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The adiabatic-connection framework has been widely used to explore the properties of the correlation en-

ergy in density-functional theory. The integrand in this formula may be expressed in terms of the elec-

tron–electron interactions directly, involving intrinsically two-particle expectation values. Alternatively, it

may be expressed in terms of the kinetic energy, involving only one-particle quantities. In this work, we ex-

plore this alternative representation for the correlation energy and highlight some of its potential for the con-

struction of new density functional approximations. The kinetic-energy based integrand is effective in con-

centrating static correlation effects to the low interaction strength regime and approaches zero asymptoti-

cally, offering interesting new possibilities for modeling the correlation energy in density-functional theory.
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INTRODUCTION

The Kohn–Sham variant of density-functional theory

(DFT)1,2 is now the most widely applied methodology for

electronic-structure calculations. In the 50 years since its

conception, the range of molecular and solid-state proper-

ties to which is may be applied has grown enor- mously

(see Refs.3,4 for some recent perspectives). In all of these

applications, the choice of approximate exchange–correla-

tion functional is a governing factor in the accuracy that

may be obtained from the simulations. Unfortunately,

Kohn–Sham exchange–correlation functionals do not have

the hierarchical systematicity of conventional ab initio ap-

proaches.5

The development of new functionals therefore re-

mains an active area of research and new perspectives/in-

sights into the nature of the exact functional are of great

value.

A particularly useful tool for understanding Kohn–

Sham exchange–correlation functionals has been the adia-

batic-connection (AC) formalism.6-8 This formalism un-

derpins the development of hybrid functionals and (in a

modified form)9 range-separated hybrids,10,11 some of the

most successful types of functional in use today. As well as

providing a formal justification for these functionals, the

AC can be used as a tool to study the behaviour of the exact

functional � see, for example, Refs.12-14 From this perspec-

tive, alternative models for the challenging exchange–cor-

relation energy have been proposed15-18 and tested against

accurate ab initio models. The utility of the AC formalism

in this context stems from the fact that it provides a direct

and simple bridge between the Kohn–Sham model system

of non-interacting particles (described by a single Slater

determinant) and the complex physical interacting system

(described by the full configuration-interaction wave func-

tion), at constant electronic density. It therefore provides a

key link between Kohn–Sham models and accurate, sys-

tematically refineable, ab initio methods. For an extensive

review of the AC formalism, see Ref.19

In the present article, we focus on the correlation

component of the energy via the AC formalism. The ex-

change component can be readily expressed directly in

terms of Kohn–Sham orbitals and so we do not consider

it further. Instead, we consider two possible AC repre-

sentations of the correlation energy, comparing and con-

trasting their properties and the different opportunities

they afford for the construction of practical computa-

tional models.

ADIABATIC CONNECTION INTEGRANDS

In the traditional approach to the electronic correla-

tion problem in Kohn–Sham DFT,2 the correlation energy

is expressed through the AC formalism6-8 in terms of ex-

pectation values of a series of partially interacting wave

functions over two-particle operators. Specifically, the

Hamiltonian

H� = T + V� + �W (1)

is introduced where � is the interaction strength, T is the op-

erator for the kinetic energy, W is the electron–electron in-

teraction operator, and V� is an effective external potential

that keeps the electron density constant for all values of �

between 0 (the Kohn–Sham system) and 1 (the physical

system). In terms of the ground-state wave function �� of

H�, the correlation energy for the fictitious system defined

by H� is given by

Ec,� = ���|H�|��� � ��0|H�|�0� (2)

Using the Hellmann–Feynman theorem and the invariance

of the density with �, we obtain (assuming no degeneracy)

(3)

where the dependence of the integrand (��|W|��) �

(�0|W|�0) on � is a guide in the development of density-

functional approximations.

Whilst conceptually straightforward, the evaluation

of the expectation values (��|W|��) requires the reduced

second-order density matrices associated with the wave

functions ��. Most practical implementations of DFT em-

ploy the Kohn–Sham scheme, using the � = 0 system of

non-interacting fermions as a reference. In this case, the

Hamiltonian H�=0 contains only single-particle operators,

although the effective potential V� does reflect correlation

effects, being determined to keep the Kohn–Sham elec-

tronic density fixed at that of the physical (� = 1) system.

