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Abstract: Regions of space are defined to maximize the probability to find a given number of electrons within. Their
chemical significance and their relationship to the electron localization function (ELF) are explored by analyzing the
results for a few linear molecules: LiH, BH, N2, CO, CS, C2H2, and C4H2.
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Introduction

Quantum mechanics allows electrons to be delocalized over the
whole space. Chemical intuition, however, works with electrons
“localized” within a given region of space (pairs of electrons,
shells, etc.). Consider a system of N electrons. When an arbitrary
region of space, �, is chosen, quantum mechanics can yield the
probabilities of finding a given number of electrons, � (0 � � � N)
in it. To find chemical concepts without violating quantum me-
chanics, it has been proposed long ago to analyze how probabilities
change when the space regions are modified.1,2 There is some
flexibility in choosing the criterion defining the region of interest.
In this article we choose the simplest possible: the region should
maximize p(�, �), the probability of finding exactly � electrons in it.

Although the regions are now defined, their chemical signifi-
cation is not. Only experience can tell whether such regions are
able to describe chemical concepts. A previous article3 has shown
that the above-defined regions can describe well the (valence)
atomic shells (Li to Xe). It also pointed out that to choose which
number of electrons, �, corresponds to a shell, it is useful to
compare the probabilities obtained for the quantum mechanical
system with those that would be obtained for independent parti-
cles, having the same population (average number of electrons in
the region): quantum mechanical effects enhance the probability of
having � electrons in a region, if � corresponds to a shell. To
express it in a more precise manner, consider

�p��, ��� � p��, ��� � pindep��, ��� (1)

where �� is a region maximizing p(�, �) and pindep(�, �) is the
probability of finding � and only � independent, indistinguishable
particles in �. Here,

pindep��, �� � �N
��pbin

� �1 � pbin�
N�� (2)

where

pbin �
¥��0,N �p��, ��

N

guarantees that the population of the independent particles in � is
the same as for the real ones.3 Analyzing the atomic restricted
Hartree–Fock wave functions showed that �p(�, �) � �p(� � 1,
���1) when � corresponds to a shell. There is, however, a natural
restriction to take into account when applying the above inequality.
The mathematical origin of the restriction lies in the fact that there
can be several local maxima of �p(�, ��). The possibility of
several local maxima has a physical origin. A simple example is
given by the Ar atom, which has two shells with eight electrons,
and both should to be recovered with the present procedure. Thus,
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it is meaningful to compare the probabilities for ���1 and ��:
���1 contains ��, and �� contains �v�1.

This article extends the previous analysis to linear molecules.
The regions of � were optimized, yielding different p(�, �v).
Next, values for different � were compared, using �p(�, ��).
Finally, these regions are discussed for their chemical significance.
In this part, a comparison with regions defined using the Electron
Localization Function (ELF),4 is made.

Theory and Methods

Algorithm

The formulas for obtaining p(�, �) were those given in a previous
article.5 For single Slater determinants only the overlap integrals
within � are needed to obtain p(�, �). For optimization, we used
two different algorithms; one, using the level-set method was
published in ref. 5; the other one, used in the present article, will
be shortly described in the following. First, the space is divided
into small cells. For linear molecules, cylindrical symmetry can be
used, so that considering a half-plane, starting on the molecular
axes is sufficient, so that the cells are rectangles. (In our numerical
examples they had edges �0.1 bohr.) The overlap of the molecular
integrals is computed analytically in each of the cells. One then
starts with a given �, defined as the union of cells, the choice
being given by intuition (e.g., by ELF basins6). When the cells are
very small, the contribution of a cell to p(�, �) can be calculated
by linearization. As the formula given in ref. 5 already uses the
eigenvalues of the overlap matrix within �, this is easily done.
After the contributions of all cells on the outside and inside the
surface delimiting � have been calculated, cells are added or
deleted to increase p(�, �). Thus, � is redesigned, and the proce-
dure starts again, until p(�, �) does not change any more, within
a given accuracy. Our results have been obtained by a program
written in Mathematica.7

Limitations of Algorithm

The above-described algorithm has the following limitations: (1)
the starting guess, and (2) the size of the cells. The first limitation
does not seem to be very important, as we can be guided by
experience. Of course, due to the existence of several maximal p(�,
�), different starting guesses have to be tried.

