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Unimolecular

Unimolecular reaction dynamics

Population decay of a species (simple kinetics)

− d

dt
Pi = kPi (1)

Pi (t) = Pi (0)e−kt (2)

k is the rate constant that sets a uni-molecular kinetics
Pi is the fraction of a given species, that in the gas phase plays the
same role as concentration in liquid phase
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Unimolecular

Unimolecular reaction : activation

Energy is given to a molecule in the gas phase (isolated) in order to
induce reactivity
Different ways to provide energy : collision, laser, electron . . .
Energy is conserved (no coupling with a bath)
To react the system has to pass the transition state (TST holds)
Employing a statistical theory of reactivity and TST theory it is
possible to obtain k(E) (micro canonical) from molecular information
(i.e. from theoretical chemistry)
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Unimolecular

IVR

IVR = internal vibrational relaxation
The energy absorbed by a mode can flow through the molecule via
mode coupling
A molecule as a set of independent harmonic oscillators

H =
1
2

∑
i

(p2i + q2i ) (3)

A mode coupling (anharmonicity, rotation, etc ...) allows energy
flow/exchange between the modes

H ′ =
1
2

∑
i

(p2i + q2i ) +
∑
i ,j

G (qi , qj ; pi , pj) (4)
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Unimolecular

IVR

When a molecule gets energy, it is not in general localized so that to
be available in reactivity the energy must flow to the reactive mode
The energy flow time-scale is crucial!
Putting together these concepts we obtain the well known
Rice-Ramsperger-Kassel-Marcus (RRKM) theory
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RRKM theory

RRKM theory : assumptions

RRKM: IVR takes place + TST assumptions are valid
the molecule populates all of phase space statistically throughout its
dissociation so that the microcanonical ensemble is mantained
all molecules which find them in the TS phase space region lead to
products: no recrossing
there is a special coordinate perpendicular to all other coordinates that
can be separated
the reaction rate will be given by the flux over the separation surface

Flux =
dN(q‡, p‡)

dt
(5)
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RRKM theory

RRKM theory : definitions

Phase space: each atom has (q, p), so for m atoms, we have a phase
space volume with dimension 2m

PhaseSpaceVolume =

∫ H=E

H=0
. . .

∫
dp1 . . . dpmdq1 . . . dqm (6)

Sum of states: counting the number of states available to a particle to
determine the available volume

N(E ) =
1
hm

∫ H=E

H=0
. . .

∫
dp1 . . . dpmdq1 . . . dqm (7)

according to Heisenberg principle the smallest unit in phase space is of
the order of h
N(E) represents the total number of states for a system corresponding
to an energy less than or equal to a specified value, E.
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RRKM theory

RRKM theory : definitions

Density of states: the number of states, ρ(E ), per energy unit

W (E ) =
1
hm

∫ H=E+dE

H=E
. . .

∫
dp1 . . . dpmdq1 . . . dqm (8)

ρ(E ) =
W (E )

dE
(9)

ρ(E ) =
1
hm

∫
H=E

. . .

∫
dp1 . . . dpmdq1 . . . dqm (10)

the density of states is, by definition, the derivative of the sum of
states with respect to energy

ρ(E ) = dN(E )/dE (11)
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RRKM theory

RRKM theory : definitions

Reaction coordinate with a
saddle point

energy conservation:
H = E

TS as a dividing surface:
once the trajectory has
reached it, it goes to
products without coming
back to reactants
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RRKM theory

RRKM theory : derivation

It is assumed that the phase space is statistically populated: the
population density over the whole surface of the phase space is
uniform.
the ratio of molecules near the critical surface over the total number
of molecule: the ration of phase space at the dividing surface over the
total phase space

dN(q‡, p‡)
dN

=
dq‡dp‡

∫
. . .
∫
E=E−εt−E0

∫
dq‡1 . . . dq

‡
n−1dp

‡
1 . . . dp

‡
n−1∫

H=E

∫
dq1 . . . dqndp1 . . . dpn

(12)
εt : translational energy
E0 : activation energy
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RRKM theory

RRKM theory : derivation

Since it was assumed that the reaction coordinate is perpendicular to, and
separable from, all other coordinates the time derivative involves only the
dq‡ and dp‡ term. Thus we can write the flux as:

dN(q‡, p‡)
dt

=
Ndq‡dp‡

dt

∫
H=E−εt−E0

∫
dq‡1 . . . dq

‡
n−1dp

‡
1 . . . dp

‡
n−1∫

H=E

∫
dq1 . . . dqndp1 . . . dpn

(13)

This can be rearranged by noting that dq‡/dt = p‡/µ‡, where µ‡ is the
reduced mass of the two separating fragments, such that we have

dN(q‡, p‡)
dt

=
Np‡dp‡

µ‡

∫
H=E−εt−E0

∫
dq‡1 . . . dq

‡
n−1dp

‡
1 . . . dp

‡
n−1∫

H=E

∫
dq1 . . . dqndp1 . . . dpn

(14)
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RRKM theory

RRKM theory : derivation

The energy in the reaction coordinate is by definition

εt =
p‡2

2µ‡
(15)

and its derivative

dεt =
p‡dp‡

µ‡
(16)

Now equation 14 reads

dN(q‡, p‡)
dt

=
Ndε‡t

∫
H=E−εt−E0

∫
dq‡1 . . . dq

‡
n−1dp

‡
1 . . . dp

‡
n−1∫

H=E

∫
dq1 . . . dqndp1 . . . dpn

(17)
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RRKM theory

RRKM theory : derivation

Equation 19 express the flux (molecules per unit time) in terms of the
number of molecules, N, multiplied by the rate constant, k(E , εt):

dN(q‡, p‡)
dt

= Nk(E , εt) (18)

where the rate constant is the ration of the phase space areas

k(E , εt) =
dε‡t
∫
H=E−εt−E0

∫
dq‡1 . . . dq

‡
n−1dp

‡
1 . . . dp

‡
n−1∫

H=E

∫
dq1 . . . dqndp1 . . . dpn

(19)