AN ALTERNATIVE REPRESENTATION OF THE

CORRELATION ENERGY

We now consider an alternative AC perspective for

analysis of the electronic correlation energy in DFT, which

only requires expectation values of one-particle operators.

Whilst this perspective may seem awkward at first glance,

it should be noted that the one-particle density matrix does
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encode correlation effects, as illustrated by, for example,

the virial theorem. Given that we make explicit use only of

one-particle operators in Kohn–Sham theory, such an alter-

native perspective may be useful for constructing density-

functional approximations (or reduced first-order density-

matrix approximations), avoiding all quantities involving

the reduced second-order density matrix.

An expression for the correlation energy in Kohn–

Sham theory in terms of a one-electron operator can be de-

rived as follows.20-23 Differentiating Ec,� in Eq. (2) and the

corresponding expression for Ec,�/� with respect to �, we

obtain, respectively, the two expressions

(4)

(5)

Noting that the terms involving V� depend only on the den-

sity and are therefore independent of �, we obtain the sim-

plified expressions

(6)

(7)

Integrating both sides of these equations with respect to �

from 0 to 1, we find that the left-hand side in both cases be-

comes the Kohn–Sham correlation energy Ec:

(8)

(9)

where in Eq. (8) we have used Ec,0 = 0 according to Eq. (6),

whereas in Eq. (9) we have used L’Hôpital’s rule and then

Ec,0 = 0 according to Eq. (7). Introducing the notation

Wc,� = (��|W|��) � (�0|W|�0) (10)

Tc, � = (��|T|��) � (�0|T|�0) (11)

(12)

we arrive at the following alternative AC representations of

the correlation energy:

(13)

In the following, we examine and compare the AC inte-

grands Wc,� and T
c , �

for a few atomic and molecular sys-

tems.

MODELS OF THE CORRELATION ENERGY

For the conventional AC representation of the corre-

lation energy, it has been profitable to consider how the

integrand Wc,� may be modelled. Such models lead directly

to forms for the correlation energy via integration, provid-

ing a framework for developing new correlation func-

tionals. In this work, we consider the following simple for-

mula for the correlation energy at interaction strength �,

guided by second-order perturbation theory:18

(14)

Here the parameter w represents the interaction of the

noninteracting Kohn–Sham state with excited states, the

parameter h > 0 models the HOMO–LUMO gap in the

noninteracting limit, whereas the parameter g > 0 models

the opening of the HOMO–LUMO gap for interacting sys-

tems.18 Introducing the assumption that w = g, differentia-

tion with respect to � of �D(�) and �D(�)/� then yields the fol-

lowing formulas for the AC integrands:

(15)

(16)

The AC model integrands have the following noninter-

acting and strictly interacting limits:

WD,0 = 0, WD,� = �g (17)

(18)

We also note the following revealing relationship between
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their first derivatives

(19)

The model AC integrands WD,� and T
D , �

= ��
2TD,� are there-

fore monotonically decreasing and increasing functions of

�, respectively, towards the strictly-correlated limit, which

in the case of T
D , �

is zero.

COMPUTATIONAL DETAILS

In this paper, we present AC curves of the two inte-

grands in Eq. (13), obtained from accurate ab initio calcu-

lations. Accurate values for the integrands are determined

using the approach of Refs.13,14 with coupled-cluster wave

functions at the coupled-cluster singles-and-doubles

(CCSD) level for the two-electron systems and coupled-

cluster singles-doubles-perturbative-triples [CCSD (T)]

level for the four-electron systems studied. We note that the

CCSD model is equivalent to the full configuration-inter-

action (FCI) model for the two-electron systems. For com-

parison, the integrands corresponding to the Perdew–

Burke–Ernzerhof (PBE)24 density-functional approxima-

tion have also been determined, using scaling relations.25

The PBE integrands are evaluated for the same (FCI or

CCSD (T)) densities as the accurate ab initio integrands.

