## Réactivité unimoléculaire: cinétique et dynamique

Riccardo Spezia riccardo.spezia@univ-evry.fr

CNRS – Université d'Evry-Val-d'Essonne

23/01/2017 Label Chimie Théorique

Riccardo Spezia (CNRS)

Réactivité chimique

23/01/2017 1 / 45





Unimolecular reaction dynamics



Riccardo Spezia (CNRS)

Réactivité chimique

23/01/2017 2 / 45

2

イロト イヨト イヨト イヨト

## Unimolecular reaction dynamics

• Population decay of a species (simple kinetics)

$$-\frac{d}{dt}P_i = kP_i$$
(1)  
$$P_i(t) = P_i(0)e^{-kt}$$
(2)

- k is the rate constant that sets a uni-molecular kinetics
- *P<sub>i</sub>* is the fraction of a given species, that in the gas phase plays the same role as concentration in liquid phase

# Unimolecular reaction : activation



- Energy is given to a molecule in the gas phase (isolated) in order to induce reactivity
- Different ways to provide energy : collision, laser, electron ...
- Energy is conserved (no coupling with a bath)
- To react the system has to pass the transition state (TST holds)
- Employing a statistical theory of reactivity and TST theory it is possible to obtain k(E) (micro canonical) from molecular information (i.e. from theoretical chemistry)

# IVR

- IVR = internal vibrational relaxation
- The energy absorbed by a mode can flow through the molecule via mode coupling
- A molecule as a set of independent harmonic oscillators

$$H = \frac{1}{2} \sum_{i} (p_i^2 + q_i^2)$$
(3)

• A mode coupling (anharmonicity, rotation, etc ...) allows energy flow/exchange between the modes

$$H' = \frac{1}{2} \sum_{i} (p_i^2 + q_i^2) + \sum_{i,j} G(q_i, q_j; p_i, p_j)$$
(4)

Riccardo Spezia (CNRS)

# IVR

- When a molecule gets energy, it is not in general localized so that to be available in reactivity the energy must flow to the reactive mode
- The energy flow time-scale is crucial!
- Putting together these concepts we obtain the well known Rice-Ramsperger-Kassel-Marcus (RRKM) theory

## RRKM theory : assumptions

- RRKM: IVR takes place + TST assumptions are valid
- the molecule populates all of phase space statistically throughout its dissociation so that the microcanonical ensemble is mantained
- all molecules which find them in the TS phase space region lead to products: no recrossing
- there is a special coordinate perpendicular to all other coordinates that can be separated
- the reaction rate will be given by the flux over the separation surface

$$Flux = \frac{d\mathbb{N}(q^{\ddagger}, p^{\ddagger})}{dt}$$
(5)



## RRKM theory : definitions

• Phase space: each atom has (q, p), so for m atoms, we have a phase space volume with dimension 2m

$$PhaseSpaceVolume = \int_{H=0}^{H=E} \dots \int dp_1 \dots dp_m dq_1 \dots dq_m \qquad (6)$$

• Sum of states: counting the number of states available to a particle to determine the available volume

$$N(E) = \frac{1}{h^m} \int_{H=0}^{H=E} \dots \int dp_1 \dots dp_m dq_1 \dots dq_m$$
(7)

according to Heisenberg principle the smallest unit in phase space is of the order of  ${\sf h}$ 

• N(E) represents the total number of states for a system corresponding to an energy less than or equal to a specified value, E.

Riccardo Spezia (CNRS)

23/01/2017 8 / 45

## RRKM theory : definitions

• Density of states: the number of states,  $\rho(E)$ , per energy unit

$$W(E) = \frac{1}{h^m} \int_{H=E}^{H=E+dE} \dots \int dp_1 \dots dp_m dq_1 \dots dq_m \qquad (8)$$

$$\rho(E) = \frac{W(E)}{dE} \tag{9}$$

$$\rho(E) = \frac{1}{h^m} \int_{H=E} \dots \int dp_1 \dots dp_m dq_1 \dots dq_m$$
(10)

• the density of states is, by definition, the derivative of the sum of states with respect to energy

$$\rho(E) = dN(E)/dE \tag{11}$$

(日) (周) (日) (日)

23/01/2017 9 / 45

# RRKM theory : definitions

Reaction coordinate with a saddle point

- energy conservation: H = E
- TS as a dividing surface: once the trajectory has reached it, it goes to products without coming back to reactants



