THE NATURE OF SILICON-OXYGEN BONDS IN SILICA
POLYMORPHS

B. SILVI, A. SAVIN AND F. R. WAGNER*

Laboratoire de Chimie Théorique,

Université Pierre et Marie Curie,

4; Place Jussieu, 75232 Paris cedez (France)

* present address: Institut fiir Anorganische und Analytische
Chemie und Radiochemie,

Uniwversitat des Saarlandes Im Stadtwald,

66123 Saarbriicken (Germany)

1. Introduction

Quantum chemists have devoted considerable effort in order to understand
the nature of the chemical bond in silicated minerals. The pioneering work
of Linus Pauling[1, 2, 3] provides a first example in which the valence bond
concept is used in order to explain why the SiO bond length in silicates
is less than the sum of the single bond radii of the two atoms. Moreover,
this interpretation emphasizes the role of 3d orbitals through a sp3d? hy-
bridization of the silicon. With the advent of efficient computational facil-
ities and of molecular ab initio softwares, several leading groups have pub-
lished reliable calculations performed within the cluster, or more precisely
prototype molecule framework. Information provided by such calculations
concern several important domains. Born-Oppenheimer energy surfaces al-
low to set up site-site or covalent potentials to be used in further lattice
dynamics or molecular dynamics studies. Important advances in this area
are due to Gibbs et al[4], Lasaga et al[5], Tsuneyuki et al[6] and Kramers
et al[7]. Interaction of such prototype silicated molecules with other reac-
tant molecules, such as water or ammonia, allows to model the catalytic
properties of zeolite[8, 9, 10]. Finally, the study of the electronic structure
is of primary importance for understanding the bonding. One important
result of the earlier ab initio calculations was to discard the possible contri-
bution of silicon d orbitals to the bonding. Most calculations on prototype
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on prototype molecules performed either with minimal or split valence ba-
sis sets[11], as well as periodic Hartree-Fock calculations of quartz[12, 13],
cristobalite and tridymite[12, 14] correctly reproduce the experimental Si-O
bond length. Improvement brought by 3d function is less important in this
respect and are of the order of what is expected from polarization func-
tions. G. V. Gibbs and his team have been continuously concerned by the
understanding of the nature of the SiO bond. They started their analysis
with the available quantum chemical tools such as the Mulliken popula-
tion analysis and electron density difference maps. However, they rapidly
realized the limitations of these techniques which rely too much upon the
approximations made in the actual calculations of electronic structures. A
better “trail toward the Grail”[15] is provided by the theory of Atoms in
Molecules of Richard Bader[16]. In a chapter of the present book, Gibbs et
al discuss in details the limitations of electron density difference maps and
show how efficient Bader’s analysis is. However, the information carried by
the electron density alone is not sufficient to clearly characterize the nature
of the bonds. In a recent paper[17], we have shown that the topological anal-
ysis of a local function, which is related to the local kinetic energy excess
due to the Pauli repulsion, can be used to characterize and define chemical
bonds. The topological analysis of the so-called electron localization func-
tion (ELF), originally proposed by Becke and Edgecombe[18], provides a
set of mathematizable definitions of the bond type.

In this chapter, the main lines of this new theory of chemical bond are
presented in details and then it is applied to representative tetracoordinated
and hexacoordinated silica polymorphs, namely low quartz, low cristobalite
stishovite, the recently discovered CaCly-like high pressure phase and a
prototype fluorite structure in which silicons are octacoordinated.

2. The topological classification of chemical bonds

The conventional tools used in Quantum Chemistry to characterize the
bonding (population analysis, orbital localization) mostly rely on concepts
related to the approximate treatment of many electron systems such as
orbitals, valence-bond structures, atomic basis. In their spirit, they give
an illegitimate physical content to mathematical objects which appear as
intermediates along the calculation, This transgression of the interpreta-
tive postulates of Quantum Mechanics is done in order to conciliate the
“atoms in molecules” and localized bonds of the chemical common sense
with the impossibility of partitioning the molecular hamiltonian into atomic
and bonding contributions. Their reliability is very questionable and re-
sults are highly method dependent. Moreover, these methods only apply
in a LCAO framework and therefore are useless for caleulations performed
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within plane-wave basis functions, one-center expansions, numerical func-
tions, quantum Monte Carlo and correlated basis function frameworks. The
necessary information cannot be extracted neither from experiment nor
from an exact wavefunction.

In order to design a more rigorous theory of chemical bonds consistent
with both Quantum Mechanics and chemical experience it is necessary to
invoke an external mathematical theory able to extract qualitative infor-
mation from quantitative. The topological analysis of the gradient vector
field of a local function which carries the physical information is the well-
established mathematical approach to handle this problem[19].