The phase spaces can be converted into densities

k(E , εt) =
ρ(E − E0 − εt)hn−1

ρ(E )hn
=
ρ(E − E0 − εt)

hρ(E )
(20)
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RRKM theory

RRKM theory : derivation

Equation 20 is very important and expresses the rate constant in terms of
total energy, E , and the translational energy of the departing fragments at
the transition state, εt . This equation is a state-to-state rate constant since
there are many ways to partition the available energy, E − E0.
To have the total dissociation rate, we must integrate over all the different
translational energies in the transition state:

k(E ) =

∫ E−E0
0 ρ‡(E − E0 − εt)dεt

hρ(E )
=

N‡(E − E0)

hρ(E )
(21)
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RRKM theory

RRKM theory : formula

The RRKM rate constant is simply obtained by

k(E ) = σ
N‡(E − E0)

hρ(E )
(22)

N‡(E − E0) : sum of states at the transition state from 0 to E − E0;
ρ(E ): density of states of reactant;
σ: the reaction symmetry

Note that this is the rotation free version.
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RRKM theory

RRKM theory : formula

k(E ) = σ
N‡(E − E0)

hρ(E )
(23)

To obtain the k(E ) for a given unimolecular reaction we have to

1 locate the minimum and calculate the 3N − 6 frequencies;
2 locate the (tight) TS and calculate the 3N − 7 frequencies;
3 calculate the density and sum of states at the desired energies;
4 determine the reaction symmetry;
5 use equation 23 to easily get k(E ).
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RRKM theory

Density of states I

There are different methods to obtain the density of states, ρ(E ), needed
to solve Eq. 23 and get k(E ):

1 From inverse Laplace transform of the partition function. In fact, the
partition function, Q(β), can be written as

Q(β) =

∫ ∞
0

ρ(E )e−βEdE = L[ρ(E )] (24)

so the density of states is just the inverse: ρ(E ) = L−1[Q(β)]
In the case of s classical harmonic oscillators, the partition function is

Q(β) =
s∏
i

[βhνi ]
−1 = β−s

s∏
i

(hνi )
−1 (25)
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RRKM theory

Density of states II

The Laplace transform of β−s is E s−1/Γ(s) and the gamma function
of an integer s is (s − 1)!, so

ρ(E ) =
s∏
i

(hνi )
−1 E s−1

(s − 1)!
(26)
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RRKM theory

Density of states III

2 In the case of quantum oscillators the partition function

qv (T ) =
s∏

i−1
[1− e−hνiβ]−1 (27)

and the inverse Laplace transform integral

ρ(E ) =
1
2πi

∫ c+∞

c−i∞
Q(β)eβEdβ (28)

can be solved numerically, for example via a steepest descent
approximation. One problem is that it considers the ρ(E ) as a smooth
function, even if it is a series of delta functions.
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RRKM theory

Density of states IV

3 The direct count method via the Bayer-Swinehart algorithm.

Algorithm 1 Beyer-Swinehart density of vibrational states count
1: ρ(I ) = [1, 0, 0, . . . ] (initialize the ρ vector)
2: for J = 1 to s do
3: for I = ω(J) to M do
4: ρ(I ) = ρ(I ) + ρ(I − ω(J))
5: end for
6: end for

where M is the maximum energy bin of interest. The algorithm
calculates ρ(E ) by dividing the energy scale into a series of cells and
counting how many vibrational bands are in each cell.
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RRKM theory

Density of states V

4 Whitten-Rabinovitch semi-classical approximation. The density of
states is expressed as:

ρ(E ) =
(E + aEZPE )s−1

(s − 1)!
∏

hνi

[
1− β dω(ε)

dε

]
(29)

in which:

a = 1− βω(ε); β = s−1
s
〈ν2〉
〈ν〉2 (30)

ε = E/EZPE (31)
ω(ε) = [5ε+ 2.27ε0.5 + 3.51]−1 for0.1 < ε < 1 (32)

ω(ε) = e [−2.419ε
0.25] for1.0 ≤ ε (33)
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RRKM theory

Sum of states I

The sum of states is, from the integration theorem

N(E ) =

∫ E

0
ρ(E ) = L−1[Q(β)/β] (34)

1 For s classical harmonic oscillators

N(E ) =
∏

(hνi )
−1L−1(β)−(s+1) =

s∏
i

(hνi )
−1E

s

s!
(35)

2 In the Whitten-Rabinovich approximation

N(E ) =
(E + aEZPE )s

s!
∏

hνi
(36)
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RRKM theory

Sum of states II

3 The direct count method. This is the most accurate procedure and
the most used scheme is the Bayer-Swinehart algorithm.

Algorithm 2 Beyer-Swinehart sum of vibrational states count
1: N(I ) = [1, 1, 1, . . . ]
2: for J = 1 to s do
3: for I = ω(J) to M do
4: N(I ) = N(I ) + N(I − ω(J))
5: end for
6: end for
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RRKM theory

Convolution properties

Laplace transform is an integral transform (like Fourier transform) an the
convolution theorem holds. Given two partition functions Q1(β) and
Q2(β), their product is the Laplace transform of the convolution between
ρ1 and ρ2:

Q1Q2 = L[ρ1 ∗ ρ2] (37)

and thus
ρ12 = L−1[Q1Q2] = ρ1 ∗ ρ2 (38)

For the sum of states we thus have

N12(E ) =

∫ E

0
ρ12(x)dx =

∫
L−1Q1Q2dx = L−1[Q1Q2/β]

= N1 ∗ ρ2 = ρ1 ∗ N2 (39)
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RRKM theory

RRK equation

In the classical limit, the vibrational density of states for s oscillators and
the sum of states for the s − 1 oscillators at the transition state are:

ρ(E ) =
E s−1

(s − 1)!
∏s

i=1 hνi
;N‡(E − E0) =

(E − E0)s−1

(s − 1)!
∏s−1

i=1 hν
‡
i

(40)

Using these expressions in Eq. 23 we obtain the classical RRKM rate
constant

kcl(E ) =

(
E − E0

E

)s−1 ∏s
i=1 νi∏s−1
i=1 ν

‡
i

(41)

