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The bonding in KgInll and RbgInl1 has been investigated at the SCF level with the periodic Hartree-Fock 
method. Comparison is made with In11 clusters with formal charges 7- and 8- calculated at the same level. 
The structure of the 7- cluster has been optimized; it significantly differs from the structure observed in the 
condensed phase. The second anion (8-) is found to be dissociative. Moreover, the indium Mulliken 
populations in clusters are dramatically different from those calculated for the solid phase. This indicates 
that the reliability of the cluster approach is highly questionable. The stability of the solid phases is mostly 
due to the electrostatic interactions between the anionic clusters and the alkali counterions. The integrated 
charge density in the cation region is consistent with a picture in which an electron is delocalized over the 
potassium layers. The band structure and density of states of the solid phases are discussed. Both &Inll 
and Rb81nl1 are found to be weak electronic conductors. At the present state of the art, it is not possible to 
assess the charge borne by the indium cluster and, therefore, to decide whether one or more electrons are 
delocalized over potassium layers. The bonding in these systems has been investigated from the topological 
analysis of the electron localization function point of view. The bonding in the In11 anionic clusters is 
characterized by a network of attractors lying 1 A outward from the indium centers. 

Introduction 

The clustering of main group metals in intermetallic Zintl 
phases is a well-documented fact in solid state chemistry which 
has also been more recently observed in liquid alloys.'-* In 
addition, post-transition elements present a very rich cluster 
chemistry in the gas phase which greatly exceeds the number 
of clusters isolated in solid phases probably because of the 
particular thermodynamic conditions encountered in beam 
 experiment^.^ 

Deltahedral main group clusters are described as electron 
deficient, because their number of electrons is not large enough 
to allow the formation of localized bonds along the edges of 
the polyhedron. Stable clusters of the main group elements fall 
into two categories. On the one hand are the highly electron 
deficient clusters of Li and Be and, on the other hand, those 
formed by post-transition elements. For these latter, the classical 
Wade's rules which require 2n + 2,2n + 4, and 2n + 6 skeletal 
electrons for respectively closo, nido, and arachno M, species 
are fulfilled in most cases.4 

Isolated clusters of group 13 metallic elements would carry, 
especially for large n values, excessive negative charges in order 
to satisfy the minimum 2n + 2 Wade's rule requirement for 
the Mn-,-* closo species. Nature provides several ways to avoid 
such huge negative charges, the most widespread being the 
formation of networks of clusters via normal intercluster bonds. 
Electron counting rules, taking into account the fusion and 
linkage of deltahedral boron and gallium clusters, have been 
developed on the grounds of molecular orbital and tight binding 
ideas5 It is worth noting that the previously mentioned negative 
charge is more related to chemical partition of space rather than 
to a system of effective point charges generating an electrostatic 
potential. 
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Other alternatives have also been found for the indium and 
thallium intermetallic phases in which cluster distortions or 
bonding with a heteroatom encompassed within the cage provide 
solid state compounds with discrete cluster units. An interesting 
analogy between fullerenes and transition metal (Ni, Pd, or R) 
centered indium clusters in the indium-sodium system has been 
recently pointed out by Sevov and Corbett.6 Among these 
intermetallic phases, a remarkable example in which distortion 
leads to an unusual hypoelectronic cluster is provided by the 
rhombohedral AgInll (A = K, Rb) ~ y s t e m . ~ , ~  Isostructural 
analogs have been evidenced with thallium.8 Single crystal 
structure determinations reveal an unprecedented type of In11 
polyhedra, the compressed pentacapped trigonal prisms. In this 
structure, layers of indium polyhedra, lying on a 3-fold axis 
are rhombohedrally stacked along the c axis with potassium 
layers both within and between the cluster layers. The applica- 
tion of the Zintl-Klemm concept to AgInl I would result in the 
formulation of an Inlls- cluster with an odd number of 
 electron^.^ Conductivity and diamagnetic susceptibility7 mea- 
surements on the KgInll species show a metallic behavior 
together with a small Pauli paramagnetism consistent with the 
picture in which one electron per cluster unit is del~calized.~ 
The corresponding formal representation of the solid phase 
should then be (K+)gInl17-(e-). 