The second limitation of the algorithm can be controlled in a
systematic way, and does not seem to be a severe problem, at least in
2D. Of course, the present algorithm can only produce the �� within
the precision of the size of the cells. Oscillations around the bound-
aries are not always avoided with this algorithm: when � is too small,
the perturbation indicates that � should be increased; once increased
beyond the boundary, one can discover that a reduction of the volume
is favorable. When the cells are constructed fine enough, the effect on
�� and p(�, �) is negligible. When the cells are large, this can
seriously limit the accuracy of the calculation. Although our calcula-
tions always converged for a sufficiently fine grid, this option makes
the code unnecessarily slow. An improved algorithm could refine the
grid as � approaches convergence.

The algorithm presented here is general. However, as this work
is only exploratory, we limited ourselves to molecules with cylin-

drical symmetry, where lower dimensionality compensates for an
algorithm and a program which are not yet optimal. There is,
however, a price to pay for this: some optimal regions may not
show up. In systems like acetylene, where a multiple bond is
present, one would expect to find three electron pairs which, like
banana bonds, break the symmetry of the system. As the code
keeps the symmetry, this type of solution does not show up.
Imposing the symmetry upon �� does not prevent from obtaining
solutions which correspond to the � bond.

Some of the technical problems mentioned above could be
circumvented by a variable grid, for example, by choosing larger
cells in the regions where the density is low and by refining the
grid in the border regions.

Restricted Hartree–Fock

The quantum mechanical input to these programs is provided by
calculations in the 6-311G** basis, at the Hartree–Fock level, for
experimental (NIST Scientific Databases, http://www.nist.gov), or
for calculated geometries (optimized using restricted Hartree–
Fock, with 6-311G** basis set8).

This is clearly a limitation, and our present results may thus be
considered as questionable. Comparisons with Quantum Monte
Carlo calculations show, however, in general, a surprisingly good
agreement with restricted Hartree–Fock calculations (Scemama,
A., J Theor Comp Chem). A typical exception to this rule is the
stretched hydrogen molecule. Further calculations will be done to
assert the effect of correlation on the ��.

Results

Simple Example: LiH; �, N � � Complementarity

Let us start with the simple example of the LiH molecule. The trivial
cases of the regions having no electrons (� � 0) or having all electrons
in it (� � N), leads at the discretized level to the empty set, or to the
union of all the cells of the mesh, respectively. Starting with a sphere
around the Li atom, we get, for � � 1 a roughly spherical region
around the Li nucleus, with p(1, �1) 	 0.5 and �p(1, �1) 	 0.08. For
� � 2, this domain gets larger, and p(2, �2) 	 0.94, and �p(2, �2) 	
0.56. For � � 3, the domain further increases, but p(3, �3) and �p(3,
�3) fall back to values close to those given for � � 1. We thus select
�2 as chemically significant. It describes the “Li core.” In using the
data it may be useful to notice that the probability to find electrons in
� is equal to that of finding N � � in the rest of the space (in the
complement of �). In the example above, if �2 maximizes the
probability of finding two electrons around the Li nucleus (“Li core,”
or “Li�”), its complement is a domain �2 containing the H atom and
maximizing the probability of finding 4 � 2 � 2 electrons in it (“H�,”
or “LiH bond”).

Figure Description

The results relevant for the discussion are collected in Figure 1 and
in Table 1. As the molecules have cylindrical symmetry, Figure 1
shows the results in half-planes containing the molecular axis. The
position of the atoms is marked by black half-disks, and the
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colored background shows the ELF values. The contours of some
relevant �� are shown in red, while some other contours, which
are evident (cores, contours generated by symmetry) are not
shown. It must be noticed that no smoothing was used, the step-
structure in the contours reflecting the size of the cells. The colored
background shows the electron localization function (ELF). Recall
that the regions where electron pairs are formed are expected to
yield large values of ELF. As in ref. 9, the color code used for ELF
is borrowed from geographical maps; high values (close to 1) are
white, around 0.8 the color turns to brown, around 0.6 to green,
becoming a light green around 0.4, to start to go over to blue
around 0.2. Using ELF, space can be divided into “basins;” a basin
is the collection of points in space from which following the ELF
gradient one reaches the same maximum. One can see in Figure 1
that for the LiH molecule �2 yields, within our accuracy, the same
result as ELF: a separation into a region around a Li “core” and the
remaining part of a molecule. One may call this separation ionic.
Notice, however, that we have not given any criterion to distin-
guish between an “H�” ion, and an LiH “bond.”