2.1, KINETIC ENERGY RELATED LOCAL FUNCTIONS

I'he formation of a chemical bond from fragments is the result of a compe-
tition between the potential and kinetic energies which leads to an optimal
lowering of the total energy. As pointed out by Ruedenberg[20] : “Delo-
calization of the valence electrons from one atom to several atoms leads
lo a lowering of the kinetic energy pressure and, as a consequence there
tosults o firmer attachment of these electrons to the nuclei with a concomi-
tant lowering of the total energy.” The importance of the kinetic energy
contribution to the bonding is specifically a quantum effect which can be
interpreted as a consequence of the uncertainty principle[20]. Once again,
we will quote Ruedenberg who states :“The wave mechanical kinetic behav-
lor, which differs typically from the classical behavior and is characterized
by the cue uncertainty principle, is a fundamentally essential element of
covalent binding. Any explanation of chemical binding based essentially
on electrostatics, or any other nonkinetic concept, misses the very reason
why quantum mechanics can explain chemical binding, whereas classical
mechanics cannot”.

The study of the chemical bond from a local kinetic energy point of
view, is therefore expected to bring a deeper insight into the understanding
ol its nature. For this purpose we need to calculate and to analyze the one
particle kinetic energy density. In principle, this function, K (r) should be
calculated from its classical analog :

K@) = [ Flr,p)(2)ip (1)

in which, m is the mass of the particle and F(r, p) stands for the joint distri-
bution of position and momentum. Unfortunately, a true joint distribution
cannot be defined in Quantum Mechanics. It is nevertheless possible to in-
troduce the so-called phase-space quasi distributions, such as the Wigner
function, in order to get an expression which has the property when in-
tegrated over all space, yields the proper expectation value of the kinetic



182 B. SILVI, A. SAVIN AND F. K. WAGNLIT

energy. The quasi distributions are build up from correspondence rules and

are required to yield the correct marginal distributions. As discussed by |

Shewell[21], the joint operators derived from the correspondence rules may
not fulfill the requirement of uniqueness (i.e different operators for one
physical quantity) or yield results in contradiction with the current inter-
pretation of quantum mechanics. Moreover, there is no reason to use one
rule rather than another. Cohen has shown[22] that all the possible phase-
space distribution functions which obey the correspondence rules and yield
correct marginal distributions belong to a given class of analytical functions
of the form :

1 6
F(r,p) = (E) fexp[—z'r p+8-(u—r)|f(8,7)
ip*(u - %T)i/)(u + ér)d@drdu 2)
where f(#,7) is any function which satisfies

f(o,7)=f(r,0)= 1. (3)

The relevance of quasi-distributions in physical applications has been dis-
cussed by Dahl [23] who has shown that the Wigner function is the only
one which satisfies strong requirements such as being the expectation value
of the so-called Wigner operator and therefore to be a description based on
observables in the sense of Dirac [24]. For one particle, the corresponding
possible form of the kinetic energy density is thus given by[25] :

3
K= oVl — sVl — (5 ) [ esebe: (=)

2
{ W’(;)' V2 £(6,7)| =0 + 1V (0, 7)|r=0" J(u)} dfdu (4)

where J is the quantum mechanical current
? * *
T = (VY - 9'VY) (5)

Generalization to a many particle system is straightforward.
K (r) appears to be the sum of two contributions : the first one T'(r) =

—%—|Vij)i2 vields the expectation value of the kinetic energy when integrated
over all space. This contribution is always positive, it is called the definite
positive kinetic energy density. The integral over space of the remaining
contribution vanishes. For either a real wavefunction or a stationary state

the quantum mechanical current is zero and therefore this remaining term
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can be expressed in terms of the f(8, ) function, of the density and of their
derivatives,

For a quantum system with a given one particle density, 7'(r) is the only
term which is sensitive to the nature (fermion or boson) of the particles.
For a many-fermion system, T(r) can be formally expressed as the sum
of two contributions, one of which accounting for the Pauli principle and
the other not. However, another partition scheme in which the total kinetic
encrgy is written as the sum of the von Weizsacker term Tw(r)[26] and
of & remaining non-von Weizsdcker term T,w(r) term has been generally
adopted[27, 28, 29, 30]. The von Weizsacker term :

corresponds to the definite positive kinetic energy density of a system of
independent particles with the density p(r). The non-von Weizsicker term
includes the Coulomb and Fermi correlation contributions to the kinetic en-
vipy density, its expression involves therefore quantities related to the sec-
ond order density matrix. Tal and Bader[27] have established that T,w(r)
in & true lower bound to the definite positive kinetic energy density, i.e :

1 1|Vp(r)?

& = —|Ve|? - S
ww(x) = IVelt - gERE 20 (7)
Maoreover, this term is the difference of the kinetic energy density of the
actual system and of that of a system of spin-free independent particles

hoth with identical one-particle densities p(r). For real wavefunctions or for
stationary states, it is simply the difference of the definite positive kinetic
energies since the (unwanted) remaining contributions cancel one another.
Another attractive property of the non-von Weizsdcker contribution is that
It appears to be the trace of the Fisher’s Information matrix[28].