The numerator has only one additional frequency, that can be identified
with the reaction coordinate. We thus obtain the original RRK equation

kRRK (E ) = ν

(
E − E0

E

)s−1
(42)
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RRKM theory

Canonical rate constant

To obtain an expression of the rate constant at constant temperature
(canonical ensemble) we need to average over the internal energy
distributions at a given temperature, T . Given the distribution function
(β = 1/kBT )

P(E , β) =
ρ(E )e−βE∫∞

0 ρ(E )e−βEdE
=
ρ(E )e−βE

Q(β)
(43)

so for the rate constant

k(T ) =

∫ ∞
0

k(E )P(E , β)dE =

∫ ∞
0

N‡(E − E0)ρ(E )

hρ(E )Q(β)
e−βEdE (44)
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RRKM theory

Canonical rate constant

We note that N‡ is different from zero only for E > E0 , so

k(T ) =
1

hQ(β)

∫ ∞
E0

N‡(E − E0)e−βEdE =
e−βE0

hQ(β)

∫ ∞
0

N‡(E )e−βEdE

(45)
the last integral is the Laplace transform of the sum of states can be
expressed as (following integration theorem)

L[N‡(E )] = L
[∫ E

0
ρ‡(E )dE

]
=
L[ρ‡(E )]

β
=

Q‡(β)

β
(46)

and thus the rate constant that is expressed as from canonical TST

k(β) =
Q‡(β)

hβQ(β)
e−βE0 (47)
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RRKM theory

Tunneling

To include tunneling the rate constant is

k(E ) =

∫ E−E0

−E0

κ(εt)k(E , εt)dεt

=
1

hρ(E )

∫ E−E0

−E0

κ(εt)ρ
‡(E − E0 − εt)dεt (48)

where κ(εt) is the tunneling probability function of the translation energy,
εt .
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RRKM theory

Tunneling

For an Eckart barrier, the transmission coefficient is

κ(εt) =
sinh(a) sinh(b)

sinh2[(a + b)/2] + cosh2(c)
(49)
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RRKM theory

Tunneling

The three coefficient are function of the three parameters of the Eckart
barrier, V0, V1 and νc , the curvature at the barrier.

a =
4π
hνc

√
εt + V0

1

V
−1/2
0 + V

−1/2
1

(50)

b =
4π
hνc

√
εt + V1

1

V
−1/2
0 + V

−1/2
1

(51)

c = 2π

√
V0V1

(hνc)2
− 1

16
(52)
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RRKM theory

Tunneling: an example

Unimolecular decomposition of formaldehyde.1

Potential energy surface
6812 Journal of the American Chemical Society / 101.23 / Nouember 7, 1979 

I ENERGY 

I 

REACTION COORDINATE 

Figure 1. Schematic of the potential energy surface for the ground elec- 
tronic state (SO) of formaldehyde. Units of energy are kcal/mol, and the 
values shown are from the work in ref 5. 

Table 1. Vibrational Frequencies and Rotation Constantso 

Hydrogen Species 
HzCO Irans-HCOH TS-M TS-R 

2843 
2766 
I746 
1501 
I247 
I I64 

1.13 
I .30 
9.41 

3634 
2684 
1595 
1264 
1101 
1093 

1.04 
1.16 

10.52 

2760 
1654 
1137 
94 1 
691 

2288 i 

1.05 
1.18 
9.06 

3675 
2803 
2339 
1568 
1221 
2299 i 

I .09 
1.25 
8.86 

~~ ~ ~~~~~ 

Deuterated Species 

2160 2525 2186 2759 
2056 1979 I503 2134 
I700 I430 8 20 1735 
I IO6 933 124 1408 
990 92 I 505 974 
938 799 1900 i 1675 i 

DzCO f rans-DCOD TS-M TS-R 

0.88 0.84 0.76 0.89 
! .07 0.97 0.89 1.10 
4.70 6.28 5.45 4.75 

The first six values are  the vibrational frequencies, and the three 
values below it are the rotation constants. Units for all are cm-I. TS-M 
and TS-R are  the molecular and rearrangement transition states in- 
dicated in Figure 1. 

stants for all four species. Unless stated otherwise, all rate 
constants given below were calculated from eq A.8, which for 
J = 0 is identical with eq 1 1, with the tunneling probability of 
eq 8. 

Figure 2 shows the unimolecular rate constant for reaction 
RI as a function of total energy E (relative to the bottom of 
the potential energy surface of H*CO), and for comparison the 
classical rate constant is also shown (broken line). [The clas- 
sical rates were all computed by direct state count of the 
transition state, i.e., from eq A.8 or 1 1  with the tunneling 
probability P ( E  1 )  replaced by the step:function h ( E l ) . ]  The 
classical rate vanishes a t  the energy VO, the “bare” barrier 
height plus the zero-point energy of the transition state: 

I 
1 0 4  I 

I 1 1 ,  1 I 
90 IO0 110 I20 

E (kcal /mole)  

Figure 2. Unimolecular rate constant for the reaction indicated, as a 
function of total energy, for total angular momentum J = 0. The solid 
curve includes tunneling effects and is computed from eq 1 1. The broken 
curve is the classical rate, computed from eq 1 1  with the modification 
P(Ei) - h ( E l ) .  

but one sees that tunneling allows a significant rate (>lo9 s-l) 
a t  this threshold energy. The rate-has fallen only to lo6 s-I a t  
an energy -8 kcal/mol below VO. The exponential energy 
dependence of_k(E) (Le., the linearity of the semilogarithmic 
plot) for E < VO also indicates that the process is dominated 
by tunneling in this region. 

Figure 3 shows similar results for the rate constant of re- 
action R2, and one again sees that tunneling is substantial. 

To assess the effect of rotation, calculations were also carried 
out for total angular momentum J > 0. The rate constant in 
general decreases with increasing J ,  but the effect is not large 
for the present examples: for J = 10, as large a value as is 
probably of interest, the rate constant for both reactions is 
decreased by a factor of -2.5 a t  E = 90 kcal/mol, and the 
factor decreases approximately uniformly to -1.2 a t  E = 120 
kcal/mol. 

