by Salomon-
theory schemes if we prospect further for methods couplingon and co-workerf20]. Furthermore, the behavior of these
wave function with density12]. Shankar and Narasimhan series with nuclear chargéis known from Linderberg and
[13,14] have performed correlated calculations using orbitalsShull [21] and finally we possess very precise estimations of
obtained in theX, local approximation. More recently, cal- the exact correlation energies by Chakravatyal. [22] to
culations have been performed using approximate densitype compared with.

A. Technical details
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FIG. 1. Second-order and coupled-cluster correlation enegies a function of the nuclear chargeThin line, second order; thick line,
coupled clusters; full line, He serieZ €[2,11]); long dashed line, Be serieZ €[4,13]); dashed line, Ne serieZ&[10,20); dashed
dotted line, Mg series4e[12,23); dotted line, Ar series4 e[18,27]). Note that in the HF case, the second-order and coupled-cluster
curves are almost indistinguishable at the scale of the figure, except for the Be series. Same remark for the He series in the KLI case.

The HF and XLDA potentials are obtained from the non-perturbation theory and CCSD levels. At laigewe observe
relativistic self-consistent-field prograf23], and the KLI  that the correlation energies are nearly constant @iith the
potentials from the Li prograrf24]. The KS potentials were He and Ne series and linearly decreasing in the Be, Mg and
generated by Colonna and co-workg?§,26| (in the He and  Ar series. This behavior was expected for the exact correla-
Be serieg and Filippi et al. [27] (for the neon atom tion energy from Linderberg and ShdiR1]. We find it here

In the numerical coupled-cluster progra@0], we in-  still valid in the approximations of second-order perturbation
cluded all the single and double excitations giving nonzeraheory and coupled cluster. Furthermore, it is valid whatever
contributions in a multipole expansion ofr]§ as a sum of the choice of the unperturbed HamiltoniérF, XLDA, and
spherical harmonics products up to angular momentum KLI). More precisely, in case of linearite, Mg, Ar serie§,
=14. We used 200 orbitals per symmetry so that the valencthe slopes are ordered Bé\r>Mg.
and Rydberg states are well described, as we expected the
KLI potential to produce more bounded states than the HF 2. Reference-specific point of view
potential does. The potentials were projected on an exponen- ) _
tial grid of a thousand points scaled with the nuclear charge 1he numerical results are reported in Tables I and 11 for

Z and the number of electrons in the system. We expect foil€ He and Be series, respectively. Ne, Mg, and Ar series are
our results the numerical accuracy of a few tenths of mhar@vailable as supplementary data in R&#]. If we consider a

trees in the He. Be. and Ne series and 1 mhartree in the M8IVEN system in one of these tables, the first row deals with
and Ar series. They are given without radial or angular ex1F reference, the second with XLDA, the third with KLI,
trapolations as we estimate this effect to be below 0.1 mha@nd the fourth with KS referencef the KS potential was

tree and thus irrelevant for the purpose of our paper, which i&vailable. - B
the comparison between different potentials. a. Energies of the referenceBhe second column specifies

the expectation values of the HamiltoniaB, Ex pa.
Ekyi, or Exs) with different determinantéHF, XLDA, KLI,
or KS, respectivelyto be compared now. We expectBgr
In this section, we present our results for the energies angh be smaller or equal t&y, pa, Exi i, andEgs by defini-
correlation energies. First, we comment on the effect ofjon. In fact E,r and Ey, are found relatively closeE
changing the nuclear charge in a sef@gstem-specific point =g, in the He serie§9]; for the cases studied, we pointed
of ViEW) while keeping the same variant of potent(&lF, out differences EKLI_EHF) up to 1 mhartree in the Be se-
XLDA, KLI, or KS) for the calculations. Then we specify to ries, of 2—3 mhartree in the Ne seri¢ave will present the
a given system and vary the type of potentiedference- results asc—y, wherex corresponds to the beginning of the
specific point of view. Some general trends are noted, to beseries, ang to the end, 4—5 mhartree in the Mg series, and
commented in Sec. llflwhen HF and KLI potentials are 7..,8 mhartree in the Ar series. A slight increase Bf,,
used with the help of a simplified model developed for that _ E.r with nuclear charge is present; it is however expected
purpose. to disappear asZ—». Exs—Epr is larger thanEy,
1 Svstem- ific point of vi —Eye. It is probably due to a constraint of exact density
- System-specific point of view added to that of localityExs— E.g is 0.03—0.07 mhartree
In Fig. 1, the HF and KLI correlation energids, are in the He series, 2:12 mhartree in the Be serjesThis
plotted with respect to nuclear chargeboth at second-order difference has been used by Valderraetal. [28] to define

B. Energies
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TABLE I. Total energies in the He seri€a.u). Consider a given nuclear char@® in the first column.
We present thémonodeterminantaffirst-order energy ) in the second column, the second-order energy
(E®) in the third column, the third-order energ§’) in the fourth column, the coupled-cluster energy
(Eccsnyy) in the fifth column, and an estimation of the exact total enefgy{c) [22] in the sixth column.

V specifies the potential used for the calculatigr: HF in the first row, XLDA in the second row, KLI in the
third row (and KS in the fourth row when it was availahle

z = EY EYY Eccsoy) Eexact

2 (HF) —2.8617 —2.8990 —2.9009 —2.9037 —2.9037
(XLDA) —2.8578 —2.9125 —2.9053 —2.9037
(KLI) —2.8617 —2.9100 —2.9056 —2.9037
(KS) —2.8616 —2.9101 —2.9056 —2.9037

3 —7.2364 —7.2766 —7.2780 —7.2799 —7.2799
—7.2330 —7.2851 —7.2814 —7.2799
—7.2364 —7.2839 —7.2813 —7.2799
—7.2364 —7.2840 —7.2813 —7.2799

4 —13.6113 —13.6530 —13.6541 —13.6556 —13.6556
—13.6080 —13.6592 —13.6567 —13.6556
—13.6113 —13.6585 —13.6566 —13.6556
—13.6113 —13.6586 —13.6566 —13.6556