Comparison with ELF

It is interesting to notice, in the case of LiH, the agreement of the
�� with the ELF basins. This is also the case for BH. However,

especially when the population of �� deviates from �, the agree-
ment is not as good. A typical example is given by the N2

molecule. In this case, ELF yields a basin population of the lone
pair of 	3 electrons, while for �2 it is close to �, that is, 2, and to
the “chemical” picture. Notice that when probabilities are used to
define criteria, like �p(�, ��), the number of electrons �, is
automatically fixed to an integer; the noninteger number given by
populations is the result of averaging.

Table Description

The information given in Table 1 is the following. For each
molecule (first column) selected regions �� are given (column 2).
These are identified either (1) by the nucleus it contains (e.g., B);
or (2) by a “lone pair-like” region to which it is attached, followed
by “lp” in parentheses, for example, B(lp); or (3) by the pair of
nuclei to which a “bond-like” region between the nuclei exists
(e.g., CC); a further characterization is given by a word in paren-
theses (e.g., terminal). The following columns give, respectively,
�, p(�, ��) and �p(�, ��) 	 0.5. For example, the data corre-
sponding to the contour previously described for the LiH molecule
in Figure 1 appears in the second line of the table, for � � 2. One
can see that p(2, �2) reaches quite a high value, 0.94, and that
�p(2, �2) is quite large (	0.56), in contrast to �p(2 � 1, �2�1) 	
0.08. As explained in the introduction, the analysis of the data is
based upon the �p(�, ��). Thus, the �2 shown in Figure 1 for the
LiH molecule is considered “relevant.”

Atoms in Molecules, Shells in Molecules

The procedure described does not provide “atoms in molecules.”
For example, in LiH, there is no maximum in �p(�. ��) found, for
� � 3, so that the Li atom is not recovered. A similar result is
obtained for Li in LiF. Furthermore, no “H atom” is found in LiH,
and no “F atom” in LiF, no “B atom” in BH, no “C atom” in CO,
etc. (We do not present in the table the results for “H” in LiH, and
for “F” in LiF, as these can be deduced from the N � � data for
“Li.”) Lone pairs and bonds can provide supplementary maxima.
For example, in BH there is a maximum for �p(4, �4) around the
B atom given by the core and the lone pair region. In acetylene, a
maximum is formed for �p(10, �10) around the C atom, formed by
the core, the CH bond, and the triple bond. It is, however, more
interesting to look at these quantities individually, than to see them
as “deformed atomic shells.”

Populations

The populations were not given in Table 1. Within our numerical
accuracy they were close to the integer numbers �. As noticed in
ref. 3, p(�̃, ��) 	 (2��2)�1/2 exp[�(�̃ � ��2)2/2�,2 where �̃ �

�̃p(�̃, ��) and �2 � 
(�̃ � ��)2 p(�̃, ��). This result points out
towards a general feature, namely that the p(�̃, ��) are distributed
in a symmetrical way around its maximum, and that they decrease
fast around �.

Partition of Space

The previous remark does not explain a phenomenon observed
now in many cases: the “relevant” �� seem to produce a partition

Figure 1. Electron localization function (ELF) representation for: (a)
LiH, �2, Li core/H�; (b) LiF, �2, Li core/F�; (c) BH, �2, lone pair,
B core, BH bond; (d) N2, N cores, and lone pairs, triple, and sigma
bond; (e) CO, cores, C lone pair, sigma bond, and “rest”; (f) CS, as for
CO, before; (g) HCCH, cores, CH bonds, triple bond; (h) HCCCCH,
cores, CH bonds, triple, and sigma bonds. The atoms have been
ordered from the top of the figure to the bottom. The contours of some
relevant �� are shown in red.
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of space. For example, in the BH molecule, the “BH bond,” the “B
lone pair,” and the “B core” are three different maxima of p(2, �2).
The three �2 seem, within our accuracy, to divide space into three
regions. In Figure 1, the three regions were plotted independently,
but one may notice that the same segment of curve is part of the

boundary of the “BH bond” and the “B lone pair.” Sometimes, due
to the technical limitations mentioned above, it is not possible to
distinguish whether there really is just a common separating sur-
face between two optimized regions or not. For example, in the
case of the BH molecule, one can notice that there is just one cell

Table 1. Results of p(�, ��), and �p(�, ��) for the Selected Region �� and � of Each Studied Molecule.