Isotope Effects 
Tunneling is significant for these reactions because they 

primarily involve the motion of hydrogen atoms, as evidenced 
by the large imaginary barrier frequencies iwb for the transi- 
tion states in Table I .  One thus expects large isotope effects in 
the tunneling region if H atoms are replaced by D atoms. The 
relevant frequencies (and rotation constants) for the deuterated 
species have also been determined by Goddard and Schaefer5 
and are  given in Table I. 

Figure 4 shows the isotope effect, i.e., the ratio of the hy- 
drogen to  the deuterium rate constant for the two reactions. 
It is easy to see that the classical rate expression (eq 5) gives 
an energy-independent isotope ratio, and one sees in Figure 4 
that this limit is approached for energies above the classical 
thresholds. In  the threshold region and below, however, the 
isotope ratio is strongly dependent on energy: for energies 
significantly below the classical threshold there is an expo- 
nential energy dependence (i.e., the semilogarithmic plot is 
linear), but near the classical threshold itself the energy de- 
pendence is quite complicated, showing a pronounced mini- 
mum,  in the vicinity of which the deuterium versions of the 
reactions a r e  actually faster than the hydrogen versions. 

Although comparing different isotopes at  the same total 
energy (as in Figure 4) is the most meaningful comparison 
from a theoretical point of view, the experimental situation 
often dictates otherwise. Thus for formaldehyde the excitation 
energies from the ground vibrational state of SO to the ground 
vibrational state of SI  are4 80.6 kcal/mol for H2CO and 80.9 
kcal/mol for D2C0, and since the zero-point energies of HzCO 
and D2CO are 16.1 and 12.8 kcal/mol, respectively, the total 
energies resulting from these vibrationless excitations are 96.7 
kcal/mol for H2CO and 93.7 kcal/mol for D2CO. At  these 

1W.H.Miller. J. Am. Chem. Soc. 101, 6810 (1979)
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RRKM theory

Tunneling: an example

Unimolecular decomposition of formaldehyde
Reactivity

6812 Journal of the American Chemical Society / 101.23 / Nouember 7, 1979 
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REACTION COORDINATE 

Figure 1. Schematic of the potential energy surface for the ground elec- 
tronic state (SO) of formaldehyde. Units of energy are kcal/mol, and the 
values shown are from the work in ref 5. 

Table 1. Vibrational Frequencies and Rotation Constantso 

Hydrogen Species 
HzCO Irans-HCOH TS-M TS-R 

2843 
2766 
I746 
1501 
I247 
I I64 

1.13 
I .30 
9.41 

3634 
2684 
1595 
1264 
1101 
1093 

1.04 
1.16 

10.52 

2760 
1654 
1137 
94 1 
691 

2288 i 

1.05 
1.18 
9.06 

3675 
2803 
2339 
1568 
1221 
2299 i 

I .09 
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8.86 
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Deuterated Species 

2160 2525 2186 2759 
2056 1979 I503 2134 
I700 I430 8 20 1735 
I IO6 933 124 1408 
990 92 I 505 974 
938 799 1900 i 1675 i 

DzCO f rans-DCOD TS-M TS-R 

0.88 0.84 0.76 0.89 
! .07 0.97 0.89 1.10 
4.70 6.28 5.45 4.75 

The first six values are  the vibrational frequencies, and the three 
values below it are the rotation constants. Units for all are cm-I. TS-M 
and TS-R are  the molecular and rearrangement transition states in- 
dicated in Figure 1. 

stants for all four species. Unless stated otherwise, all rate 
constants given below were calculated from eq A.8, which for 
J = 0 is identical with eq 1 1, with the tunneling probability of 
eq 8. 

Figure 2 shows the unimolecular rate constant for reaction 
RI as a function of total energy E (relative to the bottom of 
the potential energy surface of H*CO), and for comparison the 
classical rate constant is also shown (broken line). [The clas- 
sical rates were all computed by direct state count of the 
transition state, i.e., from eq A.8 or 1 1  with the tunneling 
probability P ( E  1 )  replaced by the step:function h ( E l ) . ]  The 
classical rate vanishes a t  the energy VO, the “bare” barrier 
height plus the zero-point energy of the transition state: 

I 
1 0 4  I 

I 1 1 ,  1 I 
90 IO0 110 I20 

E (kcal /mole)  

Figure 2. Unimolecular rate constant for the reaction indicated, as a 
function of total energy, for total angular momentum J = 0. The solid 
curve includes tunneling effects and is computed from eq 1 1. The broken 
curve is the classical rate, computed from eq 1 1  with the modification 
P(Ei) - h ( E l ) .  

but one sees that tunneling allows a significant rate (>lo9 s-l) 
a t  this threshold energy. The rate-has fallen only to lo6 s-I a t  
an energy -8 kcal/mol below VO. The exponential energy 
dependence of_k(E) (Le., the linearity of the semilogarithmic 
plot) for E < VO also indicates that the process is dominated 
by tunneling in this region. 

Figure 3 shows similar results for the rate constant of re- 
action R2, and one again sees that tunneling is substantial. 

To assess the effect of rotation, calculations were also carried 
out for total angular momentum J > 0. The rate constant in 
general decreases with increasing J ,  but the effect is not large 
for the present examples: for J = 10, as large a value as is 
probably of interest, the rate constant for both reactions is 
decreased by a factor of -2.5 a t  E = 90 kcal/mol, and the 
factor decreases approximately uniformly to -1.2 a t  E = 120 
kcal/mol. 

Isotope Effects 
Tunneling is significant for these reactions because they 

primarily involve the motion of hydrogen atoms, as evidenced 
by the large imaginary barrier frequencies iwb for the transi- 
tion states in Table I .  One thus expects large isotope effects in 
the tunneling region if H atoms are replaced by D atoms. The 
relevant frequencies (and rotation constants) for the deuterated 
species have also been determined by Goddard and Schaefer5 
and are  given in Table I. 

