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Summary. We investigate a simple generalization of the local-spin-density ex- 
change-correlation approximation of density-functional theory from single to 
multi-determinantal states. The method is explicitly spin independent and trivially 
preserves multiplet spin degeneracies. Tests on multiplet splittings in a variety of 
low-lying configurations of first-row atoms and ions are presented. 
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1o Introduction 

The local-spin-density (LSD) approximation for the exchange-correlation energy 
of multi-electron systems has fourtd wide application in many areas of theoretical 
physics and chemistry (see [1] and references therein). Ziegler et al. [2] have 
pointed out, however, that the LSD approximation is justified in single determi- 
nantal states only, and straightforward application to determinantal superposi- 
tions is not permitted. These authors have nevertheless shown that the energies of 
multi-determinantal states may be expressed in many cases as linear combinations 
of single-determinantal LSD energies. 

In this work, we discuss an alternative approach to multiplet energy calcu- 
lations based on a simple extension of the original LSD philosophy. All we require 
is a transformation from local spin-densities as independent variables to total 
density and local pair density instead. Explicit spin dependence is thereby elimi- 
nated, and exchange-correlation functionals which properly reproduce multiplet 
spin degeneracies are derived. The use of spinless local pair density in correlation 
functionals for open-shell systems has been espoused previously [3"1, but here we 
consider its application to open-shell exchange as well. 

2. Basic theory 

The LSD exchange-correlation energy depends, as the name implies, on the local 
spin-densities p~ and pp as independent variables. Equivalently, the total electronic 
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density p and the spin polarization factor ( defined by 

= (p~ - pa)/p (1) 

may be used as independent variables instead (as is often done in the density- 
functional literature). Numerous alternative independent variable pairs are, of 
course, also conceivable. 

We shall see soon that the total  density p and the local pair density are 
particularly suitable independent variables in multi-determinantal situations. Let- 
ting xi represent space and spin coordinates (ri, ai) of particle i and adopting the 
two-body density matrix normalization of McWeeny [4], we define the spinless 
"local pair" density P2(r) as follows: 

P2(r) = N ( N -  1) j'lW(xx,x2,xa . . . .  ,xN)12 dtrl dff2dx3 ... dxN r~=r~=,' (2) 

which is nothing more than the spinless two-body probability density H (rl, r2) of 
[4] evaluated at rl = r2 : - r .  We propose that the LSD exchange-correlation 
energy be viewed hereafter as a functional of p and P2. For a single-determinantal 
state, P2 is related to spin densities p~ and pa and the spin polarization factor ( by 

P2 = 2p~pp = ½p2(1 - (2) (3) 

and through these relations the transformation from spin density or "p-(" func- 
tionals to "P-P2" functionals is established. 

For example, the LSD approximation for exchange only is, for a single Slater 
determinant [5], 

f 3 t 3 ~1/3 E LsD = - C x  (p~/a + p,~/a)dar~ Cx = ~t~J (4) 

in terms of independent variables p~ and pp. In terms of p and ( we have the 
equivalent formula 

where 

E LSD = _ 2- 4/S Cx fp,,s F (0 dSr, (5) 

F(() = (1 + ~)4/3 + (1 - ()4/3. (6) 

Inverting Eq. (3) to obtain ~ as a function of p and P2: 

= 1 - 2 e 2 / p  2, (7)  

we obtain the dependence of Ex on the density p and the local pair density P2. 
These complementary viewpoints are equally efficacious in single-determi- 

nantal states. Straightforward application of the LSD approximation to multiplet 
states, however, results in artificial and unphysical splitting of spin-degenerate 
levels. Even in the simplest conceivable case of the triplet spin states of a two- 
electron two-orbital configuration, significant energy splittings arise from different 
spin densities in the triplet spin components. Moreover, the singlet state is, in the 
LSD approximation, incorrectly degenerate with the Ms = 0 triplet component 
[6, 7]. 