5 —21.9862 —22.0289 —22.0298 —22.0310 —22.0310
—21.9830 —22.0338 —22.0319 —22.0310
—21.9862 —22.0333 —22.0318 —22.0310
—21.9862 —22.0333 —22.0318 —22.0310

6 —32.3612 —32.4045 —32.4053 —32.4062 —32.4062
—32.3580 —32.4086 —32.4070 —32.4062
—32.3612 —32.4082 —32.4070 —32.4062
—32.3612 —32.4082 —32.4069 —32.4062

7 —44.7362 —44.7799 — 44,7806 —44.7814 —44.7814
—44.7330 —44.7834 —44.7821 —44.7814
—44.7362 —44.7831 —44.7821 —44.7814
—44.7361 —44.7831 —44.,7820 —44.7814

8 —59.1111 —59.1552 —59.1559 —59.1566 —59.1566
—59.1080 —59.1583 —59.1572 —59.1566
—59.1111 —59.1580 —59.1571 —59.1566
—59.1111 —59.1580 —59.1571 —59.1566

9 —75.4861 —75.5305 —75.5311 —75.5317 —75.5317
—75.4830 —75.5332 —75.5323 —75.5317
—75.4861 —75.5330 —75.5322 —75.5317
—75.4861 —75.5330 —75.5322 —75.5317

10 —93.8611 —93.9057 —93.9062 —93.9068 —93.9068
—93.8580 —93.9082 —93.9073 —93.9068
—93.8611 —93.9080 —93.9072 —93.9068
—93.8611 —93.9079 —93.9072 —93.9068

11 —114.2361 —114.2809 —114.2814 —114.2819 —114.2819
—114.2330 —114.2831 —114.2823 —114.2819
—114.2361 —114.2829 —114.2823 —114.2819
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TABLE II. Total energies in the Be serida.u). Same legend as in Table I.

z EV E$/2) E{?) ECCSI}V) Eexact
4 —14.5730 —14.6493 —14.6538 —14.6668 —14.6674
—14.5723 —14.6983 —14.6713 —14.6667
—14.5681 —14.6997 —14.6712 —14.6667
—14.5712 —14.7022 —14.6710 —14.6667
5 —24.2376 —24.3254 —24.3314 —24.3482 —24.3489
—24.2367 —24.3824 —24.3556 —24.3481
—24.2326 —24.3841 —24.3557 —24.3481
—24.2350 —24.3893 —24.3547 —24.3482
6 —36.4085 —36.5059 —36.5134 —36.5341 —36.5349
—36.4075 —36.5711 —36.5435 —36.5340
—36.4035 —36.5731 —36.5436 —36.5340
—36.4047 —36.5830 —36.5414 —36.5341
7 —51.0823 —51.1883 —51.1973 —51.2219 —51.2229
—51.0813 —51.2620 —51.2330 —51.2218
—51.0773 —51.2642 —51.2332 —51.2219
—51.0771 —51.2816 —51.2288 —51.2220
8 —68.2577 —68.3716 —68.3820 —68.4107 —68.4118
—68.2566 —68.4539 —68.4234 —68.4106
—68.2527 —68.4563 —68.4236 —68.4107
—68.2506 —68.4848 —68.4153 —68.4110
9 —87.9341 —88.0555 —88.0674 —88.1001 —88.1012
—87.9330 —88.1465 —88.1143 —88.1000
—87.9291 —88.1491 —88.1145 —88.1000
—87.9249 —88.1907 —88.1005 —88.1004
10 —110.1110 —110.2396 —110.2530 —110.2898 —110.2910
—110.1099 —110.3396 —110.3054 —110.2897
—110.1060 —110.3423 —110.3057 —110.2897
—110.0991 —110.4043 —110.2801 —110.2904
11 —134.7884 —134.9240 —134.9389 —134.9798 —134.9810
—134.7873 —135.0329 —134.9968 —134.9796
—134.7834 —135.0358 —134.9971 —134.9797
12 —161.9661 —162.1085 —162.1249 —162.1699 —162.1711
—161.9649 —162.2264 —162.1884 —162.1697
—161.9611 —162.2295 —162.1887 —162.1698
13 —191.6440 —191.7931 —191.8110 —191.8601 —191.8613
—191.6428 —191.9200 —191.8800 —191.8600
—191.6390 —191.9234 —191.8804 —191.8600

near degenerac¥y, pa— Ene is also more important: <43 not unique in our case. It is most often definedaim initio
mhartree in the He series, 5 mhartree in the Be seriegpproaches as the difference between the exact nonrelativis-
20— 11 mhartree in the Ne series, 7.3 mhartree in the tic and Hartree-Fock energi¢29], but in density-functional
Mg series, 22-20 mhartree in the Ar series. theory, Exs is used instead oEye (see, e.g., Levy30]);

b. Total energiesAt this stage, it would be usual to Eyx,pa [13] or Ek,, [12] can be used as well. In order to
present the correlation energies. The definition is, howevegompare the results obtained starting from different refer-
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ences, we present in the tables the total energies. For a given TABLE Ill. Percentage of monoexcitations in the correlation

system, the following levels of approximation are reported:energies, using KLI, XLDA, and HF potentials in the He, Be, Ne,

second and third orders of perturbation theoB(? and Mg, and Ar series. In the notation—y, x designates the first and
3y . the last term of the series.