23/01/2017 10 / 45

- It is assumed that the phase space is statistically populated: the population density over the whole surface of the phase space is uniform.
- the ratio of molecules near the critical surface over the total number of molecule: the ration of phase space at the dividing surface over the total phase space

$$\frac{d\mathbb{N}(q^{\ddagger},p^{\ddagger})}{d\mathbb{N}} = \frac{dq^{\ddagger}dp^{\ddagger}\int\ldots\int_{E=E-\epsilon_{t}-E_{0}}\int dq_{1}^{\ddagger}\ldots dq_{n-1}^{\ddagger}dp_{1}^{\ddagger}\ldots dp_{n-1}^{\ddagger}}{\int_{H=E}\int dq_{1}\ldots dq_{n}dp_{1}\ldots dp_{n}}$$
(12)

- $\epsilon_t$  : translational energy
- E<sub>0</sub> : activation energy

Riccardo Spezia (CNRS)

23/01/2017 11 / 45

Since it was assumed that the reaction coordinate is perpendicular to, and separable from, all other coordinates the time derivative involves only the  $dq^{\ddagger}$  and  $dp^{\ddagger}$  term. Thus we can write the flux as:

$$\frac{d\mathbb{N}(q^{\ddagger},p^{\ddagger})}{dt} = \frac{\mathbb{N}\frac{dq^{\ddagger}dp^{\ddagger}}{dt}\int_{H=E-\epsilon_t-E_0}\int dq_1^{\ddagger}\dots dq_{n-1}^{\ddagger}dp_1^{\ddagger}\dots dp_{n-1}^{\ddagger}}{\int_{H=E}\int dq_1\dots dq_n dp_1\dots dp_n}$$
(13)

This can be rearranged by noting that  $dq^{\ddagger}/dt = p^{\ddagger}/\mu^{\ddagger}$ , where  $\mu^{\ddagger}$  is the reduced mass of the two separating fragments, such that we have

$$\frac{d\mathbb{N}(q^{\ddagger},p^{\ddagger})}{dt} = \frac{\mathbb{N}\frac{p^{\ddagger}dp^{\ddagger}}{\mu^{\ddagger}}\int_{H=E-\epsilon_t-E_0}\int dq_1^{\ddagger}\dots dq_{n-1}^{\ddagger}dp_1^{\ddagger}\dots dp_{n-1}^{\ddagger}}{\int_{H=E}\int dq_1\dots dq_n dp_1\dots dp_n} \qquad (14)$$

Riccardo Spezia (CNRS)

23/01/2017 12 / 45

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The energy in the reaction coordinate is by definition

$$\epsilon_t = \frac{p^{\ddagger 2}}{2\mu^{\ddagger}} \tag{15}$$

and its derivative

$$d\epsilon_t = \frac{p^{\ddagger} dp^{\ddagger}}{\mu^{\ddagger}} \tag{16}$$

イロン 不聞と 不同と 不同と

Now equation 14 reads

$$\frac{d\mathbb{N}(q^{\ddagger}, p^{\ddagger})}{dt} = \frac{\mathbb{N}d\epsilon_t^{\ddagger}\int_{H=E-\epsilon_t-E_0}\int dq_1^{\ddagger}\dots dq_{n-1}^{\ddagger}dp_1^{\ddagger}\dots dp_{n-1}^{\ddagger}}{\int_{H=E}\int dq_1\dots dq_n dp_1\dots dp_n}$$
(17)

Riccardo Spezia (CNRS)

23/01/2017 13 / 45

3

Equation 19 express the flux (molecules per unit time) in terms of the number of molecules,  $\mathbb{N}$ , multiplied by the rate constant,  $k(E, \epsilon_t)$ :

$$\frac{d\mathbb{N}(q^{\ddagger}, p^{\ddagger})}{dt} = \mathbb{N}k(E, \epsilon_t)$$
(18)

where the rate constant is the ration of the phase space areas

$$k(E,\epsilon_t) = \frac{d\epsilon_t^{\dagger} \int_{H=E-\epsilon_t-E_0} \int dq_1^{\dagger} \dots dq_{n-1}^{\dagger} dp_1^{\dagger} \dots dp_{n-1}^{\dagger}}{\int_{H=E} \int dq_1 \dots dq_n dp_1 \dots dp_n}$$
(19)

The phase spaces can be converted into densities

$$k(E,\epsilon_t) = \frac{\rho(E - E_0 - \epsilon_t)h^{n-1}}{\rho(E)h^n} = \frac{\rho(E - E_0 - \epsilon_t)}{h\rho(E)}$$
(20)

Riccardo Spezia (CNRS)

23/01/2017 14 / 45

(日) (周) (日) (日)

Equation 20 is very important and expresses the rate constant in terms of total energy, E, and the translational energy of the departing fragments at the transition state,  $\epsilon_t$ . This equation is a state-to-state rate constant since there are many ways to partition the available energy,  $E - E_0$ . To have the total dissociation rate, we must integrate over all the different translational energies in the transition state:

$$k(E) = \frac{\int_{0}^{E-E_{0}} \rho^{\ddagger}(E-E_{0}-\epsilon_{t})d\epsilon_{t}}{h\rho(E)} = \frac{N^{\ddagger}(E-E_{0})}{h\rho(E)}$$
(21)

