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Introduction

How is it possible to improve a density functional calculation? One
way is to refine the density functional. This route has already been
pointed out by Hohenberg and Kohn (1964) and much progress has been
made along this line (see, e.g., the contributions of Becke, Levy, or
Parr to this volume). On the other hand, it is well-known that wave-
functions can be improved systematically by increasing the number of
Slater determinants used. Several attempts have been made to couple
the latter approach with density functional theory. The purpose of

this paper is to describe such couplings.

Correlation energy density functionals

We will consider first the case of adding a density functional (DF) to
the energy obtained with a one-determinant wavefunction (Hartree-Fock,

HE).

The foundation for such an approach was put forward by Kohn and
Sham (1965). The simplest explanation was given by Levy (1979) in the

following way. The ground state energy DF is given by:

Efol = Fylpl + fve (1)
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where p is the density, v the external potential and F0 the universal

DF defined by
Eolal= 1ryni)np<‘~Fi'1'+\’eel‘i’> (2)

(¥ is a wavefunction giving ¢, T and V__ are the operators for the ki-
netic energy and the interelectronic interaction, respectively). If ¥ is
restricted to one-determinant wavefunctions, then the equation obtained

in analogy to (1) is:

EHF[QI = FHF[p] + fvp (3)

The difference between E [pl and E [p] is a universal functional of

the density and can be used to define a correlation energy DF:

E.lpl = Fylpl - F__ [p] (4)

HF

Other definitions are possible, too (see, e.g., Levy, 1987). The usual
definition of the correlation energy (Léwdin, 1959; Wigner, 1934) ,

EO[QOJ-E 1, gives values which lie between Ec[pHF] and Ec[pofl

HEPHE
(po is the exact ground-state density, [ the HF ground-state densi-
ty; Savin et al., 1986). In general, only EC[pHF] is computed: the errors
made in the approximation of E_[pl are larger than the difference

between Ec[pol and EC[pHF]'

In practice, an expression for E_[pl is needed. The simplest approach

is to make the local approximation:
E_[p]l ~ f I3 s(p(r)) d3r (S)

Here ¢ is an as yet undetermined function. The universality of E_lpl
suggests that ¢ could be determined once and for all in a different type
of calculation in some reference system, and then be used for all other
systems. The most natural choice for determining € is the homogeneous
electron gas. The most widely used analytical expression describing =(p)
is due to Vosko, et al. (1980). It gives differences smaller than 1 per cent
with the Monte Carlo calculations of Ceperley and Alder (1980} and has

the correct asymptotic behaviour for p>0 and p>.
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As mentioned in the introduction, it is possible to refine the den-
sity functional. An important improvement is due to the introduction
of a supplementary dependence into £, namely on the spin polarization
( C=(p¢—p+)/p; o4 and p, are the spin-up and spin-down densities, re-
spectively; Stoddard and March, 1971; von Barth and Hedin, 1972; Pant
and Rajagopal, 1972). A further correction is the introduction of the
dependence on the gradient of the density (Langreth and Mehl,
1981,1983; Hu and Langreth, 1985; Perdew, 1986). Some other extensions
of the local approximation are quoted in Stoll and Savin, 1985. More
recent functionals are those of Becke, 1988; Lee, et al., 1988; and Wilson

and Levy,1990.

The effect of these corrections is illustrated with the values cal-

culated for the dissociation energies of two molecules (in eV):

Method Li, F,
Hartree-Fock 0.2 -1.1
+ local DF 0.5 -0.8
+ local DF + spin-polarization 1.0 -0.5
+ local DF + spin-polarization + gradient correction (Perdew) 0.9 -0.1
exact (Huber and Herzberg, 1979) 1.1 1.7

Two trends appear in these data:
- the HF results are improved with correlation energy DF;

- the improvement may not be sufficient.

These features are documented by a large amount of data - mostly
atomic ionization potentials and electron affinities (see, e.g., Lagow ski
and Vosko, 1988; Savin et al.,1983) or molecular dissociation energies
(see, e.g., Clementi et al., 1989; Miehlich et al., 1989; Moscardo, et al.,
1989). Many applications stress the importance of the first trend. They
range from the prediction of the stable negative ions of the alkaline-
earth-metal atoms (see, e.g., Froese Fischer et al., 1987) to the discus-
sion of the f-occupancy in cerocene (Dolg et al., 1990). A long-time
domain of application has been that of clusters (see, e.g., Flad et

al.1984; Savin et al., 1988; Fantucci et al., 1990). Correlation energy



216 A. Savin

density functionals have also been applied for correcting solid-state
HF calculations (see, e.g., Causa et al., 1987) or for the construction
of water-water interaction potentials used for the Monte-Carlo simu-

lation of liquid water (Caravetta and Clementi, 1984).