For practical applications, we will not consider T'(r) itself but rather the
definite positive kinetic energy density of independent particles T(r) which
appears in the exact density functional theory[31]. Within this framework,
the non-von Weizsacker term accounts only for the Fermi correlation and
is usually referred to as Pauli kinetic energy density[32]. Another propery
of Tyw(r) is its relationship to the conditional probability P27 ,(r,r’) for
electrons of parallel spin in the single determinental approximation :

Taw(r) = V3 Pona(r,r') (8)

rn’:r

In the original definition of ELF, given by Becke and Edgecombe [18],
pee (r,r') was used. ‘
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The definite positive kinetic energy density has received a considerable
attention in order to build approximate kinetic energy functionals to be
used in a density functional theory not based on orbitals (for a review of
such functionals see Lacks and Gordon[33]). Among the most promising
routes to this goal, we can mention the approximation proposed by Lee,
Lee and Parr[34] :

To(r) ~ Cpp®(r) F(s(r)) (9)

in which Cr = %(3%2)2/3, F(s(r)) is a function which accounts for the
deviation from uniformity and homogeneity and s(r) the scaled density
gradient defined by :

sy = — 20|

- 2037%)2 % (r)
For slowly varying densities, the kinetic energy functional can be repre-
sented by one of its gradient expansions. The gradient expansion of the
kinetic energy density is not unique since it relies upon different deriva-
tions techniques [35], which yield or not a contibution of the laplacian of
the density in the second order correction. In the following we will consider
the expansion expression which does not involve VZp(r) :

1 |[Vp(r)f
72 p(r)

(10)

T,(r) = Crp*3(x) + o= Crp*() (1 s () 4 )

(11)
A similar expression can be derived for the non-von Weizsicker contribu-
tion :

Tow (r) = Cpp®3(r) — %E’fg))i +...=Crp®¥(r) (l - %sg(r) +.. )
(12)

The scaling by p®/3 is made in order to minimize as well as possible the
density dependence of the measure of the deviation from uniformity and
homogeneity.

We consider now the class of parametrized local functions :

G(r;a) = CFlp™> (Tu(r) - aTw(r)) (13)

in which the parameter a lies in the interval [0,1]. All these functions are
positive. It is possible to make a transformation in order to confine them in
the range [0,1], either with the scheme proposed by Becke and Edgecombe
for ELF([18]:

na(r) = (Gria)? +1)7 (14)

or with :

Da(x) = exp (~G(r;a)) (15)
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Figure 1. Radial localization functions ¥,(r) for xenon.

gilr) is the original ELF function. For a given value of a both 7,(r),
J,(r) and G(r;a) have their extrema at identical positions. These functions
dinplay the shell structure of atoms up to the O shell as shown for xenon on
ligure 1. The increase of the a parameter slightly shifts the locations of the
imaxima and minima of ¥, towards larger values of 7. It is worthy to note,

that in contrast with the usual orbital model there is no subshell structure,
although the curves were generated from a Hartree-Fock wavefunction.

These functions provide a local measure of the effect of the Pauli repul-
slon on the kinetic energy density. In the region of space where the Pauli
ropulsion is weaker than in a uniform electron gas of identical density, we
should say where the local parallel pairing is lower, 7,(r) and J,(r) are
respectively larger than 0.5 and 0.36. In the regions where the local parallel
pairing is higher (and therefore the Pauli repulsion strongly active) they
are lower than these latter values. Up to now, only 7; (i.e. ELF') has been
extensively used.

2.2. SKETCH OF THE TOPOLOGICAL ANALYSIS OF DYNAMICAL
SYSTEMS

The topological analysis of local function provides a partition of the space,
[or our purpose the molecular space, which is analogous to the more familiar
partition made in hydrology in river basins delimited by watersheds. In this



paragraph we intend to provide the definitions of the essential concepts for
those of the readers who are not trained in this part of mathematics.

By definition a dynamical system is a field of bound vectors X on a
manifold M. For each and every point of M of coordinates {m} the equa-
tions dm/dt = X(m) determine a unique trajectory h(m). Although the
analogy with a velocity field is purely formal, the method has been widely
used to model the time evolution of many phenomena. The trajectories
begin and end in the neighbourhood of points for which X(m) = 0. For a
given point p belonging to M, a(p) and w(p) denote the limit-sets of p(i)
in M corresponding respectively to t — oo and to t — —o0.

A gradient dynamical system is a dynamical system for which the vector
field X derives from a scalar function V, called the potential function, that
is X = VV. The word potential is here somehow confusing because it has
not exactly the same meaning as in Mechanics where minus the gradient
field of the potential energy is not the velocity field but the force field and
therefore is proportional to the acceleration field. For a gradient dynamical
system, the critical points (i.e those for which VV = 0) are single points
in the most general case. Exceptions may occur if the system belongs to
a continuous symmetry group, in such case those critical points which are
not located on the infinite order symmetry element form (in R®) either a
sphere (SO(3) group) or a circle (Cy group). A convenient choice of the
coordinate system allows to exploit the symmetry in order to reduce the
dimensions and to remove the degeneracy of the critical points.