From a theoretical point of view, these two compounds, 
namely &In1 1 and RbgInl I, have been studied at a semiempirical 
level using the extended Huckel method either on the In] 1 naked 
cluster7 or on the crystalline phases.8 In the cluster, the 
calculation places the last electron ca. 1 eV above the plausible 
HOMO, and to overcome this improbable result it was 
concluded that there were 10 bonding electron pairs and 
suggested that the remaining electron was delocalized over the 
potassium double layers. The periodic calculation of Blase et 
aL8 supports this interpretation. In particular, the density of 
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TABLE 1: Indium Atomic Basis Set 
exponent (bohr-*) s coefficient p coefficient 

Llusar et al. 

? 
I 

1.434 261 1.308 440 0.170 079 
1.278 590 -1.611 305 -0.198 738 
0.152 664 0.792 5 18 0.492 907 
0.050 623 1 .o 1 .o 

states matches the MO diagram of the cluster. The Fermi level 
corresponds to the occupation of 10 doubly occupied In-In 
bonding orbitals. The crystal orbital overlap population (COOP) 
is typical of intermetallic phases. The HOMO area is anti- 
bonding for In-In interactions with strong K-In interactions 
whereas the K-K interactions remain without chemical sig- 
nificance. This periodic calculation does not support that one 
electron should be delocalized over the K layers; instead, the 
excess of electron density should be assigned to K-In bonding 
levels in the HOMO area. However, this conclusion could be 
a consequence of a particular choice of the K parameters. 

In the present paper we present preliminary results obtained 
at the ab initio level on the In11 clusters and on the R3c 
structures. The total number of electrons (i.e., 1382 for the Kg- 
In11 unit cell) forbid any all-electron calculation of these 
compounds. The inner shells of indium and potassium are not 
expected to play a significant role in the bonding. Therefore, 
the calculations have been carried out with effective core 
pseudopotentials allowing a significant lowering of the number 
of electrons explicitly taken into account. Moreover, such 
pseudopotentials take into account relativistic effects which can 
be significant for heavy elements. 

In the second section, the technical details of the calculations 
are described. In the third section, we report and discuss the 
results with a particular emphasis on the comparison between 
periodic and isolated cluster results. Finally, in the last section 
we present some innovative ideas on the bonding in such 
materials based on the analysis of the electron localization 
function. Io  

Method of Calculation 

The calculations on the two clusters InlI7- and In118- have 
been performed with the ab initio Gaussian92 software." The 
very large number of electrons in these clusters, respectively 
546 and 547, prevents performing all-electron calculations. 
Therefore, the core electrons were treated within the effective 
core pseudopotential framework. The pseudopotentials used in 
this calculations are the semilocal ones of Durand and Bar- 
thelat,12 which include relativistic effects. A split-valence basis 
has been optimized, with a contraction scheme analogous to 
the PS-31G sets previously published for main group elements 
of the three first rows.13 The exponents and contraction 
coefficients are given in Table 1. The total energy calculated 
with this basis set for the atom is - 1.8 1 1 777 5 hartrees, which 
is 0.12 hartree larger than the sum of the first three ionization 
potentials of this element. The discrepancy is partly due to the 
missing correlation energy which can be estimated of the order 
of 0.05 hartree from a calculation carried out at the DFT level 
with the Becke's exchange14 and Lee, Yang, and Parr correla- 
tion15 functionals. 

The calculations of the solid state phases have been performed 
at the periodic Hartree-Fock level with the CRYSTAL9216 
program developed in Torino. A documented description of 
the method has been published by Pisani et a1.18 This method 
works within a single determinant approximation of the wave 
function in which the crystalline orbitals are expressed as linear 
combinations of Bloch functions which are themselves expressed 
in terms of the localized atomic basis functions of each unit 

cg 

Figure 1. Geometry and localization attractors in In11 clusters. 

cell. As input, the program requires geometry and basis set 
information together with a set of thresholds which control the 
truncation of infinite sums and a set of shrinking factors which 
determines the sampling k points over the Brillouin zone. As 
output, it provides the unit cell energy, the wave function, and 
related one-electron properties. The program works at the all- 
electron (AE) level as well as with effective core pseudopo- 
tentials (ECP). 