Theoretical justification for a coupling of CI with DF

It has sometimes been suggested that the correlation energy be re-
defined (see, e.g., Clementi,1965). This comes from the observation that
often a few (‘near-degenerate’) configurations have important energy
contributions. Well-known examples are the Be-series or the H, mole-
cule at large inter-atomic distances. It is not a problem to deal with a
few more configurations in a wavefunction treatment. One should have,
however, a definition which permits the use of a density functional
which does not include the correlation energy already introduced by
the multi-determinant wavefunction in the configuration interaction

(CI) calculation.

The most transparent way to define a DF for a part of the corre-
lation energy closely follows equations (1)-(4). There FHF[Q] was de-
fined by restricting ¥ to one-determinant wavefunctions. If ¥ is re-
stricted to the set of wavefunctions which can be generated within a
well-defined set of orbitals, then another universal DF can be gene-
rated: FrEp]. (FHF is a special case of Fr). The correlation energy which
cannot be generated within the chosen set of orbitals is, in analogy to

(4):

Ec,r[p] = Eo[p] - Er[p] =F Lol - Fr[p] (6)

Here E]_[p] = Fr[p] + _[vp. Ec,r depends not only on p, but also on the

chosen set of orbitals.

In order to make use of such a definition the set of orbitals has to

be defined. Many choices are possible. Although energy-optimized
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(Multi-Configuration Self-Consistent-Field, MCSCF) orbitals were al-
ready used with success (Miehlich, 1990; Miehlich, et al.,1990) this
paper will emphasize the use of natural orbitals (NO: they diagonalize
the first-order density matrix, v; the eigenvalues are their occupation
numbers, vis Lowdin, 1955). A density matrix can be generated - in the
present theoretical formulation - by Y minimizing Fo[p]. (Another

possibility would be to use functionals of v; Levy, 1979).

One reason for using natural orbitals is related to the experience
showing that NO with large v; describe important, molecule-specific
effects. Another reason is seen by analysing the homogeneous electron
gas, where the NOs are plane waves {(Davidson, 1972): with small vi
they have large momentum and are used to describe short-range
effects. It thus seems natural to include orbitals with large v, in the
CI calculation for Er‘ while a density functional (local approximation)
might work for Ec,r'

The local characterization of the separation into the two sets of
orbitals (one for Er the other for Ec.r) is still not specified. Here
there are several possibilities too, and only more theoretical work and
more numerical experience can show the best choice. For example, one
could select the largest contribution to p of a NO not included in Er’
vilcpilz, and take the corresponding v;=v as an indicator of the sepa-
ration. With this definition of the orbital sets, the symbol Ec,v will be

used instead of E_ .
c,r

In order to use equation (6) an approximation for Ec - has to be
found. It is hoped that a local approximation would work better if

near-degeneracy effects are removed by including them in Er'

Approximations in the coupling of DF with CI

The purpose of the present section is to show how a local approxima-
tion is generated for E_, and to how molecular calculations are per-

formed.
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In analogy to equation (5),
E. fol~ [ o <o) elo.w) (7)

where ¢ has retained the meaning of equation (5) and the function ¢
has to be determined. As usual, 2 homegeneous electron gas calculation
is used to this end. The totai correlation energy per particle is known
(¢): the contribution of the plane waves with occupation number larger
than v (momentum smaller than kv) to the correlation energy per par-

ticle (¢ ) must be computed; the difference e-¢_is =o.