The stable manifold or inset of a critical point is the set of all the points
for which this critical point is an w-limit, the unstable manifold or outset
the set of those for which it is an a-limit. The critical points of a gradient
dynamical system are classified according to the number of positive critical
ezponents, here the eigenvalues of the hessian matrix, the indez which is also
the dimension of its unstable manifold. The index of a critical point m of
the vector field X is denoted by I(X, m). They are also denoted by a pair of
integers (7, s), the rank (number of non-zero eigenvalues) and the signature
(number of positive minus negative eigenvalues) of the hessian matrix. In
the euclidian 3-dimensional space, there are four kinds of critical points :
the repellors of index 3, noted (3,3), which are the local minima of the
potential function; the saddle points (3,1) and (3, —1) of index respectively
2 and 1; the attractors (3, -3) of index 0 which are the local maxima of
the potential function. Attractors are only w-limits, repellors only a-limits
whereas saddle points are both. The stable manifold of an attractoris called
the basin of the attractor. The separatrices are the boundary points, lines or
surfaces of two or more basins. They are the stable manifolds of the saddle
points. The number of hyperbolic critical points (i.e. without zero critical
exponent) satisfies the phase-rule type relationship which is given by the

I'oincaré-Hopf theorem :

(16)

The sum runs over the critical points of the vector field X bound on
the manifold M and x(M) is the Euler characteristic of the manifold. For
finite and periodic systems in R?, ¢ < 3, the Euler characteristic is 1 and
() respectively.

Another very helpful concept is that of domain. Let M’ a subset of
the manifold M, if for any couple of points @ and b there exists a path
joining a and b totally contained in M’ then M’ is a domain. In the case
of the gradient field analysis, volumes bounded by a given isosurface of
the potential function form domains. For a given potential function the
number of domains depends upon the value defining the isosurfaces. We
liave been led to consider two types of domains according to the number of
attractors lying within them. A domain contains at least one attractor. In
Ihis case it is said to be irreducible because the increase of the value defining
ity bounding isosurface below the value of the potential function at the
altractor cannot give rise a splitting into several new domains. If a domain
contains more than one attractor, it is reducible because it is possible to
got new domains by increasing the value of the bounding isosurface. The
vilues of the bonding isosurface which correspond to domain separation are
those taken by the potential function at the critical points located on the
soparatrix surface between two basins.

> (=)™ = x (M)

24, THE TOPOLOGICAL ANALYSIS OF ELF

T'he localization functions described previously are scalar functions the gra-
dient field analysis of which allows to locate attractors and basins with a
¢lear chemical signification[17]. Usually, the attractors of a gradient field are
single points as it is the case for the gradient field of the density. However,
for the FLF function, they can also be circles and spheres if the system
belongs to a continuous symmetry group (here, cylindrical and spherical
symmetry respectively).

2.3.1. Classification of basins

T'here are basically two types of basins. On the one hand are core basins
organized around nuclei (with Z > 2) and on the other are valence basins
in the remaining space. The structure provided by the core basins closely
matches the inner atomic shell structure. A valence basin is characterized by
its synaptic order which is the number of cores to which it is connected [36].
1o be connected to a core a valence basin must fulfill the three following
conditions :



i) It is bounded to the core basin by a part of a common separatrix.

ii) The valence attractor lies within the smallest (reducible or irreducible)
valence f-localization domain which totally surrounds another f-locali-
zation domain which contains one or more core attractors.

iii) The proton is counted as a formal core.

In principle, a core is always totally encapsulated by at least one valence
basin and therefore propositions i) and ii) are redundant when f tends to
zero unless the valence localization domains and a core domain have already
merged into a single domian. In our description of the chemical bond a
basin which contains a proton is considered as a valence basin except for
the peculiar case of the very strong hydrogen bond for which a pseudo core
shell is found around the bridging proton. The valence basins are therefore
divided into mono-, di- and polysynaptic ones. As an example, a C-H bond
is characterized by a disynaptic basin which encompasses the proton and
shares a common separatrix with the carbon core basin. The nomenclature
adopted to label core and valence attractors and basins is given in table
1. The attractors and basins are labeled as Tp;)(atom labels). T denotes

TABLE 1. Nomenclature of attractors and basins.

synaptic order nomenclature symbol

0 core C(Xs)

1 monosynaptic V(Xs)

2 disynaptic V(Xi, Y;)
>3 polysynaptic Vi Yo e )

the type of attractor, V for valence, C for core ; 7 is an optional running
number in the case of multiple attractors related to the same atom(s). For
example, in the water molecule there is one core attractor for the oxygen
K-shell labeled C(0O), two protonated disynaptic attractors V(H;, O) and
V(Hg, 0), and two monosynaptic attractors corresponding to the lone pairs
V1(0) and V3(0). In ethane, the disynaptic attractor of the C-C bond will
be named V(C;, Cy) accordingly.