Ey’) in columns 3 and 4, respectively, coupled cluster

(Eccsnyy) in column 5 and exactHy,c) estimation22] in

column 6. We recall that the potentialsused are HF in the

Series E{, Eccsokin E@pa Eccsoxipa  Eccsohr

first row, XLDA in the second, KLI in the third, and KS in  He 0 0 16-6 8—6 -0
the fourth. Be 1-0 1—0 42 52 -0
The second-order total energies are found extremely sen-Ne ~ 0—1 0—1 5-3 4—3 -0
sitive to the potential usetsee column 3 and Fig.) 1 Mg 1 1 4—2 32 -0
As a rule, the second-order energies based on XLDA, Ar 1 1 3—2 3—2 -0

KLI, and KS are lying much below those obtained with HF.
The difference€(?—E{), range in 13-2 mhartree in the
He series, 49-127 mhartree in the Be series,-828 mhar-  diexcitations, the latter being still dominafgee Table II):
tree in the Ne series, 9475 mhartree in the Mg series, and the contribution from the monoexcitations to the correlation
158— 144 mhartree in the Ar series. With the XLDA poten- energy is below 1% with HF and KLI, it is below 10% with
tial, the second-order energies are even lower than those witkLDA (in addition, it is generally found negative when the
KLI or KS. EZ2—E@),, ranges in 13-22 mhartree in the KLI and XLDA potentials are used, whereas it is always
He series, 58-130 mhartree in the Be series, £330 mhar-  found positive with the HF potential Thus, unfortunately,
tree in the Ne series 16678 in the Mg series, and 166148  changing the reference potential in the CCSD procedure does
in the Ar series. Third-order perturbation thedgsge column  not make up for the missing higher than double excitations.
4) slightly lessens the above differences. For instai{®  In a nutshell, it seems th&® is strongly reference depen-
—E{Y, spans 4.7:1 mhartree in the He series, 89  dent whereaEqcgp is not. Note that the same observation
mhartree in the Be series, 4910 mhartree in the Ne series, holds not only for the total energies, but also for the corre-
25—29 mhartree in the Mg series, and-342 mhartree in  lation energiegsee Fig. 1L Moreover, it is to be noticed that
the Ar series. the KS potential behaves quite similarly to KLI with respect
In striking contrast to second and third orders, the agreeto the preceding points.
ment between coupled-cluster results starting from different
references is very goo@ee column b This is of course not
surprising, taking into account Thouless’s theorggt]. Of Those concerned with improving methodology in quan-
course, the choice of the reference is immaterial in the Héum chemistry are concerned with not only accuracy; the
series, as CCSD is exact for two-electron systems. Howeverapidity of convergence is also a valuable criterion. In the
as electrons are added to the system and higher-order exg¢ireceding section, we observed that CCSD calculations per-
tations omittedtriple, quadruple, ety, CCSD is expected to formed with HF, XLDA, KLI, and KS potentials were close.
stray from the full configuration interactiofCl). As a con- However, as will be seen below, they present very different
sequence, different choices for the reference should noonvergence schemes. We plotted in Figs. 2—4 for the He,
longer be strictly equivalent: In factEccspnry and — Be, and Ne series, respectively, the changes of the total en-
Eccsouy are found to differ by 8+ —0.2 mhartree in the ergy during the coupled-cluster iterations, with respect to the
Be series, 2-0.2 mhartree in the Ne series, 8:5-0.2  converged value and when starting from different potentials
mhartree in the Mg series, and 0-®.4 mhartree in the Ar (HF, KLI, XLDA; and KS when it was availab)e For the
series.Eccspmr — Eccsoxipa) iS zero in the Be series, Mg and Ar series, see Reff34]. _
1—0.1 mhartree in the Ne series, 8:2- 0.2 mhartree in the As a rule, (@) we observe thaEccsynr) is generally
Mg series, and 0 0.4 mhartree in the Ar series. approached from above wherea&ccspxips and
Concerning the absolute accuracy of the CCSD methodEccsnkiiy are approached from belowb) the convergence
the CCSOHF), CCSDXLDA), and CCSIKLI) calcula- is usually significantly faster with KLI and KS than HF. In
tions are compared to the estimated exact va[@2 As  particular, the well-known pathological Be atdig2] is al-
expected, all values are identical in the He series. Théeady converged to IG a.u. at the third coupled-cluster
discrepancies with respect to the exact values arderation using KLI. By contrast, we should go up to iteration
—0.7— — 1.4 mhartree in the Be series,9.5——0.7 mhar- 29 using HF to get a comparably converged result. In order
tree in the Ne series<9.5 mhartree for the Ne atgm to understand poir(e) we have to remember that the second-
—6.8——2.7 mhartree in the Mg series, ardl4.8——3.0  order perturbation theory was used as a guess for converging
mhartree in the Ar series. By comparinBccsonr) the numerical coup_led—cluster equations iteratively. On the
—EccsoKLi or xLpA) With Eexac— EccsmHF or KLi or XLDA) other hand, according to Tablgs | and II', tables from 'Ref.
given just above, we conclude that the absolute error of thé34] for the Ne, Mg, and Ar series and Fig. 1, the relations
CCSD method is in any case much more importam to ~ Ee>Eccsorry and EQ <Eccspkiy generally hold
one order of magnitudehan the change induced by varying (with the exceptions of Ne, Na and Md*, where E{2)
the reference between HF, XLDA, and KLI. This invariant <Eccspnr)). We have not studied in detail the source of
indicates a compensatory role of the monoexcitations anthe difference between the convergence behavior when using

C. Convergence
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FIG. 2. DistanceAE. ccspto the coupled-cluster correlation enefgyccspduring the iterations; we used successively the(H#shed
line), XLDA (dotted ling, KLI (full line), and KS(large dot$ orbitals. Note that in the He series, the XLDA, KLI, and KS curves are
superimposed below zero.

the HF or the KLI potential§point (b)]. However, we would We add that the calculations based on the KS potential
like to mention some thoughts on this subject. One possibl¢for the cases treated hgreehave quite similarly to those

explanation for the convergence behavior is the startingased on KLI, in contrast with HF. The calculations based on
point, which is different in HF and KL[point (a) above.  XLDA potential often behave similarly to those based on

Another possible explanation is related to the energy dek||, but an oscillatory convergence is observed in some
nominators which appear when computing the corrections tgaseqsee Ne in Fig.