All calculations have been carried out using the un-

contracted aug-cc-pVTZ basis set26,27 for both the orbital

and potential expansions. A development version of the

Dalton quantum-chemistry program28,29 has been used for

all calculations in this work. All electrons are correlated in

the coupled-cluster calculations and the electronic densi-

ties are determined via the Lagrangian approach of

Helgaker and Jørgensen, including orbital relaxation

terms.30,31 The results obtained for the atomic systems are

consistent with the earlier study of Colonna and Savin.12 To

aid with reproducibility of the AC curves, we have fitted

analytic functions based on the second-order pertur-

bation-theory inspired model of Teale, Coriani, and

Helgaker18 to the calculated data. The values of the fitted

parameters g and h in Eq. (14) are given in the Appendix.

We have studied the helium isoelectronic series with

nuclear charge 2 � Z � 10, the beryllium isoelectronic series

with 4 � Z � 10, and the H2 molecule at the internuclear

separations 0.7, 1.4, 3.0, 5.0, 7.0, and 10.0 bohr. These

prototypical systems allow us to explore a range of correla-

tion effects. Dynamic correlation is captured by the helium

isoelectronic series, near-degeneracy effects by the beryl-

lium isoelectronic series, and the transition from dynamic

to static correlation by the H2 molecule at different inter-

nuclear separation.

RESULTS

AC integrands for helium and beryllium isoelectronic

series

We begin by considering the conventional AC inte-

grand Wc,l, which features the electron– electron interac-

tions explicitly. Figure 1 shows that, in certain cases, Wc,l is

well reproduced by simple approximations such as the PBE

functional.24 In the left-hand panel of Figure 1, Wc,l is

shown for helium isoelectronic atoms with Z = 2, 6, 10,

whereas Wc,l for the beryl- lium isoelectronic series with Z

= 4, 7, 10 is shown in the right-hand panel. The ab initio

integrands are plotted with solid lines, whilst the corre-

sponding PBE curves are dashed. For both series, the PBE
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Fig. 1. The AC integrand Wc,� for the helium isoelectronic series (left panel) and beryllium isoelectronic series (right panel).

Accurate ab initio integrands are shown as full lines, those corresponding to the PBE approximation are shown by

dashed lines.



functional provides a reasonable approximation at low Z

values but deteriorates as Z increases.

In the helium isoelectronic series, the PBE approxi-

mation captures the tendency of the Wc,� integrand towards

linearity as Z increases. However, the ab initio and PBE

integrands behave differently with increasing Z. Whereas

the ab initio curves give a less negative correlation energy

with increasing Z in the helium series, the PBE curves give

a more negative correlation energy with increasing Z. It

should be noted that in Ref.14 the trend for the ab initio

curves is reversed in larger basis sets. The present trend

may therefore reflect a limitation of the basis set used in

this work. Nonetheless, it is clear that the PBE integrands

and associated correlation energies tend towards too nega-

tive values with increasing Z, noting that the PBE correla-

tion energy for Ne8+ in this basis set is already 5 mEh below

the estimated basis-set limit value of Ref.14

For the beryllium isoelectronic series, a more pro-

nounced failure is observed for the PBE approximation as

Z increases�see, for example, Ne6+ in the right-hand panel

of Figure 1. This failure has been connected to the near-de-

generacy present in the beryllium isoelectronic series.32 In

the ab initio curves, the onset of the near-degeneracy is

manifested by a more pronounced curvature of the inte-

grand. This feature is not well reproduced by typical

density- functional approximations.

Figure 2 shows the same systems as in Figure 1 but

with the kinetic-energy AC integrand T
c , �

= ��
�2Tc,�, see Eq.

(13). For the helium series, the ab initio integrands are al-

most linear, with a very slight concave character. The PBE

integrands show a qualitatively different character, being

convex with a pronounced upturn at low �, although, for � >

0.2, the PBE curves become more parallel with the ab initio

curves. For the beryllium series, the concavity of the ab in-

itio curves becomes more pronounced with increasing Z.

The PBE curves fail to reproduce this trend and show a

similar (but less pronounced) upturn at low � as in the he-

lium series.