Figure 4 shows the isotope effect, i.e., the ratio of the hy- 
drogen to  the deuterium rate constant for the two reactions. 
It is easy to see that the classical rate expression (eq 5) gives 
an energy-independent isotope ratio, and one sees in Figure 4 
that this limit is approached for energies above the classical 
thresholds. In  the threshold region and below, however, the 
isotope ratio is strongly dependent on energy: for energies 
significantly below the classical threshold there is an expo- 
nential energy dependence (i.e., the semilogarithmic plot is 
linear), but near the classical threshold itself the energy de- 
pendence is quite complicated, showing a pronounced mini- 
mum,  in the vicinity of which the deuterium versions of the 
reactions a r e  actually faster than the hydrogen versions. 

Although comparing different isotopes at  the same total 
energy (as in Figure 4) is the most meaningful comparison 
from a theoretical point of view, the experimental situation 
often dictates otherwise. Thus for formaldehyde the excitation 
energies from the ground vibrational state of SO to the ground 
vibrational state of SI  are4 80.6 kcal/mol for H2CO and 80.9 
kcal/mol for D2C0, and since the zero-point energies of HzCO 
and D2CO are 16.1 and 12.8 kcal/mol, respectively, the total 
energies resulting from these vibrationless excitations are 96.7 
kcal/mol for H2CO and 93.7 kcal/mol for D2CO. At  these 
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energies the present calculations give 
k l H  = 5.8 X lo6 s- l ,  k l D  = 1.4 X l o 5  s-I (13a) 
k 2 ~  = 1.9 x 107 s-l, k p  = 5.7 x 105 s-I ( i 3 b )  

where kl and k2 refer to reactions R1 and R2, respectively. 
(The values for kl and k I D  in eq 13a include a n  extra factor 
of 2 due to symmetry, which has heretofore been omitted; this 
is because HzCO and D2CO have a twofold rotation axis and 
thus a symmetry number of 2 . )  These rates are  for total an- 
gular momentum J = 0; for J = 10 they are  all about a factor 
of 2 smaller. 

Similar calculations have been carried out for the mixed 
isotope HDCO and the rates are, perhaps not unexpectedly, 
intermediate between those for H2CO and D2CO. For the vi- 
brationless So - SI excitation, for example, the total energy 
is 95.3 kcal/mol and the rate of reaction R1 is 

k l H D  = 9.5 X lo5 s-] (14) 
Concluding Remarks 

The main purpose of this paper has been to show how tun- 
neling can be incorporated in the transition state (Le., RRKM) 
theory for unimolecular reactions in a manner analogous to 
the way it is included in transition-state theory for thermal 
bimolecular reactions. Because the unimolecular case corre- 
sponds to a fixed energy rather than a fixed temperature, the 
effect of tunneling is somewhat more complicated; Le., it does 
not enter as simply a multiplicative correction factor but rather 
in a more convoluted manner. 

With regard to the applications to formaldehyde, one must 
be somewhat cautious regarding the specific values obtained 
for the rate constants because it is known that, when tunneling 
effects are  substantial, the separable approximation for tun- 
neling can be poor.lc Nevertheless, the results obtained for the 
rates do indicate that, on the time scale of interest in the col- 
lisionless photochemistry of formaldehyde, i.e., 10-5-10-6 s, 
tunneling is likely to play a significant role. 
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Appendix. Effect of Rotational Degrees of Freedom 
There are  three degrees of freedom associated with the 

overall rotation of a nonlinear molecule, the quantum numbers 
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Figure 4. Isotope effects. Plotted is the logarithm of the ratio of hydrogen 
to deuterium rate constants for the reactions indicated, as a function of 
total energy. 

for which we designate J ,  M J ,  K .  J ,  the total angular mo- 
mentum quantum number, and MJ.  its projection onto a 
space-fixed axis, are  always conserved, while K is in general 
not conserved. (For a rigid symmetric top, K is also conserved.) 
One thus needs to define the unimolecular rate constant k ( E , J )  
which corresponds to a fixed value of total angular momentum 
J as well as total energy E ;  because of the isotropy of space, 
the rate is independent of M J .  

We assume that K is a statistical degree of freedom, Le., that 
it interchanges energy statistically with all the vibrational 
degrees of freedom. The unimolecular rate constant is then 
given by 

where 

J 
No(E,J)  = C E h ( E  - cn,J.K) (A.2b) 

( E ~ , J , K * ~  and ( t n , J , K )  being the rotational-vibrational energy 
levels of the transition state and of the reactant molecule, re- 
spectively. In practice these energy levels are  obtained by as- 
suming a rigid rotor-harmonic oscillator approximation: 

K = - J  n 

c n , j , ~ *  = Vo + WJ,K* + '5' hwj* n, + - (A.3b) 

where WJ,K* and WJ,K are the rotational energies of the 
transition state and of the reactant molecule. Since the energy 
levels of most asymmetric rotors are  reasonably well approx- 
imated by assuming an "almost symmetric top", we invoke that 
approximation here, so that' 

i= I ( 

1 
2 

WJ,K = - ( A  + B ) [ J ( J  + 1) - K 2 ]  + C K 2  

WJ,K* = - (A* + B * ) [ J ( J  + 1)  - K 2 ]  + C*K 

(A.4a) 

(A.4b) 

where (A ,  B, C) and ( A * ,  B*, C*) are  the three rotation 
constants of the molecule and of the transition state. ( A  and 
B are  chosen as the two most nearly equal rotation constants 
of the three A, B, and C, and A* and B* similarly.) 
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Tunneling: an example
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Isotopic effect
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energies the present calculations give 
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of 2 due to symmetry, which has heretofore been omitted; this 
is because HzCO and D2CO have a twofold rotation axis and 
thus a symmetry number of 2 . )  These rates are  for total an- 
gular momentum J = 0; for J = 10 they are  all about a factor 
of 2 smaller. 

Similar calculations have been carried out for the mixed 
isotope HDCO and the rates are, perhaps not unexpectedly, 
intermediate between those for H2CO and D2CO. For the vi- 
brationless So - SI excitation, for example, the total energy 
is 95.3 kcal/mol and the rate of reaction R1 is 

k l H D  = 9.5 X lo5 s-] (14) 
Concluding Remarks 

The main purpose of this paper has been to show how tun- 
neling can be incorporated in the transition state (Le., RRKM) 
theory for unimolecular reactions in a manner analogous to 
the way it is included in transition-state theory for thermal 
bimolecular reactions. Because the unimolecular case corre- 
sponds to a fixed energy rather than a fixed temperature, the 
effect of tunneling is somewhat more complicated; Le., it does 
not enter as simply a multiplicative correction factor but rather 
in a more convoluted manner. 