the expansion coefficients of the wave function. As the dif-
ference between the occupied and unoccupied orbital ener-
giesAce is larger in HF than KLI, one may expect a smaller
change from one iteration to the next in HF with respect to The energies were calculated in Sec. Il B numerically, for
KLI. Afurther example going in this direction is the potential different systems and by using different approximations. In
Vimodel 10 be defined at Sec. Il B 2 for Né. In that case, order to refine our previous interpretation, we reinvestigate
A€ is intermediate between HF and KLI's. At the same time,here the same calculations, analytically and at lafge
the convergence curve &, ,q4e1 (S€€ Fig. 3 lies between Linderberg and Shull21] have already performed 2 ex-

IIl. INTERPRETATION A LARGE Z

those of HF and KLI. pansion of the full-Cl equations. They showed that for some
AE.ccsp (mhartree) AFE. ccsp (mhartree)
10 30
' | \
751 \
\ 200 N\
\ \
5 AN AN
AN \\
N
N ot x S
25 ~ x
3 ™~ - x S~ -
~ - 3 X% T e—
Te— OF——e oo o 4 6 5 5 & 5 F W -w—a—t
0 —a °
3 5 7 9 113 15 17 3 5 7 9 113 15 17
iteration iteration
(a) Be (b) Neft

FIG. 3. Four-electron systentsame legend as in Fig).2V 04 POtential of Sec. 11l B 2 is marked with cross@mly for Né*). Note
that in the Be series, the XLDA, KLI, and KS curves are superimposed.
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AE. cosp (mhartree) AFEcccsp (mhértree)

4 6 8 4 6 8

tteration iteration
(a) Ne (b) Calot

FIG. 4. Ten-electron systenfsame legend as in Fig. 2, except KS for'®&anot availablé. Note that for C¥*, the XLDA and KLI
curves are superimposed.

systems where near degeneracy is preg@at Mg, and Ar B. The correlation energy in approximate methods
series in our cagethe exact correlation energy has a princi- to first order in Z at large Z

pal contribution linear withZ at large Z. By contrast, in
closed-shell systeni$ie and Ne series in our caghis term ) . )
is zero and the next one in the development a constant. Our A 9eneral feature of the correlation energy within a series
purpose now is to follow the same procedure in case of ap'S the following. First, it has no quadratic componentzin
proximate methods for calculating the correlation energies NN the linear coefficient i can only result from intra-

(perturbation theory and coupled cluster based on differen\falence excitations in the hydrogenic spectil (cf. Ap-

potential$ and see to what extent the results are changed. H':_xend|?< B. Thus,.m qlosed-shell systel_(ISe and Ng serigs
. i : no Z-linear contribution to the correlation energy is expected
and KLI will be discussed in the present. Only the conclu-

. ; ) .~ (within these series, the first nonzero contributions should be
slons are rgported In Secs. lll A.and Ill B; for more details 5 constant This result is in accordance with our full calcu-
the reader is referred to Appendixes A and35]. We cau- |3ions (see, for instance, Fig. 1 for=V,e andVy,,): the
tion the reader that in this section all the energies are d'séecond-order and CCSD correlation energies are nearly con-
cussed in atomic units to make the comparisons with Sec. Wiant within the He and Ne series, at least at laZgeBy
easier. However, the corresponding appendixes are mostiysntrast, in incomplete shells and closed subshBis Mg,
concerned with modified hartree units as they are more coray serieg, where near degeneracy is present, the correlation
venient for developments with. energy has a nonzerd coefficient leading to the mainly

Z-linear (at largeZ) curves plotted in Fig. 1, both in coupled-
cluster and second-order perturbation theory approximations.
A. A unique reference for defining the correlation energy The correspondingZ-linear coefficients are also given in
to first order in Z Table V in second-order perturbation theory to be compared
with the exact ones estimated by Chakravatyal. [22]. In
In Sec. I B 2, we compared the total energiesbtained  particular, we note that the slopes are ordereek Be< Mg,
with different potentials instead of discussing the correlationgs observed in the calculations reported in Sec. II. Further-
energiesE;, as more usually done in quantum chemistry.more, theseZ-linear contributions are due to diexcitations
The reason for this choice was the nonuniqueness of the
definition of the correlation energy when the model Hamil-  TABLE IV. Z-quadraticE,,, and linearE$" components of the
tonian is changed. However, in this section, we limit ourmonodeterminantal ground-state enefgya.u) in the He, Be, Ne,
analysis of the correlation energy at laigéo first order inz ~ Mg, and Ar series.
as it will be sufficient to reproduce qualitatively most of the - — —
results of Sec. Il B. Under this limitation, the correlation Series Eon (Y
energy is uniquely defined. More precisely, the unique refer-

1. System-specific point of view

: . . X H -1 0.625
ence is found in Appendix A to be thé-hydrogenic system Bg 195 1571001
[36] with associated energfqnZ?+ESHNZ+O(Z% (Eop Ne s 8.770830
and E{Y given in Table I\j. Thus, to first order irnz, the Mg —2.111111 10.567378
correlation energies may be compared in a series as well as Ar —2.444444 17.980333

the total energies, whatever the reference Hamiltonian.
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TABLE V. Exact Z-linear component of the correlation energy ~ TABLE VI. Z-linear contributions to the valence energy gaps
(in a.u): column 1, series; column 2, second-order perturbationA}I(Dl‘)m (in a.u) in the Be, Mg, and Ar series using KLI and HF
theory (KLI referencg; column 3, valence C[22]; column 4,  potentials.
second-order perturbation theadiiyF referencg

- — = — Series Excitation A“E(Dl)KU A}(Dl)HF
Series E&Eo E. EfR-Eo : :