The largest differences between the PBE and ab initio

curves occur for N3+ and Ne6+. Interestingly, the errors in

the PBE integrand increase with � for Wc,�, whereas the T
c , �

errors decrease with increasing �. This behaviour leads to

different prospects when approximating the two inte-

grands. In particular, for the T
c , �

integrand, it may be profit-

able to consider partially interacting reference systems

with � > 0 as a starting point.

In this work, the AC integrands presented are derived

by fitting Eqs. (15) and (16) to ab initio data. The fitted

curves reproduce the DFT correlation energies to better

than 10�6 Eh accuracy for all the systems considered; the

corresponding coefficients are presented in the appendix.

From Figures 1 and 2, the monotonically decreasing and in-

creasing nature of the integrands WD,� and T
D , �

is clear. An

interesting point is that the WD,� model integrand is convex.

For the exact integrand, convexity in � has not been proven,

only monotonicity, although we have never observed a

counter example based on accurate ab initio calculations.

The model T
D , �

is similarly concave. However, close exam-

ination of the accurate ab initio data in the low-� limit re-

veals that the kinetic-energy AC integrand can be non-con-

cave. Whilst this has little impact on the accuracy of the

correlation energy obtained by integration or the overall

shape of the curve, it does mean that the relationship of Eq.

(19) is not closely obeyed for the accurate derivatives.
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Fig. 2. The AC integrand ��
�2Tc,� for the helium isoelectronic series (left panel) and beryllium isoelectronic series (right

panel). Accurate ab initio integrands are shown as full lines, those corresponding to the PBE approximation are

shown by dashed lines.



Thus, whilst the accurate first derivative of the integrand at

� = 0 is recovered by the convex WD,�, this is not the case for

the concave T
D , �

. Similar behaviour is observed also for the

configuration-interaction inspired model of Ref.,18 which

is also convex/concave.

AC integrands for the H2 molecule

The effect of near-degeneracy is further illustrated by

stretching H2, see Figures 3 and 4. Initially, for small values

of �, a rapid change is observed in both AC integrands. In

both cases, the AC curves can be linearly extrapolated to a

point beyond which a constant is a better approximation.

Whereas this constant is unknown for 	E
c , �

= Wc,�, it is zero

for (Ec,�/�)	 = T
c , �

it can be set to zero, illustrating the differ-

ent possibilities for modelling these integrands when de-

veloping new approximations. In particular, the para-

meterisation of the AC integrand in terms of the kinetic en-

ergy may be advantageous for extrapolation.33 This alterna-

tive parameterisation may also provide an interesting new

perspective for the construction of double-hybrid func-

tionals based on the AC.34,35

In Figures 3 and 4, it is clear that the PBE approxima-

tion provides a reasonable description of both AC inte-

grands in the dynamically correlated regime (internuclear

separations R = 0.7 and 1.4 bohr) but becomes progres-

sively worse as static correlation becomes more important

with increasing internuclear separation. Qualitatively, the

ab initio curves in Figure 4 resemble those for the beryl-

lium series in Figure 2 as Z increases, indicating that near-

degeneracy effects lead to a concentration of the integrand

T
c , �

to low �.

The non-concavity of T
c , �

, as discussed in the previ-

ous section, is more pronounced as static correlation be-

comes important�for example, in H2 at R 
 5.0 a.u., sug-

gesting that models including terms with higher-order �
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Fig. 3. The AC integrand Wc,� for different internuclear distances in the H2 molecule. Ec corresponds to the area of the shaded

region. Accurate ab initio integrands are shown as full lines, those corresponding to the PBE approximation are

shown by dashed lines.

Fig. 4. The AC integrand ��
�2Tc,� for different internuclear distances in the H2 molecule. Ec corresponds to the area of the

shaded region. Accurate ab initio integrands are shown as full lines, those corresponding to the PBE approximation

are shown by dashed lines.



contributions may be required. Such contri-butions may be

incorporated by considering models inspired by higher-or-

der perturbation theories, see Ref.18 Such models remove

the restriction to concave or convex behaviour. Further in-

vestigation of this aspect will be carried out in future work.