The classification of bonds proposed previously remains valid with this
new nomenclature. The shared electron interaction (a more consistent name
is shared valence basin interaction) is characterized by a di or polysynaptic
basin. The lone pairs give rise to monosynaptic basins. It is important to
note that this picture of the chemical bond implies a somehow different
point of view than that currently adopted in Chemistry. In the standard
pictures a bond is considered as a link joining an atom to another one.

rllvrn, what is important is the number of cores a given piece of glue (the

valence basin) is stuck on.

2.3.2. The hierarchy of localization basins

Another criterion of discrimination between basins is provided by the reduc-
tion of reducible domains. The reduction of a reducible localization domain
occurs at a critical value of the bounding isosurface, over which the domain
s split into domains containing fewer attractors. The localization domains
are then ordered with respect to the ELF critical values yielding bifur-
cations. Starting at a very low ELF value, we find only one localization
domain (the whole space for n(r) = 0.) upon increase of the isosurface
defining value, we meet a first separation between valence and core do-
mains, at higher ELF values the valence reducible domain is split in its
turn. The value of the localization function at the saddle points lying on
the separatrix provides a quantitative information to order the basins. The
liierarchy of the bifurcation can be visualized by a tree-diagram [36].

2.3.3. Integrated density over the localization basins

I'he partition of the molecular space into basins of attractors allows the
calculation of related properties by integration of the property densities
aver the basins[37]. In particular, for a basin labeled 24, one can define the
average population as :

N(®) = [ p(x)dr (17)

Qa

Within the framework of our theory, these average populations are referred
{0 as core, di- or polysinaptic and monosynaptic (i.e. lone pair) populations
according to the type of attractor which defines the basin. Such average
populations over ELF basins have been first calculated by us[36, 38, 39]
and recently by Hiussermann et al. for intermetallic solids[40]. They are
not expected to have integral values and the bond populations would be
about twice the topologically defined bond orders[41, 42].
The RMS deviation a(N;Q4)) is defined by[43, 44] :

o*(N; Q) = (N?)a, — (N)3, (18)

[t represents the quantum mechanical uncertainty on N(f14). The vari-
ance (or fluctuation) o2 has been investigated by Bader in the framework
of atomic basins[45]. The variance is expressed in terms of the diagonal el-
ements of the first (p(x)) and second order (m(x1,x3z)) density matrices[46]

das g

o*(N; Q) = /dxlfdxzﬂ(thz)Jrﬁ(Q) - [F @) (19)
Q Q



in which x; denotes the space and spin coordinates of the electron labeled i. r

For a single determinental wavefunction (i.e. Hartree-Fock or Kohn-Sham)
o?(N;Q) is the difference between the basin population and the integral
over the basin of the exchange part of the second order density matrix :

o}(N;Q) = N(Q) — B(Q,Q) (20)

In terms of the orbitals ¢;(r) and of the occupations ne,nf, B(Q,Q) is
given by :

B(Q,9) = 3 Y (nfn§ +ninf)(6il6;)a(65190a (21)

in which
(Bildi)a = [ drdi(x)es(x) (22)
Q

It is also convenient to define the interbasin integrated exchange density :

B(Q4,08) = > > (n¥n§ + ninf){dil¢;)a,(9ilé)as (23)
i

The fluctuation in a superbasin Q4 U Qp is :
cH(N;Q4UQB) = 02 (N;Q4) + 0*(N;QB) — 2B(Q24,08)  (24)
and for the whole space

az(ﬁ;QAUQBU...)ZO (25)

It follows from eq. 24 that for independent basins ¢ is an extensive quan-

tity. Following Bader[45], it is useful to introduce the relative fluctuation
A(Q) = o*(N;Q)/N(Q) (26)

which is positive and also expected to be less than 1.

3. The Bonding in SiO; polymorphs

In crystalline silica the silicon coordination is four for quartz (P3,21),
tridymite (F1 and Ce), cristobalite (P41212), coesite (C2/c) and keatite
(P412,2), six in stishovite (rutile type structure P4;/mnm) and in the re-
cently high pressure phase with a CaCl, structure (Pnnm) and eight in a
fluorite type (F'm3m) model structure which is one of the hypothetical post-
stishovite modifications investigated by modeling techniques. Of course, the

coordination number of oxygen is always half of that of silicon. The con-
ventional discussion of the Si-O bond is focused on the silicon coordination
rather than on the oxygen one. Accordingly, in Pauling’s representation of
the silicon oxygen bond [3], each oxygen donates one electron to the silicon
which is then enabled to form at most six single bonds. The silicon has six
valence electrons and is essentially of the sp3d® type. In this picture, the
jonic character of the bond deduced from the electronegativity rule is 50%.
In tetracoordinated polymorphs, each silicon forms two double bonds and
two single bonds, the resonance between the limit structures yields a double
bond character of about 55% for the Si-O bond. This temptatively explains
why the observed bond length is larger than the sum of the covalent raddi
and also why the £5i-O-Si bond angles observed in low-quartz and low-
¢ristobalite are much more wider than the value expected between single
honds. Though stishovite is not discussed in Pauling paper’s, it is worthy
lo note that this picture accounts for the larger SiO distance observed in
this modification.