Be 2552p 0.083841 0.215252
He 0 0 0 Mg 3p—3s 0.075034 0.131543
Be —0.015356 —0.011727 —0.005981 3d—3s 0.177976 0.254918
Ne 0 0 0 Ar 3s—3d 0.234040 0.320602
Mg —0.004270 —0.003574 —0.002473 3p—3d 0.141209 0.214558
Ar —0.008642 —0.006927 —0.005704

unique (as it is local attractive asymptote] —(Z—N
only, all monoexcitations in the valence space being zero due-1)]/r, resulting in smaller HOMO-LUMO gaps. For ex-
to angular symmetries. This property is not only satisfied inample, consider the 222p energy gap for N&': it repre-
the series studied, it is specific to spherically symmetric syssented in the full calculations of Sec. Il, 658 mhartree with

tems(cf. Appendix D. KLI versus 1713 mhartree with HF. To first order &) we
obtain the same relative orders of magnitude: 838 mhartree
2. Reference-specific point of view with KLI versus 2152 mhartree with HF. The sensitivity of

In the presence of near degeneracy, the approximate met}{le Méthodsa) on the orbital energies suggests, in particular,
the existence of a potential producing energy gaps interme-

ods fall into two categoriegssee Appendixes A and B for I
details: (a) the methods depending on the choice of the po_dlate between those of HF and KLI and yielding the exact

tential to first order inZ (for instance, a finite-order pertur- correlation energy glready at second-order perturpatlon
bation theory, (b) the methods independent of the potentialthegy' As an |Ilustrat|qn, let us construct such_a potential for
to first order inZ (for instance, coupled cluster or truncated N€ » by using an arbitrary prescription. Consider a class of
Cl, provided the criterion for the truncation is not chosen toPotentials satisfying

depend upon a model HamiltonlarmNotice that if perturba- 1 1. )
tion theory(a) is pushed on as far as infinite order, and if it~ Vpoge(r) =107 — ot EV(KlL),(lor)Jrae’(m’b) ,
converges to the exact result, it should of course become @)
independent of the potential.

For _secoznd—order perzturbation theditype ()] the in- \whereV(), is defined by Eq(C5) of Appendix C anda and
equalltlesELF)> Ecxact™ E(K,_)I are satisfied to first order i@ gre parameters.  For Z=10, 16[ — 1/(10)
in the Be, Mg, and Ar series, as already observed in the full, 4, 5(1) : ; ; e )
calculations of Sec. Il. According to Sec. Il A, the same L/10Vk; (10r)] obtained via hydrogenic orbitals is a rela

. . tively good approximation td/k,,. As seen in Fig. 5, the
holds for the correlation energiésee Table V. Actually, the f . .
first order inZ Mdller-Plesset-like expression for the corre- approximateVi, has practically reached its asymptote for

lation energy(derivation in Appendix B r=1 a.u. The densities of theszand 2 hydrogenic orbitals
9 PP being maximal for 16=5.236 07 and 4. a.u., respectively,
we understand thaty, , has roughly the same attractive be-

~ 1 -~
valence|<(DO,H|z_ — | ®p )| havior upon these two orbitals, resulting in a too small
zS <1 Tij +O(2% (1) HOMO-LUMO gap and a too strong total energy at second-
3) Ae) order peturbation theory, as discussed above. One idea for

increasing the HOMO-LUMO gap would be to add an attrac-
has a dependence upon the model Hamiltonian only througtive component td/y , acting on 2 specifically, and letting

the linear components of the valence energy g)a?%}n (the Vi(r)r
numerator matrix elements only involve Slater determinants

based on hydrogenic orbitals: the ground s@@ and in-

travalence diexcitation®p, ). The relevant\ely), are given

in Table VI for the Be, Mg, and Ar series. For all these
systems, the energy gaps in the valence space are found
smaller with KLI than HF potential. The difference may be -9
attributed to the asymptotic behaviors of these potentials, as

r—oo. Namely, at larg&, the HF potential has the physically
correct(attractive asymptotd — (Z—N-+1)]/r for the occu- "10
pied orbitals and the too repulsive behavie{Z—N)/r for

the virtuals, resulting in too large gaps between the highest
occupited molecular orbitdHOMO) and the lowest unoccu- FIG. 5. PotentiaV,(r) for Ne®" times electron-nucleus distance
pied molecular orita(LUMO); on the contrary, KLI has the r; i=KLI in full line and i =model in crosses.

-7

r (a.u.)

0.1 0.5
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2p unchanged. This component was chosen as a Gaussiatectronic atoms and molecules for attaining chemical accu-
function centered at 16-0.763 932 a.u. in E¢2) (see also racy), cannot be avoided by a judicious choice for the poten-
Fig. 5), because at this distance the radial densityohas a tial. By contrast, the second-order perturbation theory was
secondary maximum whereas it is small fgo.2With this  found very sensitive to the model Hamiltonian. As a rule, the
potential,a= —0.275 935 andb=0.109 424(for instance, local potentials studied here yielded very bad second-order
we obtained E{f) —Ey_ =Eccsnv —-E energies whilst the HF-based results remained relatively
model model modeD Vmodel . . . .

= —1.7237 hartree. This correlation energy is of the order ofood approximations to the exact energies. In a forthcoming
magnitude ten times of that obtained with HF or KLI paper, it \.N'” be _shovv_n that S|gn|f|can'g dependence upon the
(—178.8 and— 179.8 mhartree, respectivelgs we used at potential is obtained in both pertl_eratlpn theory and coupled

clusters when the active space is limited to a small energy

no time the variational principle for generatingmqel- : . .
However, it is stil about 1% of the total energy band. In that case, some potentials will prove more suitable

—110.2890 hartredthe exact{22] being — 110.2910 har- for describing the system-specific contribution mentioned

) above in Sec. IV A. For the present, we also pointed out the
::]ehea}?es ee;;pztr:;ea?érthti ;Oms%gs'\gomﬁtrgﬁmé’ﬁé' (Igvzgr notably faster convergence of CCSD with local potentials. In
than HF's (1713 mhartree Too strong correlation energies particular, the Be atom converged in a very few itera_tions._
are thus not systematically obtained at second-order pertu he reasons why such a fast convergence was obtained in

bation theory, provided that local potentials are used. Morefigjsgn\(’jvh:; I?igg Ioscgrlnzofnt':?)';?};gﬁ:dtsht%ﬂdcgi (ile"ijn
over, asb is increasedthe 2 is lowered and the gap en- cluster e uaﬂions .ma also pbea conceivable, by ins :ctin
larged, it will become too weak. q Y 0¥ INSP 9