With regard to the applications to formaldehyde, one must 
be somewhat cautious regarding the specific values obtained 
for the rate constants because it is known that, when tunneling 
effects are  substantial, the separable approximation for tun- 
neling can be poor.lc Nevertheless, the results obtained for the 
rates do indicate that, on the time scale of interest in the col- 
lisionless photochemistry of formaldehyde, i.e., 10-5-10-6 s, 
tunneling is likely to play a significant role. 
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for which we designate J ,  M J ,  K .  J ,  the total angular mo- 
mentum quantum number, and MJ.  its projection onto a 
space-fixed axis, are  always conserved, while K is in general 
not conserved. (For a rigid symmetric top, K is also conserved.) 
One thus needs to define the unimolecular rate constant k ( E , J )  
which corresponds to a fixed value of total angular momentum 
J as well as total energy E ;  because of the isotropy of space, 
the rate is independent of M J .  

We assume that K is a statistical degree of freedom, Le., that 
it interchanges energy statistically with all the vibrational 
degrees of freedom. The unimolecular rate constant is then 
given by 

where 

J 
No(E,J)  = C E h ( E  - cn,J.K) (A.2b) 

( E ~ , J , K * ~  and ( t n , J , K )  being the rotational-vibrational energy 
levels of the transition state and of the reactant molecule, re- 
spectively. In practice these energy levels are  obtained by as- 
suming a rigid rotor-harmonic oscillator approximation: 

K = - J  n 

c n , j , ~ *  = Vo + WJ,K* + '5' hwj* n, + - (A.3b) 

where WJ,K* and WJ,K are the rotational energies of the 
transition state and of the reactant molecule. Since the energy 
levels of most asymmetric rotors are  reasonably well approx- 
imated by assuming an "almost symmetric top", we invoke that 
approximation here, so that' 

i= I ( 
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WJ,K = - ( A  + B ) [ J ( J  + 1) - K 2 ]  + C K 2  

WJ,K* = - (A* + B * ) [ J ( J  + 1)  - K 2 ]  + C*K 
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where (A ,  B, C) and ( A * ,  B*, C*) are  the three rotation 
constants of the molecule and of the transition state. ( A  and 
B are  chosen as the two most nearly equal rotation constants 
of the three A, B, and C, and A* and B* similarly.) 
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RRKM theory

Loose TS

A TS is generally obtained as a saddle point on the potential energy
surface. But in some reactions (e.g. dissociations) this topological point
can not be present. A loose TS is defined when:

∆S‡ < 0
Reactions with no reverse activation energies

In this case we use the more general definition of TS to locate it: the point
corresponding to the minimum in the sum of states along the reaction
coordinate. This is called Variational Transition State Theory
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RRKM theory

Variational Transition State Theory I

The TS is obtained by locating the minimum flux setting to zero the
derivative of the sum of states and solving for R‡

dN‡(E ,R)

dR
= 0 (53)

240 UNIMOLECULAR REACTION DYNAMICS

tween the potential energy, which is constantly rising as the reaction proceeds, and the
decrease in the vibrational frequencies for transitional modes which are evolving into
product rotations and translations. As the reaction proceeds, the reduction in the
available energy tends to reduce the density (or sum) of states while the lowering of the
transitional vibrational frequencies increases the density of states. As shown in figure
7.15, these two opposing forces result in a minimum in the density or sum-of states at
some R . The TS, located at R , has been called an entropic bottleneck. (In canonical
VTST, the bottle neck corresponds to the minimum in the free energy.)

The modification to the RRKM theory that makes possible accurate modeling of
loose transition states is variational transition state theory (Pechukas, 1981; Miller,
1983;Forst, 1991; Wardlaw and Marcus, 1984, 1985, 1988; Hase, 1983, 1987). In this
approach the rate constant k(E, J) is calculated as a function of the reaction coordinate,
R. The location of the minimum flux is found by setting the derivative of the sum of
states equal to zero and solving for R . Thus, we evaluate

(7.26)

solve for R , and obtain the variational k(E, J, R ) = N (E, J, R )/hp(E, J). This was
first suggested by Keck (1967) and further developed by Bunker and Pattengill (1968)
as well as others (Truhlar and Garrett, 1980; Rai and Truhlar, 1983; Hase, 1972, 1976).
Although the procedure is in principle very straightforward, it can become involved
depending upon the accuracy desired. Many names have been attached to models

Figure 7.15 The variation of the sum of states with R for a reaction with no exit barrier.
The position of the transition state at a given total energy is shown at R = R*.
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Variational Transition State Theory II

Note that the position of the TS will depend on the energy !

a saddle point (tight-TS )[47]

k(E) =
�

h

N ‡(E � E0)

⇢(E)
(1)

where � is the reaction degeneracy, E0 is the activation energy, N ‡(E � E0)
is the TS sum of states and ⇢(E) is the reactant density of states. The latter
two quantities are only for active degrees of freedom. Thus, we compute
k(E) by using properties of minima and saddle points on the PES, only pos-
sible for unimolecular reactions involving all the intermediates. When using
k(E) we refer to k(E, J) with J = 0. When considering the influence of the
rotational energy in the microcanonical rate constants we will use k(E, J)
in order to stress the fact that we are varying J and K rotational quantum
number values.

Loose TS
For channels with no reverse activation energy (loose-TS ) the TS is more
di�cult to specify because there is no saddle point along the reaction path.
The TS is located on the basis of the minimum sum of states and varies with
the internal energy. An schematic example is shown in figure 3.

!
!
!
!
!
!
!
!
!
!
!