Alternatively, the total density p and the local pair density P2 are equivalent in 
all components of a spin multiplet, and an obvious generalization of the LSD 
approximation thus suggests itself. Treat the LSD approximation as a functional of 
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the multiplet p and the multiplet P2, instead of p, and pa. Substitute p and P2 into 
Eqs. (5)-(7), for example, in the case of pure exchange. We shall call this modifica- 
tion of the LSD philosophy the "local density/pair density" (LDPD) approxima- 
tion. 

In the LDPD scheme, we encounter an interesting mathematical complication. 
In single-determinantal states, the range of the local pair density P2 is given by 

0 <~ P2 <~ P2/2 (8) 

corresponding to the following range of the spin polarization factor 

1 >i (2/> 0. (9) 

The upper limit P2 = p2/2 is not applicable, however, in multi-determinantal states 
(an elementary example is presented in the following section) and the possibility of 
negative (2 and formally imaginary ( thus arises. Exchange-correlation functionals 
are nevertheless even functions of ( (i.e. functions of ~2, as demanded by spin 
symmetry) and are therefore real under all conditions. Considering again the 
exchange-only example, the following representation of F(() of Eq. (6) is easily 
derived for the imaginary-~ case: 

F(() = 2(1 + ~2)2/3 COS (~ arctan ~/) (10a) 

when 

( =  ___i~/. (lOb) 

The imaginary-~ behaviour of more complicated functionals, such as the Vosko et 
al. [8] or the Perdew and Wang [9] correlation functionals, can be similarly 
represented with relatively little effort. We shall assume at the outset that LSD 
exchange-correlation functionals continue to hold their physical significance in this 
extrapolated regime. 

We emphasize that in multiplet states the ~ variable, as employed here, does not 
correspond to the physical Ms values of the multiplet spin components. In order to 
extend the applicability of existing p-~ functionals in the literature to multiplet 
states, we have replaced the original definition of Eq. (1) for ( by Eq. (7). 

3. An elementary example 

To illustrate the LDPD approach, consider the simple special case of two-electron 
two-orbital singlet and triplet multiplets given by 

sing (11) ~t/singtrip = 2-1/2 ((ga(1)(gb(2) _+ (gb(1)(9a(2)) "" trip 

with orthonormal one-electron spatial orbitals (ga and (gb and well-known two- 
electron total spin states Zsins and Ztrip. We easily deduce the density p and the local 
pair density P2 for each of these states as follows: 

p = (92 + (92, P2 = 4(92 62 (singlet) 
(12) 

p = (92 + (92, P2 = 0 (triplet) 

which we now take, through Eq. (7), as arguments of our LDPD exchange- 
correlation energy. Even in this simplest possible case, the "normal" upper P2 limit 
of Eq. (8) is easily exceeded. At points in space where (ga(r) = (gb(r), for instance, 
singlet/'2 has value p2, and ( is formally imaginary. 
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Table 1. Singlet-triplet splittings in He (eV) 

Exact exchange Local XC Exact exchange 
+ GGA91 

correlation 

Expt. 

ls2s 1.02 0.72 0.87 0.80 
ls2p 0.41 0.43 0.33 0.25 

This simple two-electron theory has been applied to the ls2s and ls2p config- 
urations of the atom He. Using numerical, spin-unpolarized LSD orbitals for both 
singlet and triplet states (spherically averaged in the case of 2p), we obtain the 
singlet-triplet splittings of Table 1o Column "local XC" corresponds to LDPD 
implementation of Eqo (5) for exchange and the local correlation functional of 
Perdew and Wang [9]. The other columns are discussed below° Despite the 
simplicity of LDPD theory, agreement between experiment [10] and our "local 
XC" results is reasonably good. More complex multiplet splittings are considered 
in the following section. 

4. First-row atoms and ions 

We have developed a general procedure to obtain spherically averaged local pair 
densities/'2 in a wide variety of atomic multiplets. Its derivation is deferred to the 
Appendix, while a brief outline is given below. 