In approximations of typeb), the equations were found % LY 07 AR O R BHERES T
strictly potential independent to first order # as for the : P

exact correlation energict. Appendix B. To be specific, in be to try the KLI orbitals_in multireference_calculations, and
the Be and Mg series, as there is only one valence pair to see how they behave with respect to the intruder-state prob-
excited, the coupled-cluster approximation is equivalent totlem for the ground state of Bi@3].
simple and double CI, which gives precisely the exact
Z-linear coefficient of the correlation energy. For the Ar se- ACKNOWLEDGMENTS
ries (eight valence electroiiswe should obtain a difference  The authors want to thank F. Colonna and C. Umrigar for
to first order inZ between the exact and the CCSD correla-communication of the Kohn-Sham potentials; E. Engel, K.
tion energies due to the presence of higher than double eXnkowski, R. J. Bartlett, and G. E. Scuseria are gratefully
citations in the hydrogenic spectrum. acknowledged for helpful discussions on the use of local
potentials in coupled-cluster calculations.
IV. CONCLUSIONS AND OUTLOOKS

Correlated calculations using different potentigldF, APPENDIX A: THE UNPERTURBED HAMILTONIAN

XLDA, KLI, KS) and systemgHe, Be, Ne, Mg, Ar serigs WITH REFERENCE TO THE N-HYDROGENIC
were compared quantitatively in the first p&&ec. I) and SYSTEM UNDER 2 EXPANSION
qualitatively (at largeZ) in the second partSec. Il of the The HamiltonianH of the system withN electrons and
paper. nuclear charg& is partitioned as

a. System-specific point of vieWe found from the above
two approaches that approximate correlation energies in H=Hmnt+V, (A1)

highly charged closed-shell ions could be partitioned into a
system-specific contributioflinear with Z) in case of near Where, is the model Hamiltonian
degeneracy and a mostErindependent contribution. Then,
we can imagine the latter nonspecific part to be given ap-
proximately by a universal model Hamiltonian, the homoge-
neous electron gas for argument’s sake. Another possible
continuation of the preceding analysis would be the extenand the spherically symmetric potent\l, acting on theth
sion to molecules. However, in that case the partition is noparticle of radial coordinatg stands either fo¥ g or Vi .
so obvious: in heteronuclear molecules, sev&rabme into  The solutions of the independent-particles equati®?) are
play, and even in homonuclear molecules, we have the prolthe Slater determinant®, ,, constructed fromN orbitals
lem that the degeneracy degree of the model system would; .,(r) of energye; ,, and satisfying the one-particle equa-
be affected by internuclear distances. tion

b. Reference-specific point of vie@hanging the potential L
from HF to XLDA, KLI, or KS had qualitatively no effect on
the behavior of the correlation engrgy withinya series. Quan- [_ §V2+Vm(r)} bi,m(1)= € mbi,m(1)- (A3)
titatively, it was of weak effect on the CCSD total energy in
regard of the accuracy of the method itself. This result supAmong all the®, .;'s, the ground-state, ,, corresponding
ports, in particular, that the terms not included in CCSD,to the N orbitals with lowest energy is chosen as a starting
such as triple excitationgvhich are needed in complex poly- point for the perturbation. In case of degeneracy, we can

N 1 ,
Hm:;[_zvi—’_vm(ri)}v (A2)
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always choose one of the degenerate determinants arbitrarily B 5 1.

to be @y, In order to make explicit th& dependence at Em=Entz EN+0
largeZ in Eq. (A1) and its solutions, we follow the treatment
of Linderberg and Shu[l21] and change to modified Hartree

units. H is transformed tdH,

1
=1k (A11)

whereE, y and E{Y), are Z independent. By expanding the
energy of the monodetermmantal ground-state wave function

N 3 .
~ 1-. 1 1 1 ®y, to order 1Z, we find
'H=E ——Viz—:+— E =g (A4) "
=1 2 li 21=1 Zrij _ _ . _ . 1
- EOZ<q)0,m|H|q)0,m>:<q)0,H|H|q)O,H>+O(_z): (A12)
and similarly forH,,, z
N ie.,
Hon= V + V(T )} (A5)
- E,=E +1E<1)+0 1) (A13)
with oMz T 2)
o 1 1. _ 1 where
vm(r)z—:+zv$n“(r)+(9 —2) (AB) _ .
r z Eon={Pop|Hu|Pop)

In Eq. (A6), the first term—1/r arises from the nucleus- and

electron attraction only whereag{l)(r) is the 1Z-order B ~
component of the potential modeling electron-electron repul- EN=(PoplZi<; (1)) Dop).
sions. The expressions fa})(r) are detailed in Appendix
C whenV,,=Vye or Vi, . Now, at largeZ, &; , and ¢; ()

can be developed around their infindehydrogenic values

‘e, 4 and ¢; (), respectively, which are solutions of the
N-hydrogenic Hamiltonian

(The numerical results fdEqy andESY in the He, Be, Ne,
Mg, and Ar series are reported in Table )\Dbviously, the
choice for H,, is immaterial inE, to order 1Z [see Eq.
(A12)]. Thus, the correlation energies obtained with different
potentials(for instance V=Vyg, Vi) obey the definition
1.1 E.=E—E,, unique to order Z [the unique reference being

2 (A7)  the N-hydrogenic system, cf. EQA7)]. As a consequence,

the correlation energids, can be compared directly to order

We obtain 1/Z, whenV,, is varied and the total energi@€sare submit-
ted to different approximations.

