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Extrapolating the correlation energy

Philippe Y. Ayala a, Gustavo E. Scuseria a,), Andreas Savin b

a Department of Chemistry, Center for Nanoscale Science and Technology, Mail Stop 60, Rice UniÕersity, Houston, TX 77005-1892, USA
b ( )Laboratoire de Chimie Theorique CNRS , UniÕersite P. et M. Curie, 4 Place Jussieu, F-75252 Paris, France´ ´

Received 3 February 1999; in final form 26 April 1999

Abstract

We present a general scheme for calculating the correlation energy in molecular systems by extrapolation of an energy
Ž .expression, E t , obtained from a modified Hamiltonian whose range is reduced to induce localization of the physical

Ž .interactions. The variable t is introduced such that one recovers the physical system for ts0 and E t s0 for t™`. We
show that very accurate correlation energies can be extrapolated at the MP2 level of theory using rational approximations to
Ž .E t based on few evaluations of the energy function. Thus, if localization can be exploited to substantially reduce the

computational cost and scaling of the energy evaluation, the scheme becomes a practical tool for large molecular
applications. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Within the last decade, alternative procedures for
obtaining the MP2 energy have been put forward.
Among the most successful are the iterative scheme,
the Choleski decomposition of the 4-center 2-elec-
tron repulsion integrals, and the Laplace transform of
the energy denominator. The first two give rise to the

w x w xlocal MP2 1 and resolution-of-the-identity MP2 2
methods, respectively, whereas the latter yields a

w xnon-iterative atomic orbital–MP2 formalism 3,4 .
The underlying motivation for these alternative for-
mulations is the desire to curb the computational cost
involved in including electron correlation. We have
recently shown that the Laplace AO–MP2 energy
can be obtained with a computational work that

w xscales linearly with system size 5 , albeit with a cost

) Corresponding author. Fax: q1 713 285 5155; e-mail:
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multiplier arising from a one-dimensional quadra-
w xture. We and others 4–7 have shown that less than

ten integrand evaluations are usually required in this
quadrature for the accuracy normally required in
practical calculations.

In the Laplace ansatz, the integrand is constructed
from exponentially weighted molecular orbitals. The
weight varies between one and zero and is directly

Ž .related to the integration variable see below . As the
weight decreases, so does the computational effort
needed to evaluate the integrand. Moreover, for large
systems with a significant HOMO–LUMO gap where
long-range interactions can be efficiently screened,
the scaling of the Laplace–MP2 method becomes
quadratic, much less steep than that of the conven-

w xtional procedure, and ultimately linear 5 . Neverthe-
less, carrying-out the quadrature with accuracy re-
quires evaluating the integrand when the weights

Ž .remains close but not exactly equal to one, thus
making the prefactor for the computational cost of
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the Laplace–MP2 method relatively large. Ideally,
one would want to evaluate the integrand only when
the weights are close to zero.

Independently, renewed interest has been directed
towards the adiabatic connection in density-func-

w xtional theory 8–14 . In its most simple interpreta-
tion, it links the physical system and the Kohn–Sham
non-interacting reference system via a coupling con-

w xstant integration l 8,9 . The Hamiltonian becomes a
function of l and the exchange-correlation energy is
obtained by integrating the derivative of the energy

w xwith respect to l over the interval 0,1 .

w xEE r ,l1 xcw xE r s dl . 1Ž .Hxc
El0

This formula, apparently due to Pauli, has been
w xknown for a long time 15 and has also been applied

for other iso-electronic processes under the name of
Ž‘integrated Hellman–Feynman’ formulas see, e.g.,

w x.Ref. 16 .
There are in fact similarities between the Laplace

method and the adiabatic connection. In both cases,
there is a smooth function that connects the correla-

Žtion energy of the physical system exponential
.weight equal to one for the Laplace method and that

Žof the non-interacting system exponential weight
.equal to zero for the Laplace method . In both cases,

the correlation energy is obtained by quadrature.
In continuation to our previous work on these two

w xsubjects 5,14 , we are seeking to establish the basis
for a new approach for obtaining the correlation

Ž .energy. Instead of integration e.g., quadrature , we
propose to obtain the correlation energy by extrapo-
lation. The Hamiltonian, and therefore the energy, is
made a function of a variable t. For ts0, we have
the Hamiltonian for the physical system and for
t™` we have the Hamiltonian for the non-inter-
acting system. Instead of integrating the Jacobian

w xover the 0,` interval, we propose to evaluate the
energy at a series of discrete t-values greater than
zero and extrapolate the energy for t equal to zero to
obtain the correlation energy of the physical system.
That is, we want to extrapolate the energy of a fully

Ž .interacting system i.e., computationally demanding
using the results obtained for less interacting systems
Ž .i.e., computationally manageable .