The procedure exploits the extensive tabulations by Slater of atomic Hartree- 
Fock multiplet energies in [11]. There, the Coulomb energies of atomic multiplets 
are expressed as linear combinations of radial integrals denoted F k(a, b) and 
G k (a, b), where a and b are orbital labels. On page 343 of Vol. 1, for example, the 
energies of s"p" multiplets are so tabulated. Corresponding to each of the F k and 
G k integrals, we define in the present work the functions 

2k+  1R2 r R 2 r" ~k(a,b;r)= ff)k(a,b;r)= ~ , (  ) b( ), (13) 

where R,(r) and Rb(r) are the usual atomic radial functions. The spherically 
averaged local P2 of a multiplet is then given by 

P2 = ~ f~(a,b) adk(a,b;r) + ~ gk(a,b) ff)k(a,b;r), 
abk abk 

(14) 

where the coefficients j~ and #k are the same as those tabulated in [11]. 
We have used these spherically symmetrized local pair densities and spherically 

symmetrized total densities p to calculate multiplet splittings in all first-row ground 
and singly-excited-state 2s~2p" configurations of neutral, singly, and doubly 
ionized atoms. The results are presented in Tables 2-9. Orbitals were obtained by 
numerical, spin-restricted Kohn-Sham calculations (in the LSD approximation, 
with the correlation functional of [9]), and "exact" exchange splittings were 
obtained by numerical evaluation of F k and G k integrals using the same orbitals. 
By "exact" exchange, we mean essentially Hartree-Fock theory, except that the 
orbitals of the present work are Kohn-Sham rather than Hartree-Fock orbitals. 
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Table 2. 2s12p 1 multiplet splittings (eV) 

Exact Local Exact exchange Expt. 
exchange XC + GGA91 

correlation 

Be 1p_3p 3.61 1.81 2.70 2.55 
B + xp_3p 5.63 3.15 4.58 4.47 
C2+ 1p_3p 7.44 4.46 6.31 6.20 

Table 3. 2s12p 2 multiplet splittings (eV) 

Exact Local Exact exchange 
exchange XC + GGA91 

correlation 

Expt. 

B 2p_4p 7,29 3.50 6.09 5.42 
2D-4P 3.63 2.52 2.77 2.36 
2S-4P 5.44 4.21 4.00 4.31 

C + 2p_4p 10.22 5.20 8.92 8.38 
2D-4P 5.23 3.91 4.26 3.95 
2S-4P 7.97 6.64 6.33 6.63 

N2+ 2p_4p 12.91 6.86 11.57 10.99 
2D-~P 6.73 5.29 5.70 5.42 
2S-4P 10.36 9.04 8,61 9.14 

Table 4. 2s22p 2 multiplet splittings (eV) 

Exact Local Exact exchange Expt. 
exchange XC + GGA91 

correlation 

C 1D-3P 1.50 1.38 1.18 1.26 
18-3p 3.75 3.31 2.95 2.68 

N ÷ XD-3p 2.15 2.06 1.78 1.89 
IS-3p 5.37 4.96 4.45 4.04 

0 2+ 1D-3p 2.76 2.72 2.36 2,49 
1 S 3p 6.90 6.55 5.90 5.33 

We find, unfortunately, that the LDPD approximation for exchange-correla- 
tion together ("local XC" in the tables) performs unreliably, giving reasonably good 
results in configurations 2s22p" but very poor results in 2s12p"o Our splittings are 
similar to those of Gunnarsson and Jones [7] obtained by the method of Ziegler et 
al [2], and reflect the same electron-hole asymmetry in conjugate configurations 
reported by them. Electron-hole asymmetry is apparently a fundamental weakness 
of density-functional approximations whether implemented by the multiplets 
scheme of Ziegler et al [2] or by the present scheme. 
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Table 5, 2s12p 3 multiplet splittings (eV) 

Exact Local Exact exchange Expt. 
exchange XC + GGA91 

correlation 

C 3S-SS 12.13 5.42 10.64 8.93 
3D-SS 5.31 3.74 4.26 3.76 
1D_sS 11.37 6.25 9°70 7.95 
3P-SS 6.83 5.16 5.44 5.15 
IP-SS 12.89 7.55 10.88 10.68 