Another popular description of the chemical bond is provided by the
VSEPR model of Gillespie [47, 48]. This model partly explains the geome-
{ries of the silica polymorphs investigated here. For Si it cannot give much
insight as Si has no lone pairs. The polyhedron with the largest number of
staggered bond pairs is preferred for CN 4 (tetrahedron) and CN 6 (octa-
hedron) while for CN 8 the fluorite structure yields a cubic coordination
instead of an expected quadratic antiprism. For oxygen the VSEPR model
runs into difficulties : for 2-coordinated oxygens, the observed structure is
neither consistent with an AX,E (1 double bond, 1 single bond and 1 lone
pair) or AX,E, model (2 single bonds and 2 lone pairs) because the angle
/XAX ~ 146° is too wide. In stishovite, the three O-Si bonds around the
oxygen are coplanar, corresponding to the AX3E; model, but the electron
count (4 electron pairs) only allows for an AX3E model.

Though there is no striking contradiction between the pictures provided
by Pauling and by the VSEPR model, the topological approach is expected
to give more reliable answers. From the preceeding discussion, it appears
that the questions concern more the oxygen side than the silicon one in both
Pauling’s and VSEPR approaches. The calculation of the wavefunctions
have been performed at the all-electron level with the periodic software
CRYSTAL92 [49] A polarized split-valence basis set has been used. The
valence part is that described by Jolly et al [50] whereas the core orbitals
are the standard 6-31G ones [51]. The integration over the electron density
and ELF function basins has been carried out numerically on a rectangular
grid. This technique is less accurate than that designed by Biegler-Konig et
al [37). The estimated error on basin populations is about ten times larger
(0.1 e instead of 0.01). However, it is enough accurate to provide reliable
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information on the dominant features and on the trends along the series of
polymorphs.

3.1. BADER’S ANALYSIS

The values of the oxygen charge ¢(O), of the laplacian, of the ratio of the
perpandicular and parallel components of the hessian matrix and of the
bond ellipticity € at the bond critical point are reported in table 2 for the
structures investigated here. In Bader’s theory a positive value of the lapla-
cian of the density, VZp(r), is a criterion of the closed-shell interaction.
Another criterion is ratio % which takes larger values (> 1.0) for electron
shared interaction than for the closed shell one (< 0.5) and allows a discus-
sion of intermediate cases. The bond ellipticity, € = A1/A2 —1 where A; and
\g are the smallest eigenvalues of the hessian matrix, gives an indication of
the double bond character. For example, the ellipticity of the C-C bond
is respectively 0.0, 0.23 and 0.45 in ethane, benzene and ethylene [16]. The
oxygen charges of a-quartz and CaCl, type structures cannot be accurately
computed because technical difficulties (such as hexagonal cell in quartz)
downgrade the accuracy of the results. Though the calculated values are
rather close to those of a-cristobalite and stishovite, it is not possible to
take them into account in reliable comparisons.

TABLE 2. Characterization of atomic interactions in silica polymorphs. All quantities
in atomic units. The second entry for stishovite and CaCls-type structures correspond to
the larger Si-O bond. The estimated error on the oxygen charge in quartz amd CaClp
structure is about 0.2e.

4(0) V% [l ¢

a-quartz -0.7 1.270 0.15 0.015
a-cristobalite -0.7 1.216 0.16 0.0
stishovite -1.1 0.652 0.18 0.010

0.514 0.18 0.0
CaClx-type -1.1 1.076 0.16 0.011

0.918 0.15 0.0
fluorite-type -1.55 0.326 0.18 0.0

The oxygen net charge increases with the oxygen coordination and the
‘onic character is ~ 35% for coordination 2, ~ 55% for coordination 3 and
~ 75 % for 4. The values provided by the Bader’s analysis for quartz
and cristobalite are significantly lower those that assumed from electroneg-

ativity. In both cases the Laplacian of the density is positive and the %
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ratio very small which corresponds to Bader’s closed-shell interaction. This
result is not fully consistent with the rather moderate ionic character of
the Si-O bond in quartz and cristobalite. However, the links between the
sign of the laplacian or the magnitude of the i—:\\;—l ratio and the interaction
type are rather speculative. The bond ellipticity is always negligible and,
accordingly, there is no indication for a partial double bond character in
quartz and cristobalite.

