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Range-separated �screened� hybrid functionals provide a powerful strategy for incorporating
nonlocal exact �Hartree–Fock-type� exchange into density functional theory. Existing
implementations of range separation use a fixed system-independent screening parameter. Here, we
propose a novel method that uses a position-dependent screening function. These locally
range-separated hybrids add substantial flexibility for describing diverse electronic structures and
satisfy a high-density scaling constraint better than the fixed screening approximation does. © 2008
American Institute of Physics. �DOI: 10.1063/1.2978377�

I. INTRODUCTION

The concept of screening the interelectronic Coulomb
interaction has a long history in condensed matter physics.1

In many-body theory, the interelectronic interaction is modi-
fied by a microscopic frequency-dependent dielectric
constant.2 In the context of density functional theory �DFT�,
screened Hartree–Fock �HF� type exchange has been com-
bined with the local spin-density approximation �LSDA� pro-
viding successful approximations for band gaps of
semiconductors.3,4 In finite systems, the concept of “range
separation” was introduced in order to combine DFT and
wavefunction theory.5–7 In this approach, the Coulomb inter-
action is split into short-range �SR� and long-range �LR�
components:

�1�

where the screening parameter � defines the range separation
and u represents the interelectronic distance. The short-range
part of the exchange-correlation energy is then treated by
semilocal approximations from DFT, whereas the long-range
part is calculated from wavefunctions, specifically the HF
theory at the simplest level. When �→�, all of the Coulomb
interactions in the exchange-correlation energy are treated as
LR; when �→0, all of them are treated as SR.

Range separation provides a powerful tool for combin-
ing DFT with wavefunction theory in practical applications
where the decay of the exchange-correlation potential is
important8,9 or where static correlation �a LR effect� plays a
crucial role.10 For instance, the LC-�PBE functional, which
combines LR HF with SR PBE exchange, yields accurate

enthalpies of formation and barrier heights simultaneously
�see Refs. 9 and 11�. As discussed in Ref. 12, HF is exact at
LR for atoms and molecules but not for extended metals.

In a seemingly opposing approach having solid-state
systems in mind, Heyd et al. proposed a screened hybrid
functional known as HSE �Refs. 13–15� that incorporates SR
HF-type exchange but neglects its LR portion, which is prob-
lematic in narrow band gap semiconductors and metals.16,17

HSE has been very successful in predicting a wide range of
molecular and solid-state properties.18–23 These contrary
views �keeping HF exchange for LR in LC-�PBE versus SR
in HSE� can be reconciled in a three-range hybrid which uses
HF exchange only in the middle range.24 The HISS func-
tional combines the attractive features of both HSE and
LC-�PBE.25

Range-separated hybrid functionals offer a promising
route for the construction of accurate density functionals.
However, most previous implementations of range separation
use a universal system-independent screening parameter. It
seems obvious that such an approach, despite its success,
will have limitations. It has been argued that the screening
parameter should rather be system dependent.3,6,26,27 In this
paper, we describe an even more general approach. In the
homogeneous electron gas, the size of the exchange hole
measured, e.g., by the point where its first node appears,
varies with the density of the gas. Therefore, it seems evident
that the separation between the SR and LR interactions for
an inhomogeneous system should depend on the local den-
sity. Here, we propose an approximation that uses a position-
dependent screening function ��r� defining a local range
separation �LRS� for mixing exact �HF-type� and LSDA ex-
change. Our approach is presented in detail below.

II. THEORY

A. Physical idea

We propose the following form for the exchange-
correlation energy of a spin-unpolarized density:a�Electronic mail: guscus@rice.edu.
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Exc
LRS-�LSDA =� �ex

LSDA,SR�r,��r�� + ex
HF,LR�r,��r���dr

+ Ec
LSDA. �2�

We will refer to this locally range-separated functional as
LRS-�LSDA. For simplicity of notation, we do not include
spin indices in this paper. Equation �2� is readily extended to
spin-polarized systems using the spin-scaling relationship28

for the exchange energy �with an ��r� for each spin compo-
nent� and the standard generalization for correlation. When �
is universal and position independent, this functional reduces
to LR corrected LSDA,9,29 which we will here refer to as
LC-�LSDA. Note that in Ref. 29, this functional is denoted
RSHXLDA. Toulouse et al.30 suggested using a local screen-
ing parameter � for DFT correlation. We here explore a LRS
approach for exchange only; our aim is to combine it with
LRS correlation at a later stage.