216 UNIMOLECULAR REACTION DYNAMICS

7.2(a)]. The transition state, which is located at or near this saddle point, has a well
defined set of n — 1 vibrational frequencies because the bending modes have not yet
been converted into rotations of the products. If, as is often the case, the vibrational
frequencies of such a vibrator transition state are greater than the frequencies of the
molecule, the TS is called "tight." However, even reactions with no reverse barriers
[figure 7.2(b)] can be treated with similar vibrator transition states simply by reducing
some or all of the transition state vibrational frequencies. Such a TS is called "loose."

For some reactions with no reverse barriers it is convenient or necessary to treat
the transition state as flexible. This is the case when the vibrational degrees of freedom
have already evolved to free rotations. The transition state is then treated in terms of a
combination of vibrational and rotational degrees of freedom, the exact number of
which depends on the number of rotational degrees of freedom in the products. The
flexible transition state model is equivalent to phase space theory (Pechukas and Light,
1965) when the transition state properties are the same as those of the products. Phase
space theory can be viewed as a low-energy limiting form of variational transition state
theory because the transition state evolves from a vibrator type at high energies to
flexible at low energies.

7.1.2.1 Vibrator Transition States

7.1.2.1 .a Reactions with Saddle Points and Tight Transition States. The evaluation of
the RRKM equation requires a knowledge of the activation energy, E0, the n vibration-
al frequencies of the molecule, and the n - 1 vibrational frequencies of the transition
state. All, or part of these parameters can be treated as adjustable parameters when
fitting experimentally determined rate constants. The molecular frequencies are often
known from experiment. On the other hand, the transition-state frequencies are, in
general, not known. Furthermore, they are extremely difficult to guess because they
may change dramatically during the course of the reaction (Waite et al., 1983; Hase
and Duchovic, 1985). Examples are shown in figures 3.6 and 3.7. In a few cases

Figure 7.2 Schematic potential energy surfaces for reactions with and without a saddle
point.

!

"#$%&#'()%*&!+,-$*#(%!
Figure 3: Schematic potential energy surface for a reaction without a saddle
point.[71]

To compute the RRKM rate constants for the loose-TS we adopted the
microcanonical variational transition state theory (µVTST) in its vibrator
formulation [72, 73]. First we perform an scan along the reaction coordinate.

9
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RRKM theory

Variational Transition State Theory: an example2

Given the reaction: [Ca− NH2CHO]2+ → Ca2+ + NH2CHO

Then an optimization freezing this internal coordinate is done at each point
of the scan and the energy was computed, the Hessian matrices describing
the modes orthogonal to the reaction path were evaluated according to the
standard procedure of Hu and Hase [74], and the sum of states calculated for
the corresponding optimized structure. We repeated this procedure for each
internal energy considered and the structure corresponding to the minimum
sum of states was assigned as the TS.

One example is the initial capture process (gas-phase reaction of for-
mamide with Ca2+). In this example, the reaction coordinate corresponds
to the Ca–O distance and thus this was the scanned coordinate. In figure 4
we can observe how location of TS (minimum sum of states) respect to the
reaction coordinate changes with the internal energy. As the internal energy
increases the structure assigned as the TS is closer to that of the reactives,
as can be seen in figures 4 and 5.!

!
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Figure 4: On the left sum of states vs. reaccion coordinate for formamide-Ca2+at
di↵erent internal energies (all in kcal mol�1), computed at the G96LYP/6-31G(d)
level of theory. The crosses mark the minimum of the sum of states for each
energy. On the right is represented the microcanonical rate constant k vs internal
energy. The crosses marked the k(E) values corresponding to the minimum sum
of states for specific internal energies. In the middle are represented formamide-
Ca2+geometries for each of these points with the values (in Å) for Ca–O distance.
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2A.Martin-Somer et al. Phys. Chem. Chem. Phys. 16, 14813 (2014).
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RRKM theory

Rotational energy

Reactants and products have also rotational energy that can vary during
the reaction.
If modes can freely exchange the energy they are active: this holds
generally for all vibrational modes in RRKM theory.
For rotational energy this is not always the case.
Given a non-linear symmetric topi rotors (Ix = Iy ) the rotational energy is

Er (J,K ) = BJ(J + 1) + (A− B)K 2 (54)

where J and K are the two quantum numbers: J = 0, 1, 2, . . . and
K = 0,±1,±2, . . . ,±J. A and B are defined in terms of moments of
inertia

A = ~2/2Iz (55)
B = ~2/2Ix (56)
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RRKM theory

Rotational energy

The z-axis is the symmetry axis, thus J is a constant of the motion and
always active.
K can be:

adiabatic: it is conserved
active rotor: it allows energy exchange between vibration and rotation
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RRKM theory

Rotations in RRKM

For adiabatic K, the rate constant is

k(E , J,K ) =
N‡[E − E0 − E ‡r (J,K )]

hρ[E − Er (J,K )]
(57)

We have to consider three cases in which rotational energy can be shared
1 All the rotational energy is in the (x − y) plane, so K = 0 and

J = (−1 +
√

1 + 4Erot/B) where Erot is the rotational energy got, for
example, after a collision.

2 The rotational energy is equally distributed among the three axes.
3 All the rotational energy is added along the z-axis such that

K =
√
Erot/[3(A− B)]
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RRKM theory

Rotations in RRKM

For active-K two ways of obtaining the rate constant are possible:

1 By summing over contributions from all possible values of K to give

k(E , J) =

∑K=+J
K=−J N

‡[E − E0 − E ‡r (J,K )]

h
∑K=+J

K=−J ρ(E , J,K )
(58)

2 Considering ρ and N‡ as convolutions between the densities and sum
of states for the internal degrees of freedom and the active external
rotation

ρ(Ev ) =

∫ Ev

0
ρv (E )ρr (Ev − E )dE (59)

N‡(E , J) =

∫ E‡

0
Nv (E )ρr (E ‡ − E )dE (60)

where ET = Ev + Er (J)
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RRKM theory

Example 1. Benzene decomposition3

C6H6 → C6H5 + H
238 UNIMOLECULAR REACTION DYNAMICS

Figure 7.13 The effect of I on the benzene ion dissociation rate at a constant total energy
(Evjb + Erot) of 5.3 eV. The solid lines are numerical results from an RRKM calculation in
which the rotational constant of the H loss transition state was assumed to be identical to
that of the benzene ion. K-mixing and no K-mixing are assumed in curves A and B,
respectively. Taken with permission from Kiermeier et al. (1988).