Molecule Region � p(�; ��) �p(�; ��) Molecule Region � p(�; ��) �p(�; ��)

LiH Li 1 0.50 0.08
LiH Li 2 0.94 0.56
LiH Li 3 0.50 0.08
LiF Li 1 0.50 0.12
LiF Li 2 0.93 0.63
LiF Li 3 0.44 0.18
LiF F 1 0.40 0.05
LiF F 2 0.71 0.41
LiF F 3 0.39 0.13
BH B 1 0.49 0.09
BH B 2 0.86 0.53
BH B 3 0.48 0.17
BH B 4 0.76 0.43
BH B 5 0.50 0.10
BH B(lp) 1 0.50 0.10
BH B(lp) 2 0.74 0.42
BH B(lp) 3 0.34 0.06
C2H2 C 1 0.48 0.11
C2H2 C 2 0.79 0.49
C2H2 C 3 0.39 0.14
C2H2 H(CH) 1 0.48 0.10
C2H2 H(CH) 2 0.57 0.28
C2H2 H(CH) 3 0.37 0.12
C2H2 CC 1 0.44 0.06
C2H2 CC 2 0.37 0.08
C2H2 CC 3 0.30 0.06
C2H2 CC 4 0.26 0.04
C2H2 CC 5 0.33 0.11
C2H2 CC 6 0.36 0.15
C2H2 CC 7 0.31 0.10
C4H2 H(CH) 1 0.48 0.10
C4H2 H(CH) 2 0.56 0.28
C4H2 H(CH) 3 0.36 0.12
C4H2 CC(central) 1 0.45 0.07
C4H2 CC(central) 2 0.42 0.14
C4H2 CC(central) 3 0.33 0.10
C4H2 CC(terminal) 1 0.42 0.05
C4H2 CC(terminal) 2 0.37 0.09
C4H2 CC(terminal) 3 0.32 0.08
C4H2 CC(terminal) 4 0.32 0.11
C4H2 CC(terminal) 5 0.33 0.14
C4H2 CC(terminal) 6 0.35 0.16
C4H2 CC(terminal) 7 0.30 0.13
N2 N 1 0.48 0.11
N2 N 2 0.77 0.48
N2 N 3 0.40 0.14
N2 N 4 0.45 0.21
N2 N 5 0.38 0.16
N2 N(lp) 1 0.47 0.09
N2 N(lp) 2 0.47 0.18

N2 N(lp) 3 0.38 0.12
N2 NN 1 0.44 0.06
N2 NN 2 0.38 0.09
N2 NN 3 0.33 0.08
N2 NN 4 0.31 0.08
N2 NN 5 0.31 0.09
N2 NN 6 0.31 0.10
N2 NN 7 0.31 0.10
N2 NN 8 0.29 0.08
CO C 1 0.43 0.07
CO C 2 0.81 0.51
CO C 3 0.40 0.15
CO C 4 0.56 0.33
CO C 5 0.39 0.18
CO C 6 0.34 0.13
CO C(lp) 1 0.49 0.10
CO C(lp) 2 0.57 0.28
CO C(lp) 3 0.38 0.12
CO O 1 0.37 0.03
CO O 2 0.74 0.45
CO O 3 0.39 0.14
CO CO 1 0.44 0.07
CO CO 2 0.39 0.09
CO CO 3 0.34 0.09
CO CO 4 0.31 0.08
CO CO 5 0.31 0.09
CO CO 6 0.31 0.11
CO CO 7 0.34 0.13
CO CO 8 0.46 0.25
CO CO 9 0.36 0.14
CS C 1 0.43 0.08
CS C 2 0.81 0.53
CS C 3 0.45 0.21
CS C 4 0.54 0.32
CS C 5 0.39 0.19
CS C(lp) 1 0.48 0.11
CS C(lp) 2 0.55 0.26
CS C(lp) 3 0.37 0.13
CS S 9 0.39 0.22
CS S 10 0.64 0.47
CS S 11 0.39 0.22
CS CS 1 0.45 0.08
CS CS 2 0.39 0.11
CS CS 3 0.34 0.09
CS CS 4 0.31 0.09
CS CS 5 0.30 0.10
CS CS 6 0.31 0.12
CS CS 7 0.33 0.15
CS CS 8 0.41 0.23
CS CS 9 0.37 0.20
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that makes a difference between the surface of the “B core” and the
“BH bond” regions. Due to the smallness of the effects seen in the
figures, it was not considered necessary to push further the accu-
racy, than showed in the figures: for the examples studied here, one
can consider using that the maximal �p(�, ��) form a partition of
space, although this was not required by the definition of the ��.