1 1
1 ~
€im=€nt et O —2> (A8) APPENDIX B: THE CORRELATION ENERGY E¢ TO
ORDER 1/Z IN APPROXIMATE METHODS
o 1~(1) - 1 We ask now the question of the dependence of approxi-
bim(1)=din(r)+ Zd’ivm(r” o ? ' (A9) mateE, on the basis of determinards ,, eigenfunctions of

the one- particle model Hamiltoniaﬂ~$ (such as, e.g., HF,
tions glven by nondegenerate perturbation theory applied torder inZ the same operator as the real Hamiltonfdrthe
Eq. (A3) turned to modified Hartree unih(®)(r) is not  N-hydrogenic Hamiltoniarfy, cf. Eq.(A7)]:

normalized. Then, thed, /'s are constructed fror orbitals HY=H©=Ty. Thus, the correlation energy has no
%: () expanded as in EqA9): Z ordering of the corre- zeroth-orderforrlponent. The first order iZ 18 necessarily
spbnding expression leads to different, asH—H(® contains a two-body operator, while
Hn=Hy+1Z HYP+O(1/z% is a one-body operator. The
~ 1~ 1 1 exact energy does not depend, of course, on the choice of the
D= Pt 7 Pipt O 2) : (AL0)  pasis of thed, , (and thus on the choice Gt,,). However,

approximate correlation energies can dependHp. For
where®, ,; and®{*), (linear combination of the determinants €xample, consider the second-order perturbation theory:
differing from [0 by one spin orbital exactjyare Z inde-
A |<q)0m|H|(I)I m>|2

pendent. The eigenvalues associated wliih, are also ex- ERQ-Ep=> ————, (B1)
panded as 20 Eom—Eim
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where&q‘m differs from ?{‘)O’m by one or two excitations. To EL'm andE,,m (this is often done to guarantee size consis-
order 17, tency. Z expansion of the above equatiofi®4) is obtained

by replacement of{ with Eq. (A4), @, , with Eq. (A10), E,
with Eq. (A13), andc, , with ¢, y+ 1§ + O(1122), ¢, 4
and c§"), being Z independent. Zeroth order then yields
) (Ei 1—Eon)C 1=0, meaning that nonzem , correspond

to those®, , that are degenerate with,,. We are inter-
ested now in analyzing the first-order terms. They may arise

either from first-order matrix elementé®d, | H|®; )™
multiplied by zeroth-order coefficients y,

F DT P 1 HD)
(Pom|H| Dy )= ¢0,H+Z‘Do,m

1. 1
fr¥eh l
+ zq"vm> +0|

<&)E)%r¥1|5l ,H>EI H + <&)O,H |&)I(flr31>‘E0,H

_ Nl (D ol H| D3 ) M5 1
+{ Pop |E<|?'_ Dy
! = <<I)I(,ln)1|(pJ,H>EJ,H+<(I)I,H|q)s,lr)n>El,H
1
+0|—| for |
22) U -
+{ Py 2~_ Py4) Con (B5)
#0 (B2) <1 T
and or zeroth-order matrix elements, | 7| ®; ) multiplied
by first-order coefficients{®) ,
-~ ~ 1 ~ '
Eom—E/ m=Eon—E n+ = (ER—-E®)+0| = AP = ~
om™ Eim=Eon~Ein* 7 (Eom ) z? (D) | | D3, ) OISR = 1481 5C5'n.- (B6)
(B3)

In particular, the first-order correlation energy involves both
terms developed in EqgB5) and (B6), with =0 andJ

If the statesl and O are not degeneratBy,—E, ,, is a tr
#0. In that case, EqB5) is nonzero only ifc; ,#0, i.e.,J

constant independent o, and |(®Dg |H|®; )% (Eom

—E, ) is proportional to 12?; this will not be considered
now. If the statel

(o H|®y ) can be nonzero buEg,—E n=1Z(ES,
~E{0)+0(1/2%) and thus|( Do,/ H|D m)|*/(Eom—E1 m),

being proportional to Z, has to be kept. We will say that

only intravalence excitations can contribute to ordet fid

is degenerate with the state O,

belongs to the degenerate set. It follows tRgly=Eqy in
Eqg. (B5), canceling the dependence upon the potential

through the first-order normalization COﬂditiQﬁ)&%léij)
+ (| @MY =0. Equation(B6) brings no contribution as
J#0. In brief, we showed that first-ordét, is determined
only in terms of zeroth-order coefficierﬁ$’H, with | in the

the correlation energy. Thus, via the energy denominatorgjegenerate set. For sutls, Eqg. (B5) is nonzero only ifJ
the first-order correlation energg’),— E, can depend on the belongs to the degenerate set. Then, @) reduces again

choice ofH,,. We mention also at this stage thatan in fact to 't§ Ia'st term, |.nFjepe~n(cli)er~1t of the~pote£1t(|f;l, due to the nor-
only designate double excitationB}. Actually, we showed ~malization condition(®{ 4|dy ) +(P; 1|5 )=0. Equa-

in Appendix D that the only nonzero monoexcitations con-tion (B6) will never bring a contribution as eithér=J and it
tributing to the correlation energy are those involving orbit-is zero, ol =J (in the degenerate 9eind Eq.(B6) occurs in

als of the same angular symmetry. As a symmetry occurgq. (B4) as <¢I,H|7T[H_EO,H|(I)I,H>EI(,1%:0- We have thus

only once in the valfance shell, they are exactly zero to Qrdeéhown that there is no dependence’gq when determining
1/Z (even for potentials that do not satisfy exactly Brillouin’s ~ ) )
theorem as KL). E. with Eq. (B4) to first order in 1Z. Note that such was

There is a whole class of approximations, such as ClI ustrivially also the case for full Cl.

ing only singly and doubly excited states, CCSD, etc., where

the energy and the expansion coefficients are obtained viaAPPENDIX C: EXPRESSIONS FOR THE FIRST-ORDER

equations of the type
g (D), HL—Eo| ) ) Cym=X1 (B4)

Where<~I>J,m belongs now to a subset of determinants 2qhd

may be zero or may be a function of terms of the typespin

POTENTIALS V (2 AND V &),

Let us definen,(r) andn, 4(r) as the densities of theth
orbitals  ¢,(r) and ¢, u(r), respectively: ny(r)
= ¢a(r) ¢a(r) and ng (1) = (1) pan(r). We have the
relation n,(r)=n, () + O(1/2?). The corresponding total
densities are thusn(r)=3=Y2_n.(r); ny(r)