What this clearly shows is that the angular momentum barrier is much greater for
the H loss than for the CH3 loss channel. This could be a result of a centrifugal barrier
with an orbiting transition state, as suggested by Meisels et al. (1979), or it could be
due to a vibrator transition states in which the H loss channel proceeds via a "tighter"
transition state (Booze et al., 1993; Bowers et al., 1983).

The available data, including ab initio molecular orbital calculations of the
transition-state structures, indicate that a vibrator model for the transition state ac-
counts for the k(E, J) curves. Both the ab initio calculations and the experimental rate
constants indicate that the H loss transition state has a slightly "tight" transition state.
Figure 7.14 shows how the rates for reactions (7.25(a))-(7.25(c)) vary with J. Note
that the rate constants for H loss channel decrease much more rapidly with J because

Table 7.3. Effect of Angular Momentum on Butene
Ion Branching Ratio.

Method of C4H8
+ preparation <J> k.H/kC H 3

"Cold" C4H8
+ dissociation 5 0.61

"Warm" C4H8+ dissociation 35 0.39
C2H4

+/C2H4 collision experiment 80 0.11

The effect of J at a constant total energy: Evib + Erot = 5.3 eV. Numerical
results from an RRKM calculation in which the rotational constant of the
H loss transition state was assumed to be identical to that of the benzene
ion;

Curve A: K-mixing
Curve B: no K-mixing

3A. Kiermeier et al. . J. Chem. Phys. 88, 6182 (1988).
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RRKM theory

Example 2. Butene ion decomposition4

C4H
+
8 →

STATISTICAL THEORY: APPLICATION AND EXTENSION 239

Figure 7.14 The variation of the k(E, /) with ] for the three reactions of the butene ion. The
variation in the rates is due entirely to the different rotational constants of the molecular ion
and the corresponding transition states. Taken with permission from Booze et al. (1993).

the activation energy of this channel actually increases with J. The decrease in the
butene ion k(E, J) with J can be largely accounted for by differences in the transition-
state moments of inertia. The data appear rather insensitive to the question of active
versus inactive K-rotors.

7.3 VARIATIONAL TRANSITION STATE THEORY

In order to deal properly with reactions that have no saddle point, it is necessary to go
back to the notion that a unimolecular reaction is represented by a flux in phase space.
Recall that the TS is defined as the surface in phase space which divides reactants from
products, and at which the phase space is a minimum. For reactions with a substantial
energy barrier, the dividing surface will be located at the saddle point because energy is
such a dominating factor in determining the transition-state sum of states. However, for
loose transition states it is necessary to search directly for the minimum flux configura-
tion. The existence of such a minimum flux configuration is due to the interplay be-

4J.A.Booze et al.. J. Chem. Phys. 99, 4441 (1993).
Riccardo Spezia (CNRS) Réactivité chimique 23/01/2017 44 / 45



RRKM theory

Non-RRKM behaviors

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 59, NUMBER 9 1 NOVEMBER 1973 

On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular* 

Don L. Bunker and W. L. Hase 
Department of Chemistry, University of California. Irvine. California 92664 

(Received 15 January 1973) 

Monte Carlo rate constants for model CH3NC isomerization, determined at 200, 100, and 70 
kcallmole. disagree with theoretical predictions. Also, three different approximate methods of generating 
initial conditions at 200 kcal lead to divergent results. The molecule does not appear to us to obey the 
random lifetime assumption of conventional unimolecular rate theory at any of these energies. A 
discussion is given of the systematics of this kind of effect, and comments are made on the relationship 
between our results and those obtained in the laboratory. 

I. THEORETICAL PROLOGUE: WHAT TO EXPECT FROM A 
UNIMOLECULAR REACTION 

A. Introduction 

One of the ·best reasons for making a simple the-
oretical model of chemical behavior is merely that 
it can be done. A recognizable physical assump-
tion, leading by tractable mathematics to definite 
predictions, provides a valuable guide, regardless 
of whether most reactions conform to it. 

The RRKMl theory of unimolecular reactions is 
an example of such a model. It appears to explain 
a very large amount of chemistry. But even if it 
were not so successful, it would still be of central 
interest, because its main assumption is the only 
manageable one that can be made. Its converse 
implies that we cannot calculate reaction rates by 
any simple manipulation of the structural properties 
of cold reactant and critically activated molecules. 
Any treatment of non-RRKM kinetics must be much 
more complicated than the currently standard the-
0ry. 

Since that is what we must discuss in this paper, 
we need to supply at least a rudimentary descriptive 
pathology of non-RRKM behavior. A bibliography 
is provided,2-9 and the notation has been chosen to 
conform as much as possible to that of Robinson 
and Holbrook. 2 

The basic assumption of RRKM theory is that 
isolated molecules behave as if all their accessible 
states were occupied in random order. In Fig. 
l(a) we have illustrated this schematically, showing 
random transitions among states at some energy 
high enough for eventual reaction (towards the 
right). This assumption implies that there will be 
a random lifetime distribution 

P(T)=kaexp(-kaT) , (1) 

giving equal probability during any time interval 
for reaction to occur. 

The "as if" wording is important. In reality, 
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transitions between states are not random; some 
are more probable than others. In the limit of high 
energy and heavy atoms, only one transition is pos-
sible and we have a classical trajectory. Thus we 
have to rely on the molecular motion to be disor-
derly enough for the RRKM assumption to be mim-
icked, as crudely illustrated in Fig. l(b). 

In practice we never quite attain this ideal. To 
apply RRKM theory, we must prescribe the manner 

(0) RRKM model 

• 'bi ph,"ool 00",'"'''' 1 
III 

(c) collisional state selection 

-= (d) chemical activation 

at "'.KM 

T 

FIG. 1. Relation of state occupation (schematically 
shown at constant energy) to lifetime distribution for the 
RRKM theory and for various actual situations. Dashed 
lines in lifetime distributions indicate RRKM behavior. 
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