N + 3S-5S 15.95 7.39 14.38 13.39 
3D-5S 7.20 5.32 6.05 5,59 
ID-SS 15.17 8.72 13.38 12.03 
3p-ss  9.33 7.39 7,82 7.69 
IP-SS 17.31 10.61 15.14 14.83 

0 2+ 3S-SS 19.53 9.33 17.92 16.96 
3D-5S 8.99 6.89 7.79 7.41 
tD-sS 18.75 11.16 16.89 15.71 
3P-SS 11.73 9.60 10.13 10.18 
tP-SS 21.49 13.65 19.22 18.62 

Table 6. 2s22p 3 multiplet splittings (eV) 

Exact Local Exact exchange Expt. 
exchange XC + GGA91 

correlation 

N 2D-*S 2.72 2.35 2.27 2.38 
2P-*S 4.54 3.86 3.80 3.58 

O + 2D-4S 3.69 3.27 3.19 3.32 
2p-4s 6.15 5.37 5.32 5.02 

F 2+ 2D-4S 4.61 4.16 4.07 4.23 
2p-4s 7.68 6.83 6.80 6.39 

Table 7. 2s~2p 4 multiplet splittings (eV) 

Exact Local Exact exchange Expt. 
exchange XC + GGA91 

correlation 

N 2p_4p 10.85 4,15 10.01 
2D-4P 5,45 2.99 4.85 
2S-4P 8.19 5.26 7.15 

O ÷ 2p_4p 13.68 5.32 12.82 11.49 
2D-4P 7.01 3.96 6.38 5.71 
2S-~P 10.68 7.05 9.57 9.39 

F2+ 2p_4p 16.36 6.48 15,49 14.21 
2D-4P 8.50 4.92 7.86 7.21 
~S-4P 13.08 8.81 11.93 11.92 

A.D. Becke et al. 
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Table 8. 2s22p 4 multiplet splittings (eV) 

153 

Exact Local Exact exchange 
exchange XC + GGA91 

correlation 

Expt. 

O 1D-aP 2.13 1.67 1.86 1.96 
1S-3p 5.31 4.10 4.65 4.18 

F + ID-3P 2.77 2.20 2.48 2.57 
1S-3p 6.91 5.41 6.19 5.55 

Ne 2+ 1D-3p 3.38 2.72 3.07 3.16 
1S_3p 8.45 6.68 7.68 6.87 

Table 9. 2st2p 5 multiplet splittings (eV) 

Exact Local Exact exchange Expt. 
exchange XC + GGA91 

correlation 

O 1p_3p 8.39 2.91 7.89 7.88 
F ÷ 1p_3p 10.26 3.59 9.76 9.26 
Ne2+ 1p_ap 12.04 4.26 11.54 10.52 

L D P D  theory remains useful, however, as a tool for evaluating correlation only 
corrections to exact-exchange multiplet splittings. It is clearly demonstrated by the 
"exact exchange" data in our tables that pure, exact exchange overestimates 
multiplet splittings due to lack of dynamical electron correlation. Consider, on the 
other hand, the "exact exchange + GGA91 correlation" data obtained by adding 
L D P D  dynamical correlation to the exact-exchange results. We utilize the best 
correlation functional currently available: the functional of Perdew and Wang 
[9, 12, 13] (sometimes called GGA91) including an inhomogeneity term [12, 131 
depending on the total density gradient Vp. The "exact exchange + GGA91 cor- 
relation" splittings agree reasonably well with experiment [10], with a maximum 
deviation of 1.75 eV, and an average absolute deviation of only 0.46 eV. A tendency 
to overestimate the multiplet splittings remains, which future correlation func- 
tionals may, perhaps, reduce. The "exact exchange" splittings without correlation 
correction suffer significantly larger deviations from experiment of 3.42 eV max- 
imum and 1.40 eV on average. 