The realization and implementation of Eq. �2� is non-
trivial. One should choose an appropriate screening function
��r�. There are several straightforward choices for the local
screening parameter. In the homogeneous electron gas, the
characteristic length is given by the Wigner–Seitz radius rs

= �4�� /3�−1/3. The screening parameter has dimensions of
inverse length, so a trivial selection would be
��r��1 /rs.

30,31 For inhomogeneous systems, the screening
function can be approximated by a gradient expansion:

��r� =
1

rs
�� + �s + �s2 + . . . � , �3�

where s= ���� / �2kF�� is the reduced gradient, kF= �3�2��1/3,
and �, �, and � are the parameters to be determined. In the
high-density limit, these choices for ��r� have a better scal-
ing behavior than constant � �see Appendix A�.

B. Computational implementation

The SR component can be calculated as

ex
LSDA,SR�r,��r�� =

1

2
��r��

0

�

hx
LSDA���r�,u�

erfc���r�u�
u

�4�u2du , �4�

where hx
LSDA���r� ,u� is the LSDA exchange hole and

erfc�x�=1−erf�x�. This integral can be done analytically for
any value of �.7,32 Note that even though Eq. �4� is not
symmetric with respect to interchange of electrons, it does
not violate symmetry invariance of the total exchange en-
ergy, as explained in Appendix B.

The LR part �in the conventional gauge33� is defined as

ex
HF,LR�r,��r�� = �

	


�	�r��
�r�X	

LR�r,��r�� , �5�

where �	 and �
 are the atomic orbitals �AOs� and

X	

LR�r,��r�� = −

1

2�
�


P	�P

V�

LR�r,��r�� , �6�

where P is the density matrix and V�

LR are the Coulomb-type

electrostatic integrals �ESIs�:

V�

LR�r,��r�� =� ���r���
�r��

erf���r��r − r���
�r − r��

dr�. �7�

These integrals can be done analytically for any ��r� �see
Appendix C�. The LR Fock exchange matrix may be evalu-
ated from Eq. �7� as

K	

LR���r�� = − �

�


P�
� �	�r����r�V


LR�r,��r��dr �8�

and the LR exchange energy is evaluated as

Ex
HF,LR =� ex

HF,LR�r,��r��dr =
1

2�
	


K	

LR���r��P	
. �9�

Unfortunately, these expressions are computationally intrac-
table as written. Given an arbitrary ��r�, the integral over r
in Eq. �8� must be performed numerically. There are O�NAO

2 �
matrix elements of V



LR�r ,��r�� to be evaluated at each grid
point r, yielding a total computational cost O�NgridNAO

2 �. On
the other hand, if ��r� is constant, the integral over r in Eq.
�8� can be performed analytically in a Gaussian basis set,
leading to

K	

LR��� = − �

�


�	�,

��P�
 �10�

and

Ex
HF,LR =

1

2 �
	
�


�	�,

��P	
P�
, �11�

where

�	�,

�� =� � �	�r����r�
erf���r − r���

�r − r��

��
�r���
�r��drdr�. �12�

Such analytic two-electron integrals are an essential part of
Gaussian-orbital based electronic structure programs. For
screened interactions, the integrals in Eq. �12� can be evalu-
ated as a trivial modification of regular two-electron
integrals.7,34 While their computational scaling is formally
O�NAO

4 �, they quickly reach their classical O�NAO
2 � asymp-

tote for moderate size systems,35 and a variety of linear-
scaling treatments have been developed for large systems.36

Of course for �→�, all these expressions recover their exact
values for the bare unscreened interaction.

As explained in detail below, an approximation to the
screened HF exchange energy density is needed for compu-
tational convenience. An alternative approach for calculating
the HF exchange energy density is the method of Della Salla
and Görling.37 In this method, which we here extend for
using with screened interactions, the expression for the HF
exchange energy density is simplified by introducing a reso-
lution of the identity �RI� in an auxiliary basis identical to the
AO basis and leads to the following expansion:

ex
HF,LR�r,�� = �

	


�	�r��
�r�Q	

LR��� , �13�

where
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QLR��� = 1
2S−1KLR���P + 1

2PKLR���S−1, �14�

and S−1 is the inverse overlap matrix. Note the similarities
between Eqs. �5� and �13�. However, also note that while X
depends on r, Q is independent of it. The former is exact
whereas the latter is approximate.