Whereas there is little doubt that the correlation
energy for modified Hamiltonians can be used to

derive the energy for the true Hamiltonian, we will
show that accurate energies can be obtained using
moderate order extrapolation while considering rela-
tively large t-values, thus making the extrapolation
technique a viable alternative to quadrature or con-
ventional schemes for obtaining the correlation en-
ergy.

In closing this introduction, we would like to
point out that our extrapolation scheme bears no
connection to other methods which extrapolate the
correlation energy at the basis set limit using a series

w xof calculations 17 .

2. Background

Using the Laplace transform of the energy denom-
inator, the canonical MP2 energy for a closed-shell

w xsystem is given by 3

O V `

< <E sy ia jb 2 ia jbŽ . Ž .Ý ÝHMP2
0ij ab

yD ti jab<y ib ja e d t , 2Ž .Ž .
D se qe ye ye .i jab a b i j

As usual, i and j denote two of the O occupied
Ž .molecular orbitals MO , a and b denote two of the

V virtual MOs and e denotes the corresponding
Ž .Fock eigenvalue. Effectively, the MOs in Eq. 2

become a function of the integration variable t.
Given a Fermi level, e , the Laplace energy can beF

written as

`
X X X X X X X X< <E sy i a j b 2 i a j bŽ . Ž .Ý HMP2

X X X X 0i a j b

X X X X<y i b j a d t , 3Ž .Ž .
where iX and aX are the exponentially weighted
canonical MOs

iX s ieŽe iye F . tr2 ; a X saeyŽ eaye F . tr2 . 4Ž .
However, the Laplace MP2 energy expression is just
a particular case of the more general integral form of

Ž .Eq. 5

` EE tŽ .2
E s y d tqE ` , 5Ž . Ž .HMP2 2

Et0
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where we request

lim E t s0 , 6Ž . Ž .2
t™`

lim E t sE . 7Ž . Ž .2 MP2
t™ 0

Ž .In the case of the Laplace MP2, the function E t2

takes the following form.

< <E t sy ia jb 2 ia jbŽ . Ž . Ž .Ý2
iajb

eyD i jab t

<y ib ja . 8Ž .Ž .
Di jab

Ž .Fig. 1 shows E t for the water molecule using the2

cc-pVDZ basis set. The amount of correlation en-
Ž .ergy, as measured by Eq. 8 , is a milli-hartree or

less for t greater than approximately 1.2 au. Clearly,
as t increases, only the energy levels closer to the
Fermi level have a significant contribution to the
energy and the effective number of ijab quartets

Ž .decreases. Evaluating E t for large t can be made2

to require significantly less computational effort than
Ž .evaluating E t for ts0. For all practical purposes,2

there is no correlation energy for t-values greater
than ts3 au.

Ž .Using Eq. 5 as a departure point rather than the
Laplace transform, it is clear that one is not limited

Ž .to the form shown in Eq. 8 and that many different
function forms could be used for obtaining the cor-
rlelation energy. Indeed, one could tailor a function

Ž w x.form for specific purposes see, e.g., Ref. 14 while
still being able to obtain the exact correlation energy.
Moreover, implementation of the Laplace–MP2
method has shown that decisive computational ad-
vantages can be gained over the traditional approach.

ŽFig. 1. MP2rcc-pVDZ correlation energy as a function of t see
Ž ..Eq. 8 for water.

The other point we want to highlight is that one is
not limited to an integral form but that the correla-
tion energy can be obtained by extrapolation as Eq.
Ž .7 suggests. Clearly, this would apply to any func-

Ž .tion of the correlation energy E t , provided that2
Ž .E t verifies2

Ž .Ø E t and its derivatives are continuous over t g2
w .0,` ,
Ž .Ø E 0 sE ,2 MP2

Ž .Ø lim E t is finite.t ™` 2

One can already foresee that smooth monotonic
functions connecting the fully interacting system to

Ž Ž . .the non-interacting E ` s0 system would be2

good candidates. Here for the sake of generality, we
are assuming that the less interacting the system is,
the less computationally demanding it is to evaluate
the energy function or its Jacobian.