In solid phase calculations the exponents of the diffuse shell 
have to be reoptimized and increased in order to avoid basis 
set linear dependence; the value G~~ = 0.07 has been used for 
both systems. Potassium and rubidium pseudopotentials are 
respectively those of Durand and Barthelat12 and of Jeung et 
aZ.I7 For these atoms the basis set is made by a single sp-shell, 
the exponent of which is 0.15. The reciprocal space integration 
is performed using a commensurate net, the meshes of which 
are determined by the shrinking factor S. S = 6, corresponding 
to 32 k points, has been used for the present calculations; when 
S = 12 is used, the energy change is less than the SCF 
convergence threshold 

Results and Discussion 

11111'- and In118- Clusters. In order to check the reliability 
of the cluster approach, a series of comparative calculations have 
been carried out. Starting from the solid phase structure of the 
In1 1 deltahedron observed in solid phase7*19 which has an almost 
D3h symmetry, the structure of the cluster has been optimized 
with this latter symmetry constraint. 

The labeling of atoms follows the nomenclature of Corbett 
and Sevov7 and is displayed by Figure 1. It is well-known that 
SCF calculations on the polyanion do not lead to a stable state: 
occupied molecular orbitals have positive eigenvalues, so the 
addition of very diffuse basis functions would allow the 
supplementary electrons to be not bounded. In the solid state, 
the polyanion is stabilized by the crystal field. However, with 
a limited basis set it is possible to get some information on the 
bonding from the naked polyanion calculations, although the 
results concerning energy related properties remain questionable. 
Table 2 compares the independent internuclear distances in the 
optimized Inl 17- cluster structure and the equivalent experi- 
mental distances found for the crystalline phase. The bond 
lengths are significantly longer for the optimized isolated In1 17- 

cluster unit. 
The calculated total energy of this species is -18.309 619 8 

hartrees for the optimized In1 17- structure instead of - 18.002 5 1 
hartrees for the Zintl-phase unrelaxed one. Note that, without 
symmetry constraint, the geometry optimization yields almost 
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TABLE 2: Independent Interatomic Distances (A) in Inll 
Deltahedra 

optimized 
In1 17-  clustep KeInl I (exp7J9) 
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systems. The projected density of states (PDOS) and the 
Mulliken population analysis are based on the same projection 
and partition schemes and yield basically the same informa- 
tion: Mulliken orbital population can be recovered by integrat- 
ing the PDOS. These procedures are not strongly built because 
they depend upon how basis functions are assigned to each atom 
and upon an arbitrary partition. Therefore, these kinds of 
analysis have to be handled with care. If the basis set is well 
balanced, qualitative answers allowing the assignment of the 
band structure and the determination of bond polarities can be 
obtained in this way. Though the Mulliken charges have no 
physical significance, their values in a series of polymorphs, 
calculated within the same accuracy and with identical basis 
sets, can be used to discuss trends. 

The charge density, e(r),  is a well-defined physical quantity 
which has a definite value at each point of the three-dimensional 
direct space. In principle, it can be exactly evaluated. However, 
the total charge density is not very informative by itself because 
it is mostly dominated by the core contributions. An attractive 
analysis is provided by Bader's theory of atoms in molecules,21 
which allows a sound partition of the charge density. In this 
theory, atomic basins are defined as parts of the space containing 
an electron attractor (nucleus) and limited by surfaces of zero 
flux in the gradient vectors of the charge density. Moreover, 
the topology of the charge density allows one to define bond 
paths and critical points. The intersection of a zero flux surface 
and a bond path corresponds to a bond critical point. The value 
of the Laplacian of the charge density at bond critical points 
allows to discriminate between closed-shell and electron-shared 
(covalent) interactions. 

Recently, Becke and Edgecombe22 have proposed an electron 
localization function (ELF) which appears to be very attractive 
to discuss the bonding. The ELF is defined as 

In( 1)-In(2) 3.284 
In( 1)-In(3) 3.060 
In( 1)-In(3) 2.967 
In(2)-In(3) 3.054 
In(3)-In(3) 3.102 

4.082 
3.636 
3.636 
3.395 
4.235 

a The optimized cluster has a D3h symmetry constraint. 

the same results except for very small distortions which lower 
the symmetry to D2h. 