Given Q, Eq. �13� can readily be evaluated at every grid
point with minimal computational cost. While the orbital
product �	�r��
�r� decays exponentially with increasing
distance between AOs, the Coulomb-type ESIs of Eq. �7� do
not decay as fast. Thus, for constant � �including �→�, i.e.,
the bare interaction�, RI is usually preferred over ESIs for
calculating ex

HF,LR�r ,�� because of its lower computational
cost.38 Note that an important savings consideration in RI is
that for constant �, K �needed for Q� can be obtained ana-
lytically via modified two-electron integrals, Eq. �10�.

For a local screening function ��r�, K can no longer be
evaluated analytically and has to be done numerically via Eq.
�8�, which involves evaluation of ESIs, so the computational
advantage of RI disappears. In summary, with LRS, both the
RI and exact ESI procedures have similarly steep computa-
tional costs, requiring an O�NgridNAO

2 � computational step
that we wish to avoid. Therefore, we shall seek an alternative
approximation for evaluating ex

HF,LR�r ,��r�� whose compu-
tational cost is not much larger than evaluating the un-
screened ��→�� HF exchange energy density, which can be
efficiently done via RI.

Let us recall that the TPSS exchange hole39 was specifi-
cally constructed to reproduce the TPSS exchange energy
density:

ex
TPSS�r� =

1

2
��r��

0

� hx
TPSS��, ����,�,ex

TPSS,u�
u

4�u2du ,

�15�

where hx
TPSS�� , ���� ,� ,ex

TPSS,u� is the model TPSS exchange
hole39 and � is the kinetic energy density. To achieve this
goal, the TPSS hole expression has ex

TPSS as an ingredient.
We propose here to use the TPSS hole expression for repro-
ducing the screened HF exchange energy density. We feed in
the unscreened ex

HF instead of ex
TPSS in the above equation and

integrate with the screened interaction to yield the following
approximation:

ex
HF,LR�r,��r�� 	

1

2
��r��

0

�

hx
TPSS��, ����,�,ex

HF,u�

�
erf���r�u�

u
4�u2du . �16�

For �→�, Eq. �16� is exact. The accuracy of this approxi-
mation is examined in the next section. Note that the con-
ventional gauge of the HF energy density ex

HF in Eq. �5�
differs slightly from the gauge of the TPSS energy density
ex

TPSS, as studied in Ref. 33, leading to a small error in Eq.
�16� even when the integrated HF and TPSS exchange ener-
gies are equal for good reason. Because the TPSS exchange
hole is based on the PBE hole model, the integral in Eq. �16�
can be done �mostly� analytically, as shown in Refs. 13 and
14. This yields a procedure with rather moderate computa-

tional cost compared to the numerical integration alternatives
via RI and ESIs discussed above. A recently redeveloped
PBE hole model40 can be extended to include the exchange
energy density as an ingredient �resembling the TPSS hole�
and still afford exact �as opposed to “mostly”� analytic inte-
gration for screened interactions.

On the ladder41 of density functional approximations for
the exchange-correlation energy, each rung represents the ad-
dition of a new ingredient: the local density, its gradient, the
kinetic energy density, etc. The fourth or hyper-GGA �gener-
alized gradient approximation� rung introduces the exact ex-
change energy density. From the perspective of ladder ap-
proximations and even though not explicit from the
expressions in Eqs. �5�–�7�, range-separated hybrids intro-
duce further ingredients, minimally the spherically averaged
exact exchange hole density hx

ex���� ;r ,u�, and thus stand at
least slightly higher than the fourth rung. In our actual imple-
mentation of Eq. �2�, by using Eq. �16�, we are making a
hyper-GGA approximation to a range-separated hybrid.

III. RESULTS AND DISCUSSION

We have implemented LRS-�LSDA into the develop-
ment version of the Gaussian suite of programs.42 All bench-
mark calculations were performed non-self-consistently us-
ing LSDA orbitals. For LSDA correlation, we use the
Perdew–Wang parametrization.43 The unscreened HF ex-
change energy density, needed as an ingredient for Eq. �16�,
is calculated using the RI method �Eq. �13��.37 This method
works best with large and uncontracted basis sets, so we
have used the uncontracted 6-311+ +G�3df ,3pd� basis set
unless otherwise specified. When presenting our results, we
employ the convention: deviation=theory−experiment. Un-
less specified otherwise, we use the equilibrium
B3LYP /6-31G�2df , p� geometries and zero-point energies
for all species. Thermal corrections are calculated with a
frequency scale factor of 0.9854.