Cores, Polarization, and Penetration

We will start now analyzing the data. We first notice the presence
of the cores. In all cases, they are well separated from the valence,
with �p(�, ��) around 0.5. It can be noticed, however, that they
can be polarized by the molecular environment. Already LiH
shows this effect. There is no surprise in seeing that both “H�-” (in
LiH) and “F�” (in LiF) is highly deformed (“polarized”) by “Li�,”
which “penetrates” them (due to “electrostatic interaction”). The
�2 around the Li nuclei do not have spherical shape, as they have
in the Li atom. While the “hard Li�” penetrates the soft “anions,”
the “Li�” �2 is also deformed, trying to escape the “Pauli repul-
sion” of the “anion.”

Octet Rule

For the valence shell, one might expect the octet rule to be
satisfied, in general. This is the case around F (“F�”) in LiF,
around O (in CO), around S (in CS), around N (lone pair and bonds
in N2, cf. maximum around � � 4, in Table 1, use the equivalence
with N ��, and eliminate the core), or around the C, in C2H2 or
C4H2. Notice, however, that the “shared electrons” can extend far
into the region of the other atom (see, e.g., the “triple bond” in
C2H2). For C in CS and CO it is less clear how to count. Two
electrons of the lone pair and two of the � bond can be attributed
to the C atom, although the domain of the electrons around O
extends around the � bond towards the C atom: the criterion �p(�,
��) � �p��1(� �1, ���1) did not allow finding any region that
would be attributed to a “covalent bond.” At the present status of
our calculations, the better description of these CX molecules is
thus not �C�1 � X�1� but rather with the � bonds formally

attributed to X; one may like to write �C�1 � X�1�. The formal
charges are not related to the dipole moment, as can be easily seen
from the deformation of the “� lone pairs” �� on X.

No Absolute Scale

As in atoms, we notice that there is no absolute scale connecting
the values of �p(�, ��) to the “chemical concepts.” In all the cases
studied, the cores are well separated from the valence, with �p(�,
��) around 0.5. Also, lone pairs appear on B in BH, on N in N2,
and on C in CO and CS, with �p(2, �2) between 	0.4 (B) to 	0.2
(N). Single bonds seem also to be well described (the CH bonds in
acetylene, C2H2, and diacetylene, C4H2 have �p(2, �2) 	0.3). As
for the lone pairs, �p(� � 1, ���1) are significantly lower (	0.1).
On the other hand, the characterization of multiple bonds is not as
clear. For example, in acetylene, �p(6, �6) 	 0.15, while �p(� �
1, ���1) are still around 0.1. In diacetylene, the situation is worse,
as the �p(� � 1, ���1) increase to values even closer to �p(6,
�6) 	 0.5. The origin of this effect may be the delocalization of
the triple bond. This goes hand in hand with the relatively small

difference between �p(2, �2) and �p(� � 1, ���1) for the central
CC bond in diacetylene. The effect is even more important in the
nitrogen molecule: a maximum of �p(�, ��) can be noticed for
� � 6, but it is beyond the limit of the numerical accuracy
imposed. In the CO and CS molecules, no maximum has been seen
for �p(�, ��), corresponding to � � 4 or � � 6 (double or triple
bond). As � increases, a maximum is reached for � � 8, which
corresponds to an ionic O or S (the whole space excluding the
cores and the lone pair on C). One can notice, however, a tiny
maximum for � � 2, which corresponds to a 	 bond.