The In118- anion has an odd number of electrons; its ground 
state can be a doublet or a state of higher multiplicity. In a 
first step, different multiplicities have been investigated for the 
zintl-phase geometry. The ground state is found to be a doublet, 
the energy of which is calculated 0.065 hartree lower than the 
quadruplet, with the sextuplet and octuplet being above. 
Attempts to find the equilibrium of the In1 i s -  anion failed; the 
cluster tends to dissociate probably because of the excessive 
negative charge. Nonetheless, for the unrelaxed geometry, the 
energy difference between In1 18- and In1 17- clusters, namely 
the vertical electron affinity of In117-, is calculated to be -0.683 
hartree, Le., -18.5 eV. 

It is not possible to perform a direct comparison between 
the Hartree-Fock molecular orbital eigenvalues and the EHT 
MO diagram reported by Corbett and Sevov,' because the orbital 
energies have different meanings in these two approaches. In 
particular, the order of the symmetry orbitals is quite different. 
Moreover, the gap between the HOMO and LUMO is 3 times 
larger for the SCF calculation of In1 17- than for the EHT one. 
Note that the overestimation of the HOMO-LUMO gap is usual 
in the Hartree-Fock calculation. A DFT calculation, in which 
the gap is expected to be underestimated, carried out at the same 
geometry and with the same basis set reduces the gap to 1.02 
eV, while providing the same ordering of symmetry orbital 
which is in the HF approximation. 

Periodic Hartree-Fock Results. The periodic Hartree- 
Fock calculations on KgInl I and Rb~Inl I have been performed 
for the experimental structures of these  compound^.^^^^ The unit 
cell contains two A&II asymmetric units and, therefore, 82 
valence electrons. It is not possible to perform the optimization 
of the structure of these systems at the present state of the art 
because of the size of the basis set and of the number of 
independent structural parameters. The unit cell energies are 
calculated to be -43.1527 and -43.3404 hartrees, which 
correspond to binding energies of -0.940 26 and - 1.247 42 
hartreeskell for &In1 1 and Rb~Inl I ,  respectively. The cohesive 
energy of the lattice has mostly an electrostatic origin. A crude 
electrostatic model, in which a 7- or 8- negative charge is 
located in position 6b, and complementary positive charges 
which ensure the electroneutrality at the potassium positions 
yield electrostatic energies of -7.55 and -9.861 hartreedcell, 
respectively. Adding these to the algebraic sum of the ionization 
potential of the potassium atoms and to the total energies of 
the two In] I*- or In1 1 '- clusters provides total energies falling 
within 1 hartreekell. 

Wave Function Analysis 

The bonding in crystals (or in molecules) can be investigated 
by different techniques. The band structure characterizes the 
nature of the bonding: in closed-shell interacting structures 
(ionic, van der Waals, hydrogen bonded, and molecular crystals) 
its topology is rather flat compared to metallic and covalent 

ELF 1 

in which Da and represent the curvature of the electron pair 
density for electron of identical spins (the Fermi hole) for 
respectively the actual system and a homogeneous electron gas 
with the same density. Savin et ~ 2 1 . ~ ~  have proposed another 
interpretation. They remarked that Da can be identified as the 
Pauli kinetic energy density of the actual fennionic system with 
respect to a bosonic system having the same density. ELF is 
therefore a measure of the bosonic behavior of the electron 
density. Where electrons are alone or form pairs of opposite 
spins, the Pauli principle has little influence, and they almost 
behave like bosons. In such regions the excess local kinetic 
energy is small and ELF is close to 1. At the border between 
these regions, the probability of finding parallel spin electrons 
close together is increased, and therefore ELF has a low value. 
The ELF displays the shell structure of atoms as well as allows 
to discriminate between covalent and closed-shell interactions. 
The topological analysis of the ELF function gradient field has 
given rise to a new classification of chemical bonds based on 
t o p ~ l o g y . ' ~ , ~ ~  In this theory, the ELF gradient field attractors, 
called hereafter localization attractors, are classified into core, 
valence bonding, and nonbonding attractors. A bonding attractor 
is a valence attractor which lies between two (or more) core 
attractors. This allows one, then, to define shared and unshared 
electron interactions according to the presence of bonding 
attractors.I0 Moreover, the ELF gradient field enjoys structural 
stability:20 Le., the quality of the wave function is not very 
important provided it corresponds to the correct electronic state 
of the system. In principle, the topological analysis of the 
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Figure 2. Band structure of K81nll. The origin of the energy scale is 
taken at the Fermi level. 
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Figure 3. Projected density of states of KsInll. 