Throughout our discussion, and specifically in Eq.
Ž .5 , we have used the MP2 method mainly because
of its simplicity. The arguments, though, can be
easily generalized to any other ab initio correlated
method. They amount to modifying the Hamiltonian
to make it a function of the variable t. Once a
suitable modified form for the Hamiltonian is cho-
sen, the correlation energy for any method, including
sophisticated methods such as coupled-cluster, can
be obtained via either quadrature or extrapolation.

In this work, we focus exclusively on obtaining
the correlation energy by means of extrapolation. We
show that the issue is not whether the extrapolation
approach works, but rather how well it does work.
Clearly, the extrapolation approach would not be
viable if either a large number of function evalua-

Ž . Žtions or evaluating E t close to ts0 i.e., consid-2
.ering the fully interacting system is required or if

the accuracy could not be controlled.

3. Test functions

As mentioned above, there is a vast ensemble of
functions to choose from. Some will offer better
insight and others will be more amenable to compu-
tational efficiency. We will not examine here the
merits of specific functions or modifications to the
Hamiltonian. Rather, we examine the extrapolation

Ž .of a prototypical correlation energy function E t2

whose magnitude decays with increasing t. In other
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words, we focus on energy functions as that depicted
in Fig. 1.

Considering modifications of the zeroth order
Hamiltonian, H , has the advantage of being concep-0

tually simple and revealing. This type of modifica-
tion affects the energy denominator in the MP2

Ž .2energy expression and each of the OV contribu-
tions to the energy now depends on t.

O V

< : ² < < : ² < < : ² < < : ² <H s i i F i i q a a F a a . 9Ž .Ý Ý0
ai

We consider these test functions as ‘Litmus test’.
Assessing the quality and robustness of the extrapo-
lation technique using such simple model Hamiltoni-
ans is a necessary first step before considering modi-

Žfications to the two-body part e.g., the Coulomb
.part of the Hamiltonian. Furthermore, modifying the

4-index energy denominator of the MP2 expression
and extrapolating the resulting correlation energy has
many things in common with modifying the 4-center
Coulomb integrals. In the present work, we have
considered modifying H in such a way that the0

virtual energy levels are uniformly or non-uniformly
shifted. Of course, such modifications do not alter

Žthe first-order perturbation theory energy i.e., the
.Hartree–Fock energy . The results presented here are

obtained using a development version of the Gauss-
w xian suite of programs 18 .

3.1. Uniform shifting of the orbital energy leÕels

For a uniform shifting of the energy levels, a
function of the energy can be written as

< <E t sy ia jb 2 ia jbŽ . Ž . Ž .Ý2
iajb

1
<y ib ja . 10Ž .Ž .

D q ti jab

This function may be seen as the MP2 energy for
Ž .H t0

< : ² < < : ² <H t s i i F i iŽ . Ý0
i

< : ² < < : ² < < : ² <q a a F a a q t a a , 11Ž .Ý
a

that is, the MP2 energy with the HOMO–LUMO
gap increased by tr2 hartree. We point out that this

type of Hamiltonian has already been studied within
w xthe scope of density functional theory 14 . Further-

more, this Hamiltonian in conjunction with an ex-
trapolation technique can become a practical tool for
obtaining the correlation energy of systems with
HOMO–LUMO gaps close to zero.

Clearly, the correlation energy function satisfy all
three properties mentioned above: it is smooth over

w xthe 0,` interval, the canonical energy is obtained at
ts0 and it has a finite asymptote for large t. The
challenge consists in extrapolating the sum of a large
number of functions with different rates and magni-
tudes. Given a number of data points, the extrapola-
tion can be carried out using either a polynomial
form,

n
iy1E t f a t , 12Ž . Ž .Ý2 i

i

or a rational form,
k

iy1b tÝ i
iE t f . 13Ž . Ž .2 l

iy1c tÝ i
i

In both cases, the number of free parameters equals
the number of data points. Throughout this work, we
have used the so-called diagonal rational function
where the polynomial degree of the numerator is

w xequal to that of the denominator 19 . Fig. 2 shows
the error in the extrapolated MP2 energy using both
a polynomial extrapolation and a rational extrapola-
tion. The quality of the extrapolation most likely
varies with increasing number of D . Therefore,i jab

for testing purposes, we first have considered a
relatively large water cluster containing 10 molecules.