3.9, TOPOLOGICAL ANALYSIS OF ELF

The picture provided by the ELF function displays silicon cores and oxy-
gen cores surrounded by a valence shell [52]. The oxygen valence shell as
shown on figure 2 contains 3, 5 and 4 basins for the 2, 3 and 4 oxygen coor-
dinations respectively. The pictures for quartz and CaCl, structures have
not been reported because they are almost identical to those of cristobalite
and stishovite. There is no additional valence domain on the silicon side,
{his latter atom only gives rise to a spherical L-shell core domain enclosing
the K-shell one.

Figure 2. Oxygen ELF = 0.85 localization domains of oxygen atoms in (a) cristobalite,
(b) stishovite and (c) fluorite-type prototype structure. The bond directions which are
not indicated on the figure are along the lines joining the oxygen core domain (the small
sphere at the center of the pictures) and the disynaptic domains. In cristobalite the
disynaptic domains are the two discs on both side of the core. In stishovite the valence
domain is not fully resolved in irreducible domains, the disynpatic attractors are located
within the three bulges lying in the horizontal plane. In fluorite-type structure, the four
disynaptic domains form a tetrahedron.

In quartz and cristobalite the oxygen atom forms two bonds with the
silicons which correspond to the two disynaptic domains on both side of
the oxygen core. The oxygen lone pairs give rise to a single monosynaptic
basin instead of two as expected from the Lewis structure. This discrepancy
from chemical intuition is not an artefact due to the basis set but rather
a consequence of the large fluctuation of the electron density within the
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valence shell around electronegative atoms. In stishovite, there are three
disynaptic basins the attractors of which lie in the plane defined by the
nuclei of the silicons bonded to the oxygen and two monosynaptic basins
on both sides of this plane. In this case, the n(r) = 0.85 isosurface does
not achieve the reduction of the valence domain. Finally, the fluorite-type
prototype structure is characterized by four disynaptic domains disposed
at the vertices of a tetrahedron.

The value of the ELF function at the saddle points between the disy-
naptic basin and the silicon core is always lower than that between the
disynaptic basin of two nearest neighbour oxygens. The difference between
such values decreases as the coordination increases. Within a given oxy-
gen valence shell, the ELF value at the saddle point between basins is
always close to the attractor value, respectively 0.83 and 0.88 in quartzi
for example, indicating a large fluctuation of the electron density between
theses basins [36]. This is particularly the case for stishovite and CaCls-like
structures.

The basin population of a-cristobalite, stishovite and fluorite structures
are listed in table 3.

TABLE 3. Basin population of oxygen core, disynaptic and monosynaptic attractors.

core disynaptic monosynaptic
a-cristobalite 2.15 1.9 4.0
stishovite 215 1.6 1.5
fluorite-type 215 1.9

The oxygen core population has been calculated with a fine grid in or-
der to achieve a better accuracy, it is not structure dependent. Though a
population of 2 is expected from a Lewis picture, it has been shown by
Kohout and Savin that the K-shell population is around 2.2e for atoms
beyond Ne. [39]. In quartz and cristobalite, there are three valence basins.
Two of them are disynaptic with a population slightly less than 2.0, and
the remaining is a crescent-shaped monosynaptic basin. It corresponds to
the two conventional lone pairs of the Lewis structure and its population
is therefore 4.0. In stishovite, each of the three disynaptic basins contains
~ 1.6 electrons whereas a ~ 1.5 electronic population is assigned to each of
the monosynaptic ones. In the CaCly structure, the monosynaptic basins
are dissymmetric because the nuclei of the oxygen and of the three bonded
silicons are not in the same plane. As the pyramidization of the OSi3 frag-
ment is increased, the population of the monosynaptic basin which is on
the silicon side is transferred to that on the other side and to the disynaptic
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basins. One can expect a structure with three disynaptic basins and one
monosynaptic for a large distorsion from the rutile structure. Finally, in the
fluorite structure prototype the disynaptic basin populations are ~ 2.0.

In all systems, there is always only one disynaptic attractor with a pop-
ulation < 2 for each Si-O bond. The interaction clearly belongs to the
shared disynaptic basin class (electron-shared interaction in Bader’s termi-
nology). Moreover, the basin populations indicate single bonds for 2-fold
coordinated oxygens rather than a resonance between a single and a doub.le
bond as suggested by Pauling. The larger Si-O bond lengths observed in
stishovite are explained by the smaller basin population. In the case of the
tetracoordinated oxygens, the origin of the lengthening is probably due .to
the repulsion between nearest neighbour oxygens. In this structure, .in spite
of a large $i0 bond distance (1.918 A), the oxygen-oxygen distance 1s much
more smaller than in cristobalite (i.e 2.21 A instead of 2.6 &).