density and of the ELF function is defined for all electron 
densities only. However, in the case of ELF, reliable qualitative 
answers can often be obtained from pseudopotential calculations. 
In this case, ELF is close to zero in the core regions, and neither 
the location nor the significance (bonding or nonbonding) of 
the valence attractors is significantly changed. 

Figure 2 displays the band structure of &In1 I along the high- 
symmetry lines of the Brillouin zone. The overall topology of 
this band structure is very flat and therefore characteristic of 
an ionic compound. The top part of the valence band, between 
-5 and -3 eV, corresponds to indium nonbonding 5p states, 
as can be seen from the projected density of states in Figure 3. 
The band at the Fermi level corresponds to the crystal orbitals 
delocalized over neighbor clusters and which are responsible 
for the weak conductivity of this system. The atomic orbitals 
involved in these two crystal orbitals are mainly In 5p orbitals. 
The unit cell contains two asymmetric units and an even number 
of electrons. Each independent unit would have a single 
occupied HOMO. Symmetric and antisymmetric combinations 
of the two HOMO (one per unit) give rise to the two Fermi 
level crystal orbitals. The projected density of states does not 
indicate any noticeable contribution of the potassium. 

The population analysis of the two crystalline phases and of 
the In, 17- cluster is reported in Table 3. The excess of positive 
charge on alkali cations, although it should be due to numerical 
round-off errors occurring during the integration of the density 
matrix over the k points, shows that the basis functions centered 

TABLE 3: Mulliken Population@ 

Atomic Net Charges 
In( 1) -0.68 1 -0.742 -0.124 
In(2) -0.846 -0.776 -0.527 
~ 3 )  -0.822 -0.818 -0.929 
M(36f) 1.095 1.095 
M(12c) 1.052 1.057 

Bond Population 
In( 1)-In(2) 0.145 0.149 0.004 
In( 1)-In(3) 0.252 0.25 1 0.128 
In(2)-In(3) 0.234 0.21 1 0.322 
In(3)-In(3) 0.279 0.287 0.0 

a M stands for the cation. 

TABLE 4: Potassium Integrated Density 
radius (bobs) 

2.0 
2.5 
2.75 
3.0 
3.18 
3.5 
4.27 

K (36f) 
0.0123 f 0.0006 
0.048 f 0.005 
0.089 f 0.006 
0.136 f 0.007 
0.185 f 0.008 
0.315 f 0.007 
1.01 f 0.04 

K(12c) 
0.0091 f 0.0003 
0.036 f 0.005 
0.067 f 0.005 
0.097 f 0.004 
0.137 f 0.006 
0.243 f 0.005 
0.79 f 0.03 

total 

0.092 f 0.004 
0.36 f 0.04 
0.67 f 0.05 
1.01 f 0.05 
1.38 f 0.06 
2.38 f 0.05 
7.6 f 0.3 

on these atoms hardly contribute to the occupied crystalline 
orbitals, in agreement with the projected density of states. The 
differences between the net charges calculated for the naked 
and embedded clusters indicate that an important polarization 
of the charge density is induced by the electrostatic field of the 
cations. Without this field, the maximum net charges are found 
for the prismatic In(3) atoms whereas those lying in the 
equatorial plane remain almost neutral. In the presence of the 
crystal field, the charge distribution is more homogeneous. The 
differences between the potassium and rubidium analogs are 
due to inequivalent cationic networks. The bond populations 
between indium are quite large in the solid state phases, 
especially for bonds involving In(3) atoms. The population 
analysis results show that the crystal field cannot be treated as 
a perturbation. Therefore, the relevance of naked cluster 
calculations for the study of such solid state compounds is 
questionable. 