(Do | H| DL ) (0+#L) multiplied by expansion coefficients =2 T, ,(r) and we havan(r)=ny(T) + O(1/2?).
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vy

When V=V or Vi,,, the electron-electron repulsion
potential contains a Coulombian part of the Hartree type:

Vh(n =3 J %)

nu(r’)

1J’~~

[r=r']

n(r ) dr'=

[r=7'|

dr’+

(CD

PHYSICAL REVIEW A66, 012504 (2002

cupied orbitals with zero constants to guarantee the correct
asymptotic behavior of the potential. However, as thg 1/
calculations are used here to compare with our complete cal-
culations, we considered implicitly that the hydrogenic orbit-
als were filled as the full KLI orbitals for finit&Z. As a

consequence, for Ne series, orﬁypzo and for Ar series

only Egp:O. With these conventions, the fitted full calcula-
tions coincide with the Z expansion for the orbital energies

The part of the potential modeling exchange is reference spee be used in Eq(l).

cific, and we specify its expression below wheén Vg or
VKLI .

2.V
In the Hartree-Fock approximation, eveirh orbital has
its own exchange potentisd, ; e (r):

- ~ o~~~ o~ 1
Vyine(r)=vi(r)=v; y(r)+0O ?), (C2
where
SN S X O N A WL
vi(N=-3 ==
aeocc ¢(r) |I’—I’ |
LS Pan® [ B E)
Z azoce gy y(T) [F=7|
1
+0 7 (C3
and
S = v Gan(D [ DB
P2 X, G T
(CH
3.V ki
In the KLI approximation, the exchange potential

APPENDIX D: ANGULAR SELECTION RULE FOR
SINGLE EXCITATIONS

Let & be any Slater determinant ardef, a monoexcited
determinant constructed frode by substituting the virtual
orbital ¢, for the occupied orbitalp, . In this section, we
find the conditions for having®|H|®})=0. According to
the Slater rules, the monoelectronic part must be zero unless

diagonal, i.e.,I,=I, and my=m,. The bielectronic part
splits into
1 occ 1
<(I) E ro ®;>:E 2< bathp _’¢r¢b>
1<) bij b r12
1
—{ ¢adp P Doy |- (D1)
12

Let us manipulate the right-hand side of EB1) assuming
thata andr are fixed and %/, is expanded as a product of

spherical harmonic¥|r:'<. For the first term on the right-hand

side, we considered only the sum over the subshejlsand
found the proportionality relation

2 (babol b )

VX,KU(?) is an average of Hartree-Fock potentials over oc-

cupied orbital densities,

Veku (M= 2 T(vbm%b) (CH

beocc n(r

and the constants, are

f (Ve ki (D =0p(N))Np(r) if b#HOMO

0 otherwise,
(Co)

wherec,(b=HOMO) is chosen such that, . ,(r) has the

asymptotic behavior— 1/ at larger. For the Ne and Ar
series(systems with more than two valence electyorat

infinite Z, there are rigorously several degenerate highest oc= Ylmf, i.e.,l
r

ocf fdQldQZmelkao q2k2k+l(Y =YY
X(Q) (Y YRV () (D2)
ffdnldQZZ E 2k+1(YEﬁ*Y{‘:fvg)
X(Q)Y*(Q2) (D3)

=f dQ,(21,+ 1)(Y,";a*v{‘:r)(91)\/ﬂ. (D4)

To obtain Eq.(D3) from Eq. (D2), the normalization of the
subshell m, [z',gb?,b(v{zb*v,“;b):(zlﬁ 1)/(4m)] has
been used. To obtain E¢D4) from Eq.(D3) the integration
over(), has been done. The only nonzero result corresponds
to ans symmetry forYy, i.e.k=g=0. Now, focusing on the
integral over(),, the only nonzero term is obtained flﬁf;a

a=!; andmy=m,
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We proceed similarly for the second term on the right-

hand side of Eq(D1):

> (bacbp| bobr)
My

|b s k
4 Max vvMpy/q

ocf f dQldQZmb:E_Ib go q;_k St Y YY)

X(Q) (Y YY) Qo) (D5)

Ib o] k
47 21,+1

= —1)d

mb;|b kZo q;k 2k+1 ) 4

X(—=1)May(2l,+1)(2k+1)

. 1, k
0 00

L1 k)
—Mmy My g

AL BTG
N g D™(@l 12k )

| | k l, I, k
% b r b r (DG)
-my m —q/\0 O O
i L1, K
= (2l,+1)V2l,+1\21,+1
k=0 0O 0 O
l, 1, k| o K [ l, k
X b r ) 2 2 (_a b )
0 0 Omb=—|bq=—k m, my @
» |r Ib k)(_1)2(|b+|r+k)(_1)ma+mb+q (D?)
-m my, ¢
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. 1, k
0 0 0

L, I, k)

= +
IZO(ZIb D 0 0O

X5(|a_|r)5(ma_ mr) (DS)

Equation (D6) comes from Eq.(D5) by expressing the
integrals over three spherical harmonics in terms of the
Wigner 34 symbols. For Eq(D7) the terms are rearranged;
then, we change the signs in a row and permutate two col-
umns in the third 3- symbol. For Eq.(D8) the third 34
symbol vanishes unlesa,=m,+q, i.e., (—1)Ma" M d=1

The orthogonality relation of the Bsymbols over the sub-
shellsm, andgq,

i é(_la ly k)(_l, Iy k)
m=—lpa=—k \ =My My q/{-m m, ¢

:(2|a+1)_15(|a_|r)5(ma_mr),

has been usefld(x)=1 if x=0, 0 otherwisg Finally, the
integral is nonzero only if,=1, andmy=m, . In a nutshell,
we have the following proportionality relation true, indepen-
dent of the orbitals:

<(I)|H|(I);>M5(|a—|r)5(ma—mr)_ (D9)
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