The performance of our approximate expression for the
locally screened LR HF exchange energy, Eq. �16�, can be
calibrated in a benchmark case where we know the correct
answer. In Fig. 1 we plot mean absolute errors �MAE� in
enthalpies of formation as a function of � for LC-�LSDA
and the same functional evaluating the LR HF exchange en-
ergy density using the TPSS exchange hole approximation of
Eq. �16� instead of the rigorous expression of Eq. �11�. Re-

FIG. 1. MAEs for the standard enthalpies of formation of the AE6 set for
exact and approximate LC-�LSDA using Eq. �16� for ex

HF,LR�r ,��r��.
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sults presented in Fig. 1 are post-LSDA �i.e., done with
LSDA orbitals� and we use the AE6 test set of standard en-
thalpies of formation.44 This test set includes only six mol-
ecules, but it has been constructed to reproduce the errors of
the much larger G3 set.45

The “exact” LC-�LSDA in Fig. 1 shows the lowest
MAE of 10.5 kcal /mol for �=0.60. Best results with the
approximate LC-�LSDA are achieved with �=0.40, where
the MAE is 8.4 kcal /mol. Therefore, we conclude that Eq.
�16� yields reasonably accurate results for thermochemistry,
even though the optimal screening parameters are different.
Note also that these optimal values would slightly change if
obtained with self-consistent orbitals as opposed to the post-
LSDA procedure used here.

In order to test the proposed LRS-�LSDA approach, we
use Eq. �3� for the local screening parameter. We have ex-
plored the parameter space for �, �, and � in Eq. �3�. Our
current attempts indicate that optimal results are achieved
with �, �	0. We can then rewrite Eq. �3� in terms of the
density and its gradient:

��r� =
�s

rs
=

�����
�

, �17�

where �= �18��−1/3�. This choice of screening function was
previously proposed by Toulouse et al.30 In Table I, we
present the results for the AE6 test set of standard enthalpies
of formation with several versions of LRS-�LSDA and re-
lated functionals. For each ��r� approximation, we show the
optimal value of the scaling parameter � and corresponding
MAE. Note that LC-�LSDA data in this and all subsequent
tables are calculated with screening parameter �=0.60. The

lowest MAE in Table I is achieved with ��r� given by Eq.
�17� and �=0.135.

It is interesting to note that the expression ���� /� has
been used as a “local band gap.”46 For the homogeneous
electron gas, the local band gap reduces to zero, and there is
no HF exchange in our functional. Moreover, in regions with
strongly varying electronic density, ��r�→�, so that HF ex-
change dominates. Both of these conditions have been pro-
posed as constraints for hyper-GGAs, i.e., functionals that
include the exact exchange energy density as an ingredient.47

Also, ����� /� was used as a characteristic scale for density
variations in the early GGA of Langreth and Mehl.48 These
authors settled on the value �=0.15 which is not far from
our optimized �=0.135.

Plots of ���� /� for atoms were presented several years
ago in Refs. 49 and 50. Here, in Figs. 2 and 3, we present the
plots of our screening function ��r� in the Ar atom and the

TABLE II. Total non-relativistic energies of atoms �a.u.� with the incon-
tracted UGBS basis set.

Atom LSDA LC-�LSDA LRS-�LSDA Exacta

H −0.479 −0.516 −0.501 −0.500
He −2.834 −2.925 −2.909 −2.904
Li −7.343 −7.443 −7.467 −7.478
Be −14.446 −14.560 −14.621 −14.667
B −24.354 −24.493 −24.582 −24.654
C −37.468 −37.636 −37.742 −37.845
N −24.134 −54.332 −54.448 −54.589
O −74.527 −74.757 −74.895 −75.067
F −99.110 −99.368 −99.520 −99.734
Ne −128.230 −128.511 −128.672 −128.938
Na −161.44 −161.729 −161.931 −162.255
Mg −199.135 −199.420 −199.664 −200.053
Al −241.317 −241.609 −241.893 −242.346
Si −288.216 −288.519 −288.834 −289.359
P −340.000 −340.319 −340.657 −341.259
S −396.737 −397.077 −397.439 −398.110
Cl −459.662 −459.024 −459.402 −460.148
Ar −525.940 −526.324 −526.714 −527.540

ME / ēb 0.064 0.040 0.026
MAE / ēc 0.064 0.043 0.026

aReference 53.
bMean error per electron.
cMean absolute error per electron.

FIG. 2. Range separation function ��r� in the argon atom, plotted as a
function of the distance from nucleus.