In particular, a better description of this limit will be useful

for the construction of Kohn–Sham correlation functionals

based only on information available from the Kohn–Sham

reference system. Alternatively, hybrid correlation ap-

proaches, which may be viewed as utilising a partially in-

teracting reference with � > 0, may be pursued as a route to

circumvent modelling the more complex behaviour in the

very low-� regime.

CONCLUSIONS

Within the AC framework, the Kohn–Sham correla-

tion energy can be computed in two alternative ways, either

from the kinetic-energy integrand T
c , �

= ��
�2Tc,� or from the

electron–electron integrand Wc,�, see Eq. (13). Although

the latter approach is much more commonly discussed, the

first approach has the advantage of providing a framework

where some features appear in a more natural way. By con-

centrating near-degeneracy effects into the region of small

� values, a perturbation treatment may be more appropriate

and better suited to the development of models with par-

tially interacting reference systems.

Perhaps the most striking and important advantage of

the integrand T
c , �

is that its strong-interaction limit � � � is

simple, being equal to zero. This behaviour contrasts

sharply with that of Wc,�, where the corresponding limit re-

quires a solution for strictly correlated electrons.36 Even

though significant progress has been made in understand-

ing this limit in recent years,37-40 the treatment of such sys-

tems is still difficult. The simple model of Eq. (16) and its

relationship to the model of Eq. (15) suggests that the com-

plexity of the kinetic energy integrand may not be higher

than that of the conventional integrand for other � values.

Combined with a trivial strong-interaction limit, this obser-

vation makes the kinetic-energy integrand an interesting

quantity for further study and the development of practical

numerical approximations.

Several avenues are possible for the development of

practical computational schemes that make use of the alter-

native AC representation studied here. In analogy to

Refs.15-18 functionals can be constructed by considering in-

terpolation schemes. In particular, if the interpolations are

designed to obey the known limit Tc ,� = 0, then models can

be constructed that depend only on quantities available in

the Kohn–Sham limit (� = 0), avoiding quantities calcu-

lated at finite interaction strengths. Just as in the standard

AC representation, it may be necessary to consider local

energy-density representations to maintain size-consis-

tency of the approximate models, see Refs.41,42 for detail

discussion of this point. Work is presently underway in this

direction for the standard AC representation and will be ex-

tended to this alternative representation. Recently, an alter-

native extrapolation approach has been put forward as a

computational route to determine correlation energies33

and has also been applied to the computation of excitation

energies.43 This alternative AC representation may also be

useful when tailored to approach 0 for large �, the tendency

for static correlation to be concentrated towards low � val-

ues meaning that extrapolations beginning from weakly in-

teracting references, with small values of �, may be accu-

rate.

Finally, although not discussed in the present paper,

we would like to point out that that the kinetic-energy opera-

tor only probes a region close to the diagonal of the reduced

first-order density matrix, suggesting that local, or semi-lo-

cal, approximations have a higher chance of success.

APPENDIX

In this work, we have presented conventional and kinetic-

energy based AC integrands for the correlation energy in Kohn–

Sham DFT. Accurate ab initio methods have been used to calcu-

late values of the integrands at a range of � values between 0 and

1. For the conventional integrands, the form of the integrand in

Eq. (15) was used, whilst for the kinetic-energy based integrand

the form of Eq. (16) was employed. The parameters obtained by

fitting these functions to ab initio data are presented in Table 1.
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Table 1. The fitted parameters g and h used in Eqs. (15) and (16)

throughout this work

Species g h

H2 R = 0.7 a.u. 0.275443 1.743630

H2 R = 1.4 a.u. 0.223365 1.022690

H2 R = 3.0 a.u. 0.176083 0.229583

H2 R = 5.0 a.u. 0.212446 0.032705

H2 R = 7.0 a.u. 0.242801 0.006586

H2 R = 10.0 a.u. 0.263190 0.000527

He 0.358771 2.857320

C4+ 1.527200 60.316000

Ne8+ 2.634780 180.143000

Be 0.357787 1.100440

N3+ 0.506110 1.391380

Ne6+ 0.550901 1.144380
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