As previously mentioned, the topological analysis of the 
electron density is not possible for pseudopotential calculations 
because atomic basins cannot be defined. However, it is always 
possible to construct spheres which approximate the atomic 
basins. The radii of these spheres are then tunable parameters 
which can be related to ionic, atomic, or promolecule radii.25 
The integrated density over such spheres evaluated by Monte 
Carlo integration is reported in Table 4 for the KgInl I species. 
A sphere radius of 4.27 bohrs corresponds to the crystal radius 
of bulk metallic potassium, whereas K+ ionic and promolecule 
radii lie in the range 2.5-2.87 b o h r ~ . ~ ~ . ~ ~  In principle, this 
sphere corresponds to the core region and is forbidden for 
valence electrons. The rather large integrated electron density 
found at 2.75 bohrs is an artifact due to large core pseudopo- 
tentials. In the actual case, the shortest K-In distance is 7.12 
bohrs, and one can conjecture that the potassium basin should 
extend at a distance larger than 2.87 bohrs. The values of the 
integrated density reported in Table 4 provide a weak support 
to the bonding picture in which one electron is delocalized over 
the potassium layers. However, it is not possible to decide 
between that interpretation and the fully ionic one supported 
by the Mulliken population analysis and the projected density 
of states. 

The localization attractors of the different species investigated 
have been located through a gradient search technique.27 For 
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the two isolated clusters, there are five attractors lying on the 
lines joining the center of the deltahedron to the apical and 
equatorial indiums. Six other attractors are found, close to the 
In(3) atoms. Figure 1 displays the pattem of the attractors in 
the typical case of bInl1. For crystalline systems these 
attractors are outside the deltahedron whereas for the naked 
cluster they are inside. The distance between attractors and 
nearest indium centers are of the order of 1 A. The attractors 
near In(3) atoms are connected by pathways similar to those 
encountered for metals.Io There are also such pathways between 
In(3) and In(2) attractors. There are neither bonding attractors 
nor valence attractors within the potassium layers. Moreover, 
the shorter distances between potassium center and indium 
attractors are respectively 3.24, 3.32, and 2.2 8, for In(l), In- 
(2), and In(3). The attractors near the In(1) centers are close 
to the middle of the pyramids formed by one potassium and 
four In(3) atoms and indicates therefore a possible five-center 
bond involving these atoms. 

The configuration of the valence attractors, though it is 
consistent with the weak conductivity measured for these 
systems, is very puzzling. It does not correspond to any well- 
known representation of the chemical bond. This situation 
corresponds to a shell of valence electrons experiencing a central 
potential. in the case of a spherical potential, the attractors 
would be degenerate on a sphere. For a one-parameter radial 
potential of the form 
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V(r) = -20 - - - (: 2 2  
it is possible to have a shell coontaining 25 electron pairs with 
1 = 0, 1, 2, 3, and 4 provided D > 2.6 bohrs, a value which is 
less than the potential experienced by an electron on the surface 
of the deltahedron. The resolution into 11 point attractors 
follows from the local symmetry in the actual systems. Such a 
description is very close to the picture provided by the shell 
structure model of  cluster^.^^^^^ In this model, the surface 
electrons are subjected to an effective spherical potential which 
accounts for the field of all nuclei (and core electrons). The 
electronic structure is calculated either by DFT techniques within 
a jellium approximation of the density30 or by a standard LCAO 
expansion within the tensor surface harmonic theory.31 This 
model yields maximal occupancies which depend on the 
geometry of the skeletal cluster. It is worth noting that our 
calculations and the analysis of the ELF function support the 
shell model and explain the quantitative success of calculations 
on indium clusters performed within the jellium approxima- 
tion. 32.33 

Conclusion 
The results presented in this work constitute a first attempt 

to rationalize the question of the bonding in indium clusters by 
means of ab initio quantum chemical calculations. In agreement 
with experiment, the present zintl-phase structures are found to 
be weak conductors. At the present state of the art, the use of 
large core pseudopotentials hampers the electron density 
integration because atomic basins cannot be defined, and it is 
therefore not possible to decide whether or not one or more 
electron is delocalized over the potassium cations. The picture 
of the bonding is quite different from that provided by usual 
molecular orbital analysis but gives support to the shell model 
of clusters. 