FIG. 3. Range separation function ��r� for the majority-spin density, plotted
along the bond axis of the CO molecule.

TABLE I. Deviation from the experiment of standard enthalpies of forma-
tion for position-dependent LC-�LDA. AE6 test was used. All values are in
kcal/mol.

Method ��r� � MAE

LDA 77.7
LC-�LDA 0.6 10.6
LRS-�LDA � /rs 1 24.2
LRS-�LDA � s 0.29 6.6
LRS-�LDA � s2 /rs 0.3 5.4
LRS-�LDA ����� /� 0.135 3.6
HF exch+LDA corr 50.8
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CO molecule, respectively. The screening function ��r� has
local maxima at nuclear positions, decreases in the valence
region, and increases again in the density tail. Small oscilla-
tions around the nuclei are due to the use of Gaussian basis
functions.

The asymptotic behavior of ���� /� is well known. As r
→�, the density decays like51 Ar2� exp�−2�r�, where �in
a.u.� �= �−2�HOMO�1/2 and �HOMO is the highest-occupied �or
partly occupied� orbital energy, and �=1 /�−1 for a neutral
system. �For the hydrogen atom, for example, �=1 and �
=0.� Thus, ���� /�→2�.

Based on the results of Table I, we decided to study
LRS-�LSDA with �=0.135���� /� in more details. In Table
II, we present the calculated atomic energies for H to Ar with
the large UGBS basis set.52 We compare LSDA,
LC-�LSDA, and LRS-�LSDA with accurate nonrelativistic
energies.53 LRS-�LSDA has lower mean error per electron
than either LSDA or LC-�LSDA.

To assess the performance of LRS-�LSDA for enthalp-
ies of formation in more general cases, we have used the
G3/99 test set of 223 molecules45 and its smaller subset
G2/97 of 148 molecules.54 Note that we discarded the NO
molecule from both benchmark sets because of convergence
problems with LSDA. The results are presented in Table III.
LC-�LSDA dramatically reduces MAE for the G3 test set in
comparison with LSDA. However, even better results are
achieved with LRS-�LSDA that yields MAE�G3� of
5.9 kcal /mol. For thermochemistry, LRS-�LSDA is com-
petitive with many common hybrid functionals.55 For com-
parison purposes, the popular B3LYP functional yields
MAEs of 3.1 and 4.9 kcal /mol for the G2 and G3 sets,
respectively.55

Table III also shows the benchmark results for reaction
barrier heights.56,57 The HTBH38/04 set includes the forward
and reverse barrier heights for 19 hydrogen transfer reac-
tions, and NTBH38/04 consists of 19 nonhydrogen-transfer

reactions.57 We take the best theoretical estimates of the bar-
rier heights and the geometries of all species from Ref. 57.
From Table III, we see that LSDA substantially underesti-
mates barrier heights. LC-�LSDA and especially
LRS-�LSDA improve upon LSDA.

Table IV presents the results for ionization potentials
�IPs� and electronic affinities �EAs� in the G2 test set.54 We
dropped the ions H2S+, O2

+, NO−, and N2
+ from this set again

because of convergence issues with LSDA. In total, we used
here 83 IPs and 57 EAs. LRS-�LSDA performs much better
than either LSDA or LC-�LSDA. Global hybrids such as the
popular B3LYP functional yield somewhat better MAE for
IP �0.184 eV� and EA �0.124 eV�.55 Surprisingly, the results
with LC-�LSDA are particularly poor. We have repeated the
LC-�LSDA calculations self-consistently �instead of using
LSDA orbitals�, and the results are only slightly better than
the post-LSDA results.

IV. CONCLUSIONS

Range-separated hybrids represent a new generation of
density functionals that screen HF exchange. We have devel-
oped a novel LRS approach that uses a position-dependent
screening function with an improved high-density scaling be-
havior. The current implementation uses a rather accurate
approximation for the screened HF exchange energy density.
LRS-�LSDA has just one empirical parameter, fitted to ex-
perimental heats of formation. The results presented here in-
dicate substantial improvement upon LSDA and
LC-�LSDA. More extensive studies of LRS are currently
under way including its self-consistent implementation
which is required for evaluation of analytic energy gradients
and other properties.58
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APPENDIX A: HIGH-DENSITY LIMIT FOR THE RANGE
SEPARATION FUNCTION

Consider uniform density scaling59 to the high-density
limit:

TABLE III. Deviations from experiment of standard enthalpies of formation �� fH298
o � and barrier heights of

chemical reactions computed with various methods using the uncontracted 6-311+ +G�3df ,3pd� basis set. All
values are in kcal/mol.