One of the most important aspects of the extrapo-
lation described in this Letter is the number of
function evaluations that are needed to achieve a
prescribed accuracy. In our experience, the rational
extrapolation has proven to be far more successful
than the polynomial extrapolation as it requires much
less data points to achieve the same kind of accu-
racy. In fact, just as for the Laplace transform
quadrature, m-hartree accuracy can be achieved by
extrapolation using less than 10 function evaluations

Ž .at properly chosen points see below . This high
degree of accuracy obtained by a moderate order
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Fig. 2. MP2 energy extrapolation error as a function of the
Ž .number of free parameters for H O . Squares: rational polyno-2 10

mial extrapolation; diamonds: polynomial extrapolation. Abscissa
used in extrapolation: t s2.0q0.8 i hartree.i

rational polynomial is remarkable considering that
Ž .the energy expression of Eq. 10 is itself a rational

Ž .2polynomial of degree OV .

3.1.1. Accuracy for a fixed number of points
One way to judge the robustness of the extrapola-

tion is by examining the error as the t-values that
enter the rational polynomial get larger while keep-
ing constant the number of data points. Fig. 3 shows
how the 10-point extrapolation error grows with
increasing t. 1 Virtually no error is induced when
considering shifting the energy levels by only a few
hartrees. As shown from Fig. 3, the exact correlation
energy can be obtained within less than 1 m-hartree
error when shifting the energy denominator by ap-

Žproximately 5 hartree i.e., when increasing the
.HOMO–LUMO gap by 2.5 hartree . Remarkably,

even though the HOMO–LUMO gap is shifted by 12
hartree or more, extrapolating the correlation energy
to a zero shift induces an error of less than 1

Ž .milli-hartree for the relatively large H O cluster.2 10

1 Given a minimum value for t, t , the abscissa are chosen bymin
Ž w x .first uniformly distributing 10 r values over Tanh t ,1 . The' min

Ž . w x210 t-values are then obtained by using t r sArcTanh r .

In order to further assess the quality and robust-
ness of the rational extrapolation we have used the

w x55 molecules from the original G2-test set 20,21
Ž .using the MP2r6-311qG 3df,2p level of theory.

This molecular set along with the large basis set
offers the possibility to test the extrapolation for a
wide variety of HOMO–LUMO gaps, eigenvalue
spectrum range and distribution. The extrapolated
correlation energy was compared with the exact en-
ergy. The average, maximum and rms errors as a
function of t are presented in Table 1. By inmin

Ž .large, what was observed for H O is found to2 10

apply for all of the G2 set. Even when for each of
the 10 energy points the HOMO–LUMO gap is

Ž .opened by at least 5 hartree t s10 hartree , themin

physical correlation energy can be extrapolated with
milli-hartree accuracy.

3.1.2. Number of points for a fixed accuracy
A valuable feature of the rational polynomial used

here, is that, using the same data points, it is possible
w xto estimate the error for the extrapolated value 19 .

The results shown in Table 1 indicate that this error
estimate follows closely the actual error. Indeed, this
constitutes a reliable a-posteriori diagnostic for the

Fig. 3. MP2 energy extrapolation error as a function of the
Ž . Ž .minimum t value used in the extrapolation see text for H O .2 10
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Table 1
Ž .MP2 energy extrapolation error and error on estimated error as a function of t , the minimum t value used in the extrapolation see text ,min