Resonance

To better understand these special cases, let us consider, the
example of a model “hydrogen molecule,” described by the wave
function


�r1, r2� �
�

�2
�a�r1��b�r2�  �b�r1��a�r2��


�1 � �2

�2
�a�r1��a�r2�  �b�r1��b�r2� (3)

Here, �a and �b are atomic orbitals, �2 � [0,1] gives the weight of
the covalent structure, and l � �2 the weight of the ionic (reso-
nance) structure. The probability to find one electron on atom a
(and one on atom b) is given by �;2 the probability to find both
electrons on atom a (and none on atom b) or of finding no electron
on a (and both on b), is given by l � �2). (� is defined now by
symmetry, as the half-space obtained by the plane perpendicular to
the bond, and containing the bond-midpoint.) If the electrons were
independent, the probability to have zero, one or two electrons in
� would have been 1/4, 1/2, and 1/4, respectively, yielding equal
probability for a “covalent” and an “ionic structure.” As long as
�2 � 1/2, �p(1, �) � �2 � 1/2 is larger than the change in
probability due to the ionic limiting forms, and the “best” descrip-
tion will be that of having one electron on atom a, and one on atom
b. The effect decreases as the ionic structure increases in impor-
tance. Such an effect of “resonance” (or “delocalization”) can be
seen, for example, by comparing �p(6, �6) with �p(5, �5) and
�p(7, �7) in acetylene and diacetylene: the difference is signifi-
cantly reduced in diacetylene. Notice, however, that we have not
considered in this article the cases when one has “either �1 or �2”
electrons in �. Thus, when � will be optimized, say for � � 2, the
whole space will result, independently of �. Thus, a proper treat-
ment of the case of “either �1 or �2” electrons in � needs to be
implemented in order to better understand “resonance” in the
context of the p(�; �).

Further Partitioning

It would be interesting to analyze a complete partition of space in
terms of given “Lewis structures,” for example, the probability to
have A electrons in �A, �B in region �B, etc., with vA � �B� . . . �
N, as done in the “loge theory.”1,2 The data produced up to now do
not provide the complete information. Let us take as an example
the BH molecule, and define the three regions as the core, lone
pair, and bond region. We ask if we can maximize the probability
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of having two electrons in each. The p(�; �) are not sufficient to
obtain it, but we can make estimates. We can eliminate from the
equations

p��i, �A� � �
j,k��i��j��k�N�

p��i, �j, �k� (4)

where p(�i, �j, �k) is the probability to find �i electrons in �A, �j in
�B, and �k in �C. Substituting the computed values on the left-
hand side of the equation above, one obtains after some manipu-
lation of the equation that7

p�2, 2, 2� � 0.68  p�4, 1, 1�  p�1, 4, 1�  p�1, 1, 4� (5)

As 0 � p(4,1,1) � p(4, �A), etc., one can obtain an upper and a
lower bound to p(2, 2, 2). It turns out that these two are very close
[as p(4, �A) 	 0], and we can estimate p(2, 2, 2) to 	0.68. The
independent particle probability is now given by the multinomial
distribution,

pindep�2, 2, 2� �
6!

2!2!2!
pA

2pB
2pC

2 (6)

where

pX � �
��0,N

�p��, �X�

N
, �X � A, B, C�

guarantees that the population of the independent particles in �X is
the same as for the real ones.3 As there are roughly two electrons
in each of the �, this yields pA 	 1/6, and a high value for

�p�2, 2, 2� � p�2, 2, 2� � pindep�2, 2, 2� � 0.56 (7)

This value is as high as that for the core/valence separation,
although p(2, 2, 2) is significantly lower.

Conclusion

Maximizing the probability of finding a given number of electrons
in a spatial domain provides a conceptually simple way of obtain-

ing regions having “chemical meaning” in molecules (in the sense
of Lewis structures): cores, bonds, lone pairs. Although the objec-
tive is similar to that of other approaches, the results obtained do
not always coincide; a comparison with ELF shows good agree-
ment in the cases where the latter is known to work well, but gives
different, supposedly better, answers when the ELF analysis gives
questionable results. Although the domains have been optimized
separately, the optimizations seem to yield a partition of space.
However, it is desirable to extend this procedure to one where all
domains are simultaneously optimized. Furthermore, the function
to be optimized should be extended to take into account cases
when several limiting structures are important.
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