5. Conclusions 

We have examined a straightforward extension of the local-spin-density exchange- 
correlation approximation from single to multi-determinantal reference states. 
A transformation of independent variables from local spin-densities to total density 
and local pair density is all we require. Computation of multiplet splittings in 
first-row atoms and ions confirms the finding of Gunnarsson and Jones [7] that 
density-functional approximations fail to reproduce electron-hole symmetry in 
conjugate configurations. If exchange is treated exactly, however, the present 



154 A.D. Becke et al. 

method furnishes useful dynamical correlation corrections which largely rectify the 
tendency of Hartree-Fock theory to overestimate multiplet splittings. Generaliz- 
ation of the method to molecular systems, and removal of spherical averaging in 
atomic systems, will be undertaken in future work. 
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Appendix 

The total interelectronic repulsion energy of a multi-electron system is given by 

E(2, 1 I I H ( r l , r = ) l d 3 r t d a r z  • (A1) 
Con1 = ~ J J  rt2 

where H(rx, ra) is the spinless two-body probability density normalized as in 
[4] and Eq. (2). As discussed at length in [11], this energy can be written in the 
form 

E(2) coul = ~ A(a,b)F~(a,b) + ~ gja, b)G~(a,b). (A2) 
abk abk 

where fk and gk are coefficients tabulated for a wide variety of atomic multiplets in 
[11], and F k and G k are the following radial integrals: 

fofo Fk(a,b) = R*(l)R~(2)R,(1)Rb(2)~r~r~drldr2, (A3) 
r> 

Gk(a, b) = R*(1)R*(2)Rb(1)Ra(2) rkTr . 

In these integrals, a and b are orbital labels, R(r) is the usual radial part of an 
atomic orbital, and r< (r>) denotes the lesser (greater) of the two radii rl and r2. The 
derivation of Eqs. (A2)-(A4) is based on the weU-known spherical harmonic 
expansion 

r~21 k=0~ 2k + 1 r> k+l m= ~-a Y*,. (~1) Ykm(f~2). (A5) 

The fk and gk coefficients contain the results of all the angular integrations over Q~ 
and #z implied in Eq. (A1). Therefore, let us write 

fdI21fdla2ridl-I(rl'r2)=2~fk(a'b)R*(1)R*(2)Ra(1)Rb(2)r; 

r k 

+ 2 E Ok(a, b) R*(1)R*(2)Rb(1)Ra(2) ~ (A6) 
abk 

an expression we will use below. 
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The spherical average of the local pair density P2(rl) is given by 

P2(rO = ~ d~ ! 1-I(rt,rO 

' f f  --- 4--~ d~l d3r2 ~(rl - r2)l-I(rl,r2) 

Recognizing that the delta function 6 (rl - r2) has a spherical harmonic expansion 
analogous to Eq. (A5) for r i-~: 

6(r~__-r2) ~ +~ 
,~(rl  - r z )  = r~ Y~ Y~m(~l) Ykm(~2Z) (A8) 

k = 0  m =  - k  

and, comparing radial parts, we easily see that the double angular integration in 
Eq. (A7) is given by 

fdt21fdt22~(rl-r2)H(r~,r2) 

= 2 ~, fk(a, b) ~ 1  g*(1)g~(2)Ra(1)Rb(2) 6(ri F2) 
abk r 2 

+ 2 ~ o ~ ( a , b ~  Ra*I1)R~/2)R~I1)Ro(2)~<r~ - r~) <A9) 
ob~ 47: r~ 

This is the delta-function analog of Eq. (A6). Finally, completing the r2 integration 
of Eq, (A7) and dividing by 4n, we obtain 

P2(r~) = ~ A(a,b)~(a,b;r~) + ~ g~(a,b)~b~(a,b;rO (A10) 
abk abk 

where 

2k + 1 R2(rx)R2(r~)" (All) ~k(a,b;rl) = (Sk(a,b;rl) = 

Thus, we have derived Eqs. (13) and (14) of the text. 
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