Ž .for 55 molecules of the G2 set using the 6-311qG 3df,2p basis set. All quantities are in hartree

t Actual error Actual erroryestimated errormin

Average Maximum RMS Average Maximum RMS
y6 y5 y6 y6 y5 y62 4.47=10 4.00=10 8.44=10 1.16=10 1.48=10 2.67=10
y5 y4 y5 y5 y4 y55 7.06=10 4.33=10 1.11=10 2.12=10 2.90=10 5.55=10
y4 y4 y4 y5 y4 y47 1.82=10 9.03=10 2.68=10 5.65=10 5.94=10 1.23=10
y4 y3 y4 y4 y3 y410 3.88=10 1.70=10 5.23=10 1.36=10 1.08=10 2.39=10

quality of the extrapolation. Furthermore, this error
estimate can be used to devise a scheme to automati-
cally select t values in order to achieve a required
accuracy in the extrapolation, very much as it is done
in the Burlisch–Stoer method for integrating differ-

w xential equations 19 .
An automatic selection scheme should satisfy three

Ž .simple requirements: 1 the value ts0 should never
Ž .be considered; 2 any degree of accuracy should be

Ž .achievable; 3 as few and as large t values as
possible should be used. Thanks to the robustness of
the rational extrapolation, a number of different
schemes can be put forward. We propose the follow-
ing simple iterative scheme. Given k evaluations of
Ž .E t and a maximum step-size parameter a , choos-2

ing t such that t 0a t with 0-a-1 wouldkq1 kq1 k

satisfy at once conditions 1 and 2. By enforcing that
a be less than 1, the t-values geometrically approach
zero and the gradual improvement of the rational

Ž .extrapolation is insured. Condition 3 can be satis-
fied to some measure by adjusting the value of a .
For example, if t s10 hartree and a is set to 0.85,1

it would take more than 10 evaluations before having
Ž .to evaluate E t for t-values less than 2 hartree.2

Judging from the results presented in Table 1 and
Figs. 2 and 3, such a setting would yield an accuracy
of 10y4 hartree or better in less than 10 function
evaluations for most applications. Before evaluating
the energy for t sa t , one can examine thekq1 k

rational approximation obtained with the k data
points, and in particular the estimated error at both
ts0 and tsa t . In general, the quality of thek

rational approximation quickly deteriorates as one
considers points further and further outside the sam-
pled region. A large estimated error at these two t
values would signify that the sampled abscissa are

too far apart. Therefore, instead of evaluating the
energy for t sa t , we evaluate the energy at akq1 k

Ž .t-value within the interval a t ,t . This t-value isk k

chosen such that the ratio of the estimated error at
this point and at ts0 is less than 10y2 . By doing
so, not only the t-values are as far as possible from
ts0, but the quality of the rational approximation
improves with the addition of each new data point.

This simple automatic selection scheme was ap-
plied to the extrapolation of the MP2 energy for the
G2 set. Table 2 lists the number of points needed to
achieve a certain accuracy depending on the starting
t-value. It can be seen that for a wide variety of
systems, any given level of accuracy can be achieved
using a moderate number of data points irrespective
of the choice of the starting t-value.

3.2. Non-uniform shift of energy leÕels

Having demonstrated the robustness of the ratio-
nal extrapolation for uniform shifts of the orbital
energy levels, we now investigate the quality of the

Table 2
Number of points needed to achieve a given MP2 energy extrapo-
lation error as function of the maximum t value used in the

Ž .automatic selection scheme see text , for 55 molecules of the G2
Ž .set using the 6-311qG 3df,2p basis set

Ž . Ž .Max t Error hartree
y3 y4 y5 y3 y4 y5(10 (10 (10 (10 (10 (10

Average number of points Maximum number of points

10 6.5 8.2 10.7 8 11 13
7 5.6 7.2 9.6 8 10 12
5 5.0 6.9 8.6 6 9 11
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Fig. 4. MP2 energy extrapolation error as a function of the
Ž . Ž .minimum t value used in the extrapolation see text for H O .2 10

extrapolated energy for non-uniform shifts. The pro-
posed form is

< <E t sy ia jb 2 ia jbŽ . Ž . Ž .Ý2
iajb

1
<y ib ja ,Ž .

D q t 2uye yeŽ .i jab a b

14Ž .

where u is an arbitrary constant energy level. This
function has the particularity that for ts1, it amounts
to computing the MP2 energy for a system with all
virtual energy levels being degenerate at u . Here, the
robustness of the extrapolation can be judged by
examining the error when considering t-values taken

Ž . Ž .from the interval 0,1 while setting u to max e .a a

The results are shown in Fig. 4. As for a uniform
shift of the energy levels, the rational extrapolation
proves to be a very robust method even when the
eigenvalue spectrum is considerably modified. The
rational extrapolation extracts enough information
from the repeated ‘squeezing’ of the energy levels to
be able to extrapolate the energy of the unmodified
system. We observed that the quality and robustness
of the rational extrapolation technique using a non-
uniform shift is similar to the one observed for the
uniform shift. However, as it would be expected, we

point out that the best results are found when the
unoccupied eigenvalue range is small.