In order to obtain k , the momentum distribution of Pajanne and
Arponnen (1982) has been used. A comparison made by these authors
with unpublished Monte-Carlo data of D. Ceperley underlines its relia-
bility. For =_ the coupled cluster calculation of Freeman (1977) was
followed. It gives errors of a few mhartree in =. Finally ¢ was obtained
from Ivzr/s', where ¢' is the value for £ obtained by Freeman. A simple

analytic formula which fits the comuted values for ¢ acceptably is:

olp,v) = (u/v1)0.329 (v<\:1) (8)

173 ,nd atomic units are used.

where vj:(1.+8.45/r5)_1, r_=[3/(4me)]
With this formula the errors in t'¢ are less than 2 mhartree for
Q.2= rssIO and v>0.0001. v, approximates v for kv approaching the Fermi
momentum. As go should not be larger than &, one can use p=1 for
vy

For molecular calculations natural orbitals have to be produced.
Presently, CI calculations are used to this end, but there is reason to
hope that simpler methods could be used. Afterwards, a decision has
to be made about the space to be treated in a wavefunction calculation
(to give Er)‘ Often chemical intuition helps to detect near-degeneracy;
experience shows that v=0.01 can be recommended for neutral sy-
stems. A good test for the choice seems to be the function o itself.
The integral over the density in the region of space where v is larger
than v, (i.e., larger than permitted by the density in the correspon-

ding homogeneous electron gas) should be zero if equation (7) is applied.
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This integral gives a ‘'number of electrons which are not properly des-
cribed within the local approximation. For EC v equations (7) and (8)

are used.

The end of this section will be devoted to a few remarks on the
approximate procedure presented here.
{. The method does not contain any empirical parameter.
x Ec.\J does not depend on the spin polarization.
. A system consisting of isolated electrons has no correlation energy.

- W M

. For v=0 => Ec,v_)o’ and thus the exact correlation energy is obtained

in principle (throughE ).

5. Approximations are made in practice, for E]_, too: limitations in the
basis sets and classes of excitations considered. Thus, results may
become worse if v is reduced to much.

6. With a local DF the energy is still bounded from below. The bound

may differ from the exact energy.

Different couplings of DF with CI

The first contribution to a combined DF and CI method is due to Lie
and Clementi (1974). They indicated that chemical intuition is not suf-
ficient for choosing the relevant determinants for CI and faced the
problem of the double counting of the correlation energy. (With their
procedure a DF contribution is added to the CI energy, even if the lat-

ter is practically exact.)

Colle and Salvetti (1979, 1983) have described a procedure which
ensures that no density functional contribution is added to the corre-
lation energy when the wavefunction is exact. This was achieved by
using the behaviour of the two-particle density matrix for short inter-
electronic distances. This kind of approach is appealing and several
publications exist which document its good quality (Colle and Salvetti,
1979. Amaral and McWeeny, 1984; Montagnani et al., 1984; Amaral, 1985;
Moscardo et al., 1989; San-Fabian, et al., 1990).
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The derivation of the approach of Colle and Salvetti has, however,
been criticised. They assume that the density functional is simulating
the behaviour of a wavefunction with correlating factor. This ansatz
has been shown to give very poor results in a variational Monte-Carlo
calculation (Moskowitz et al., 1982): 3 per cent of the correlation
energy of the Be atom (the DF gives nearly 100 per cent). A different
derivation is given by Cohen et al., 1980, but it assumes that the Har-
tree-Fock first-order density matrix, v, is a good approximation to the
exact one. Furthermore, with the DF of Colle and Salvetti no correla-
tion energy is obtained for a fully polarized system. As these difficul-
ties will certainly be overcome in the future it may be concluded the
coupling scheme of Colle and Salvetti deserves much more attention

than it has received up to now.

Several other attempts to couple CI with density functionals were
less successful. Savin et al. (1984) tried to define pair energies with
DE but the differences between different possible definitions often

exceeded 0.01 hartree.

Fritsche (1986) has suggested to use Kohn-Sham orbitals for CI
calculations, but the short-range effects present in the DF are thus

lost.

Stoll and Savin (1985) have suggested the use of a modified
two-particle interaction in the wavefunction calculation, and then
correcting it by a density functional. The modified electron-electron
interaction should have a local character, and this is inconvenient in

CI calculations.

Roos et al. (1987) have used the idea of a modified Hamiltonian
which depends on the averaged density and the second-order density
matrix, following Colle and Salvetti. The authors conclude that the
Hamiltonian should depend locally on the density, but that this is not

feasible in practice.
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The scheme of Ziegler et al. (1977) to calculate multiplet splittings
in the Hartree-Fock-Slater method, has been applied to correlation
energy density functionals (Stoll and Savin, 1985). This corresponds to
a shift of the diagonal elements of the Hamiltonian matrix with den-
sity functional contributions. Like the new method of Colle and Sal-
vetti (1990), which also adds DF contributions to the non-diagonal
elements of the Hamiltonian matrix, it does not allow for a proper ba-

lance of the CI and DF contributions.