Functional

� fH298
o �kcal/mol�

HTBH38 NHTBH38G2 set G3 set

ME MAE ME MAE ME MAE ME MAE

LSDA −83.0 83.0 −120.9 120.9 −17.9 17.9 −12.4 12.6
LC-�LSDA −2.0 10.5 −2.5 12.2 7.0 7.1 8.6 8.6
LRS-�LSDA −2.4 5.0 0.9 5.9 −5.4 5.5 −5.3 5.5

TABLE IV. Deviations from experiment of IPs and EAs computed using the
uncontracted 6-311+ +G�3df ,3pd� basis set. All values are in eV.

Functional

IP EA

ME MAE ME MAE

LSDA 0.046 0.235 0.237 0.246
LC-�LSDA 0.633 0.635 0.392 0.407
LRS-�LSDA 0.028 0.195 0.189 0.192
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��r� → ���r� = �3���r� and � → � . �A1�

The scaled density ���r� has the same number of electrons as
��r� but is higher at the origin and more contracted around it.
In this limit, in the absence of exact degeneracy of the
Kohn–Sham noninteracting ground state, the exact exchange
energy Ex

ex should emerge60 to dominate Exc:

lim�→� Exc����/Ex
ex���� = 1. �A2�

Equation �A2� is an exact constraint on Exc��� which can be
satisfied by a hypergeneralized approximation41,47,61 or by a
locally range-separated hybrid. With a universal position-
independent parameter � in Eq. �2�, however, it is incorrectly
LSDA exchange that emerges instead:

lim�→� Exc����/Ex
LSDA���� = 1. �A3�

Certainly there is no reason to believe that relative correc-
tions to the local density approximation should vanish in the
high-density limit.

To achieve the correct behavior of Eq. �A2�, we need
��r� to scale up faster than ����r�. Because s�r�→s��r�
and rs�r�→�−1rs��r�, Eq. �3� scales up like ����r�, which is
much more nearly correct than is an � that does not change
under scaling.

Note that uniform density scaling relations for LR and
SR exchange are presented in Ref. 62.

APPENDIX B: INVARIANCE OF LRS ENERGY WITH
RESPECT TO INTERCHANGE OF ELECTRONS

We can write the exact exchange-correlation energy as

Exc =
1

2
� � f�r,r��

�r − r��
drdr�, where f�r�,r� = f�r,r�� .

�B1�

Suppose we have an approximation fapprox�r ,r�� that does
not have the exact symmetry property. We can define a sym-
metrized

fapprox,symm�r,r�� = 1
2 �fapprox�r,r�� + fapprox�r�,r�� , �B2�

that has exactly the same energy integral as fapprox�r ,r��.

APPENDIX C: ANALYTIC INTEGRATION OF LRS HF
EXCHANGE ENERGY DENSITY

Let e−��r − R1�2 be an s-type Cartesian Gaussian function
centered at R1 with orbital exponent �. Evaluating Eq. �7�
with Gaussian basis sets requires the calculation of the fol-
lowing integral:

VLR�r,��r��

=� e−��r� − R1�2e−��r� − R2�2 erf���r��r� − r��
�r� − r�

dr�. �C1�

Using the Gaussian product rule,63 we can rewrite Eq. �C1�
as

VLR�r,��r�� =� K̃e−p�r − RP�2 erf���r��r� − r��
�r� − r�

dr� �C2�

where the exponent of the new Gaussian is p=�+�, its cen-
ter is RP= ��R1+�R2� / ��+��, and

K̃ = e−���/��+����R1 − R2�2. �C3�

The Fourier transform of the SR potential is

erf���r − r���
�r − r��

= �2��−3� 4�

k2 e−�k2/4�2�eik·��r−r���dk . �C4�

Using Eq. �C4� and substituting 1 /q2=1 / p2+1 /�2, we can
rewrite Eq. �C2� as

VLR�r,��r�� = �2��−3K̃� 
�

p
�3/24�

k2 e−�k2/4q2�eik·rdk .

�C5�

It is shown, e.g., in Ref. 63 that the integral in Eq. �C5� can
be obtained analytically, so that

VLR�r,��r�� = K̃
 �

� + �
�3/2erf�q�r − RP��

�r − RP�
. �C6�
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