The location of the disynaptic attractor in the bonding direction pro-
vides some information related to the ionic character. In homopolar bonds
its position is roughly given by the covalent radii and small deviations may
occur due to substituents whereas in heteropolar bonds it is shifted towards
the electronegative centre. The monosynaptic attractors are generally closer
to the electronegative centre. Distances of attractors from the oxygen nu-
cleus are listed in table 4 together with Bader’s bond critical point distances
and estimated cationic radii. The distance of the bond critical point to the
qucleus defines the atomic radius (in the sense of the covalent radius). In a
similar fashion it is possible to define an effective cationic radius as the dis-
tance between the nucleus and the core-valence separatrix which is nearly
spherical. It is not possible to define an anionic radius in a simil.a,r fashr
‘on because the envelope of the oxygen valence shell has a rather intricate
shape.

TABLE 4. Distances (in A) of monosynaptic (Ra), disynaptic (Rp) attractors from
the oxygen nucleus, atomic (R4) and cationic radii (R4) for a-quartz, a-cristobalite,
stishovite and fluorite structures.

quartz cristobalite stishovite fluorite
Rm 0.58 0.58 0.70
Rp 0.63 0.63 0.69 0.65
Ra(Si) 0.66 0.67 0.67 0.75
R4(0) 0.94 0.94 1.08 1.17
R4 (Si) 0.60 0.59 0.62 0.64

The valence attractor-nucleus distances increase with the coordination



‘and decrease as the basin population increases. In stishovite the nucleus-
monosynaptic attractor distance is larger than the nucleus-disynatic one,
which is probably due to the lower population of the monosynaptic basin
with respect to the disynaptic one. The atomic and ionic radii always in-
crease with the coordination. The silicon atomic and ionic radii vary less
than the oxygen ones. The increase of the oxygen atomic radius is consis-
tent with the increase of the ionic character of the bond. In high pressure
polymorphs, the packing of the oxygen network explains why the SiO,
units occupy smaller volumes than in quartz and cristobalite in spite of the
increase of the atomic radii.

Another interesting feature provided by the ELF analysis is its connec-
tion with the VSEPR model. The valence basin is the analogue to the elec-
tron domain of Gillespie but with the difference that the former can contain
both more than 2 and less than 2 electrons. For instance, in stishovite there
are respectively 80% and 75% of a true pair in the disynaptic and monosy-
naptic domains, whereas in cristobalite even 4 electrons are contained in
one monosynaptic basin. In tetracoordinated polymorphs, an AX,E struc-
ture is found around the oxygen atoms. The /SiOSi is, however, wider than
the value expected by Gillespie for this structure [48] because the MONosy-
naptic basin tends to form a ring around the oxygen core. In molecular
prototypes such as H35i0SiH3 and (OH)3Si0Si(OH)3 this angle is always
calculated to be greater than 140°. The geometry of stishovite is consistent
with AX3E; oxygens in which the electronic domains are partially filled.
The transition to the CaCl, type structure corresponds to a rearrangement
towards the local AX3E type involving an electron transfer from one lone
pair domain to the three other domains. Finally, the fluorite-type structure
obviously belongs to AX,.

4. Conclusion

The topological analysis of the density and of the ELF function provides
new information to understand the nature of the Si-O bond. On the one
hand, the atomic population and the bond ellipticities tell us that the SiO
bond is partly ionic and also that there is no evidence for a partial dou-
ble bond character. This latter point is confirmed by the analysis of the
ELF function since there is only one attractor between the oxygen and
silicon cores and that its basin population is always less than or equal to
2 electrons. Moreover, it appears more important to consider the oxygen
than the silicon to discuss the bonding in silica. The Si-O bond is found to
belong to the electron shared interaction by the ELF analysis.

”The structural stability of the ELF gradient field warrants the relia-
bility of the qualitative information presented here. In fact, lower quality

wavefunctions used in preliminary calculations yield the same number of
basins of each type. The noticeable differences which concern the quan-
titative aspects of this work, i.e. the basin populations, are of the order
of magnitude of the error due to the approximate numerical integration.
These two errors have the same origin, namely the difficulty of determining
precisely the separatrices.

The discussion of the Si-O chemical bond presented in this chapter pro-
vides some guidelines to improve interatomic potentials. On the one hand,
the analysis of the density gives support to two-body potentials such as
those designed by Tsuneyuki [6] and Kramer al [7] insofar as the attractors
of the valence basins remain rather close to the oxygen centres and because
the value of ELF at the saddle points between these basins is rather high.
Covalent potential [5] are also successful, because they take into account
the mutual repulsion of the valence basins. A trail to improve two-body po-
tentials may be to treat the electrostatic and dispersion interactions as true
two-body potentials and to allow more flexibility for the repulsive poten-
tial. This can be done by considering that the repulsive interaction occurs
between the silicon centre and the core and valence attractors of oxygen.
It should be also possible in this way to model the variation in the number
of valence attractors occurring with a change of the oxygen coordination.
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