Good results have been obtained using variants of the procedure
presented in the preceding section. It is possible to define a global v
(Savin, 1988), for example by assuming that all Icpilz have similar values.
This is reasonable as long as the NO are used to describe correlation
in a given region of space. (Usually v is much larger for the valence
region than for the core region.) To compensate for this approximation
a gradient correction (following Perdew, 1986) was necessary in equation
(7). Using a global v reduces the sensitivity to the quality of the NOs.
Results with this approach are published (Savin, 1988,1989) and some

will be presented later.

Another possibility for Ec.r is to use only the information
needed for obtaining E_. This is convenient when MCSCF orbitals are
used. Such an approach has been tested (Miehlich, 1990; Miehl‘ich et al.,
1990) and found to give accurate results when a gradient correction is
included. The results could be further improved by using the two-par-

ticle density matrix.

Results obtained by coupling DF with CI

In many cases near-degeneracy effects are not important. In these cases
the correlation energy is expected to be represented well by a DF alone.
Ec,v will in general be smaller than the correlation energy in the usual
local approximation, because in these cases v is expected to be smaller
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than v . A typical example is given by the He series, where the local
approximation gives correlation energies which increase logarithmically
(Perdew, et al., 1981). Calculated Ec.u values (up to Nel?) are around
{ eV, as they should be, while the usual local approximation gives 3 eV

for He and 5.5 eV for Ne®™.

A typical case where near-degeneracy is present is that of the Be
series (Linderberg and Shull, 1960). The nearly linear increase of cor-
relation energy with Z , due to the near-degeneracy of the 2s- and
2p-orbitals, is not reproduced by density functionals. The effect can
be seen also on the NO occupation numbers. For o** Vi © 0.04 while
the next v, is less than 0.001. If the 2p-orbital is used in the calcula-
tion of E_, the energy is lowered by 98 mhartree, with respect to Har-
tree-Fock. Further 55 mhartree are given by Ec,v‘ giving good agree-
ment with the ‘exact’ value of 154 mhartree. If the 2p-orbital is not in-
cluded in the calculation of E_ (but in that of Ec.r} vy, for one third
of the electrons and the correlation energy obtained is too large by

67%.

It is surprising that the functional of Colle and Salvetti does not
seem to behave correctly in the Be series. San-Fabian et al. (1990) have
shown that after including the near-degeneracy effect into the wave-
function calculation, the DF adds only 36 mhartree to the correlation
energy of 0%*(it gave 42 mhartree for 0®" and 53 mhartree for Be). A
plot of the values obtained for the correlation energy by San-Fabian et
al.(1990) shows that the nearly linear increase of the correlation ener-
gy with Z, which is present in El_. is lost after the addition of the

Colle-Salvetti density functional.

Other well-known near-degeneracy effects are present in diatomic
molecules. For example, the 30u—orbitai not occupied in the HF-cal-
culation of the O, molecule has an occupation number of =0.04
([5s,4p,2d] basis set of Dunning, 1989). If it is included in the cal-
culation of Ec,r ~ 20% of the electrons are not properly described

{v>vl). This error is eliminated after the inclusion of the 30u-orbital
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into the calculation of Er which gives now 75% of the dissociation
energy. By adding the DF contribution the dissociation energy is over-
estimated by ~6%. Another example is given in figure 1 for the F, po-
tential curves. An error of =0.01 hartree in DF+CI (like in this examples)
was found to be typical for the first-row dimers when the global
approach was used and the CI contribution came from NOs with occu-

pation numbers 2 0.01 (Savin, 1988).

Very good results could be obtained for diatomic molecules with
the method of Colle and Salvetti (Hz' Liz: Colle and Salvetti, 1979; Naz,
KZ: Montagnani, et al., 1984; LiH: Amaral and McWeeny, 1984; FH:
Amaral, 1985).