4. Conclusion

In this Letter we have shown that by making the
canonical MP2 correlation energy expression a
smooth continuous function of an arbitrary variable,
the exact correlation energy can be reliably obtained
by low-order extrapolation techniques. This approach
is intimately connected to, and generalizes, the
Laplace Transform of the MP2 energy which corre-
sponds to the integration of the Jacobian of a specific
function. Of the two types of extrapolation, rational
and polynomial, the rational extrapolation technique
is the most reliable and proves to be very powerful.
The function can be made to describe the smooth
passage from the fully interacting system to the
non-interacting system while highlighting specific
physical properties. The correlation energy of the
fully interacting system can then be reliably obtained
without ever having to examine it directly since it
can be extrapolated from the results obtained for
model systems with less interactions. By exploiting
the robustness of the extrapolation approach, we
suggest that the computational cost associated with
describing fully interacting systems can be signifi-
cantly reduced.

Acknowledgements

This work was supported by the National Science
Ž .Foundation CHE-9618323 .

References

w x Ž .1 S. Saebo, P. Pulay, Annu. Rev. Phys. Chem. 44 1993 213.
w x2 F. Weigand, M. Haser, H. Patzelt, R. Ahlrichs, Chem. Phys.¨

Ž .Lett. 294 1998 143.
w x Ž .3 J. Almlof, Chem. Phys. Lett. 181 1991 3197.¨
w x Ž .4 M. Haser, Theoret. Chim. Acta 87 1993 147.¨
w x5 P.Y. Ayala, G.E. Scuseria, J. Chem. Phys. in press.
w x Ž .6 M. Haser, J. Almlof, J. Chem. Phys. 96 1992 489.¨ ¨
w x Ž .7 A.K. Wilson, J. Almlof, Theoret. Chim. Acta 95 1997 49.¨



( )P.Y. Ayala et al.rChemical Physics Letters 307 1999 227–234234

w x Ž .8 O. Gunnarsson, B. Lundqvist, Phys. Rev. B 13 1976 4274.
w x Ž .9 D.C. Langreth, J.P. Perdew, Solid State Commun. 17 1975

1425.
w x Ž .10 A.D. Becke, J. Chem. Phys. 98 1993 1372.
w x Ž .11 Q. Zhao, M. Levy, R.G. Parr, Phys. Rev. A 47 1993 918.
w x Ž .12 A. Savin, H.J. Flad, Int. J. Quantum Chem. 56 1995 327.
w x Ž .13 W. Yang, J. Chem. Phys. 109 1998 10107.
w x Ž .14 J. Rey, A. Savin, Int. J. Quantum Chem. 69 1998 581.
w x15 D. Pines, The Many-Body Problem, Benjamin, New York,

1962, p 43.
w x16 S.T. Epstein, A.C. Hurley, R.E. Wyatt, R.G. Parr, J. Chem.

Ž .Phys. 47 1967 1275.
w x17 G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham,

Ž .W.A. Shirley, J. Mantzaris, J. Chem. Phys. 89 1988 2193.
w x18 GAUSSIAN 99, M.J. Frisch, G.W. Trucks, H.B. Schlegel,

G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Za-
krzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S.
Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C.

Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Mo-
rokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B.
Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill,
B. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-
Gordon, E.S. Replogle, J.A. Pople, Gaussian, Inc., Pittsburgh
PA, 1998.

w x19 W.H. Press, S.A. Teukolsky, W.T. Vetterling, W.P. Flan-
nery, Numerical Recipes in Fortran, 2nd edn., Cambridge
University Press, Cambridge, 1992.

w x20 J.A. Pople, M. Head-Gordon, D.J. Fox, K. Raghavachari,
Ž .L.A. Curtiss, J. Chem. Phys. 90 1989 5622.

w x21 L.A. Curtiss, C. Jones, G.W. Trucks, K. Raghavachari, J.A.
Ž .Pople, J. Chem. Phys. 92 1990 2537.