There are cases where it is difficult to decide whether orbitals
should be included in the wavefunction space or not. Let us consider
the electron affinity (EA) of O. At the Hartree-Fock level its energy is
higher than that of the O atom, while the experimental EA is 54 mhar-
tree. A complete active space calculation including a supplementary
set of p-orbitals for both O and O stabilizes the negative ion with
respect to the neutral atom by 22 mhartree. Thus the supplementary
set of p-orbitals seems essential. CI calculations on top of the
MCSCF calculations above give 41 mhartree for the EA. (The 13s,8p basis
set of vanDuijneveldt (1968) was used, after extension with diffuse s-
and p-functions and the 2d,if-functions of Dunning, 1989). This CI
calculation was used to generate the NOs. If the space used for MCSCF
defines that for E_, the CI+DF calculation gives an EA of 65 mH and
less than 1 per cent of the electrons are not properly described by the
local approximation (in O, using the criterion v>vl}. What happens if
the supplementary p-set is eliminated from Er? The test value related
to v>v stays at 0 for O, but climbs up to 0.6 for O . Thus, it can be
expected that the HF set of orbitals may be sufficient only for 0. If
this calculation is performed, Er increases by 39 mH, while Ec,v de-

creases by 43 mhartree and only a minor change occurs in the EA.

Sometimes the appearance of near-degeneracy configurations
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Figure 1. Potential energy curves for the F, molecule. The curves were
shifted to a common zero for R+, -
{: CI contribution to DF+CI (not to distinguish from a two confi-
guration MCSCF calculation)
2. NO-generating CI (no energy contribution in DE+CI)
3: 'exact’ (Lie and Clementi, 1974)

4: DF+CI
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Figure 2. d”s? = d"*'s' (Sc.Ni) and d""'s" » d™*? (Ni, Cu") transition
energies. Comparison between experimental, CI+DF and NO-gene-
rating (CEPA-1) values.
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seems surprising, as it is for the szpsd—configuration of Ne® which
lowers the sp&—coﬁguration by ~ 2 eV. It was shown that the coupling
of DF with CI also works reasonably in this case, giving a good value
for the szps = spb transition energy (Savin, 1989). This is a case where
exchange-correlation density functionals are known to give an error of

a few eV (Gunnarsson and Jones, 1985).

As a final example let us consider some s - d transitions, shown
in figure 2. They were obtained by using the quasi-relativistic pseu-
dopotentials and basis sets given by Dolg et al., 1987, and the global
cutoff for DF+Cl. The NOs were generated in a Coupled Electron Pair
Approximation (CEPA-1, Meyer, 1975), with results similar to those of
Werner, 1984. Ni calculations were done also using MCSCF calculations,
obtaining similar results. Only a supplementary set of p-orbitals was
considered for inclusion into Er for the dnsz—configuration (mainly
correlating the s-pair). The calculated d™*'s - d™*? transition energy
has a pure DF correlation energy. For the d"s?>d™"! transition, the DF
corrected the Er result by 0.02 and 0.08 hartree (Sc and Ni, respecti-
vely).The result is much improved over usual DF (cf. Lagowsky, Vosko,

1988; Cortona, this volume).

Although it is evident that the DF brings a significant correction
to the CI contribuition to Er’ it is less clear that an improvement is
present when the NO-generating CI is considered. In all the examples
presented here acceptable CI calculations were attempted in order to
reduce the sources of errors. It turned out, however, that in most
cases the use of DF+CI reduced the errors present in the NO-genera-
ting CI. In the examples of the dissociation energies of the diatomic
molecules this effect gave 0.01 hartree (or an improvement by a factor

of two).

How far is it possible to reduce basis sets and the CI expansion
and still get a reasonable result? This question can be answered only
after much more testing is done. Several calculations (global cutoff)
seem to indicate that it is possible to go quite far. A three-configura-

tion calculation for generating NOs in H2 (Iog, 10u and 20g) gives
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DE+CI results close to that of a large expansion. It seems that the
number of basis functions needed for correlation can also be reduced.
[t has been observed, however, that differences between calculations

of different quality can give rise to errors larger than 0.01 hartree.

Conclusion

The use of density functionals permits a good description of correla-
tion energy differences, as long as near-degeneracy effects are treated

by wavefunction methods.

The typical error of the combined DF+Cl procedures lies within
0.01 hartree. No attempt was made to reduce this limit further because
it seems - at present - to be related to an unjustifiable increase in

computational effort.

The orbital coupling leaves room for many new ideas. Maybe it is
worthwile in this context to reconsider the use of functionals of the
first-order density matrix. Further information might be introduced in
the density functional via the second-order density matrix, as was

done by Colle and Salvetti, 1979, and by Miehlich et al., 1990.
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