Riccardo Spezia (CNRS)

23/01/2017 15 / 45

イロト イポト イヨト イヨト 二日

# RRKM theory : formula

The RRKM rate constant is simply obtained by

$$k(E) = \sigma \frac{N^{\ddagger}(E - E_0)}{h\rho(E)}$$
(22)

- $N^{\ddagger}(E E_0)$ : sum of states at the transition state from 0 to  $E E_0$ ;
- $\rho(E)$ : density of states of reactant;
- $\sigma$ : the reaction symmetry

Note that this is the rotation free version.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# RRKM theory : formula

$$k(E) = \sigma \frac{N^{\ddagger}(E - E_0)}{h\rho(E)}$$
(23)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

To obtain the k(E) for a given unimolecular reaction we have to

- **(**) locate the minimum and calculate the 3N 6 frequencies;
- 2 locate the (tight) TS and calculate the 3N 7 frequencies;
- Solution of states at the density and sum of states at the desired energies;
- determine the reaction symmetry;
- **(a)** use equation 23 to easily get k(E).

#### Density of states I

There are different methods to obtain the density of states,  $\rho(E)$ , needed to solve Eq. 23 and get k(E):

• From inverse Laplace transform of the partition function. In fact, the partition function,  $Q(\beta)$ , can be written as

$$Q(\beta) = \int_0^\infty \rho(E) e^{-\beta E} dE = \mathcal{L}[\rho(E)]$$
(24)

so the density of states is just the inverse:  $\rho(E) = \mathcal{L}^{-1}[Q(\beta)]$ In the case of *s* classical harmonic oscillators, the partition function is

$$Q(\beta) = \prod_{i}^{s} [\beta h\nu_{i}]^{-1} = \beta^{-s} \prod_{i}^{s} (h\nu_{i})^{-1}$$
(25)

Riccardo Spezia (CNRS)

23/01/2017 18 / 45

イロト 不得下 イヨト イヨト

#### Density of states II

The Laplace transform of  $\beta^{-s}$  is  $E^{s-1}/\Gamma(s)$  and the gamma function of an integer s is (s-1)!, so

$$\rho(E) = \prod_{i}^{s} (h\nu_i)^{-1} \frac{E^{s-1}}{(s-1)!}$$
(26)

### Density of states III

② In the case of quantum oscillators the partition function

$$q_{\nu}(T) = \prod_{i=1}^{s} [1 - e^{-h\nu_i\beta}]^{-1}$$
(27)

and the inverse Laplace transform integral

$$\rho(E) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+\infty} Q(\beta) e^{\beta E} d\beta$$
(28)

can be solved numerically, for example via a steepest descent approximation. One problem is that it considers the  $\rho(E)$  as a smooth function, even if it is a series of delta functions.

## Density of states IV

**③** The direct count method via the Bayer-Swinehart algorithm.

Algorithm 1 Beyer-Swinehart density of vibrational states count

- 1:  $\rho(I) = [1, 0, 0, \dots]$  (initialize the  $\rho$  vector)
- 2: for J = 1 to s do
- 3: for  $I = \omega(J)$  to M do

4: 
$$\rho(I) = \rho(I) + \rho(I - \omega(J))$$

- 5: end for
- 6: end for

where M is the maximum energy bin of interest. The algorithm calculates  $\rho(E)$  by dividing the energy scale into a series of cells and counting how many vibrational bands are in each cell.

Riccardo Spezia (CNRS)

23/01/2017 21 / 45

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

#### Density of states V

Whitten-Rabinovitch semi-classical approximation. The density of states is expressed as:

$$\rho(E) = \frac{(E + aE^{ZPE})^{s-1}}{(s-1)! \prod h\nu_i} \left[ 1 - \beta \frac{d\omega(\epsilon)}{d\epsilon} \right]$$
(29)

in which:

$$a = 1 - \beta \omega(\epsilon); \quad \beta = \frac{s - 1}{s} \frac{\langle \nu^2 \rangle}{\langle \nu \rangle^2}$$
(30)  
$$\epsilon = E/E^{ZPE}$$
(31)

< □ > < □ > < □ > < □ > < □ > < □ >

$$\omega(\epsilon) = [5\epsilon + 2.27\epsilon^{0.5} + 3.51]^{-1} \quad \text{for } 0.1 < \epsilon < 1 \tag{32}$$

$$\omega(\epsilon) = e^{[-2.419\epsilon^{0.25}]} \quad \text{for } 1.0 \le \epsilon \tag{33}$$

## Sum of states I

The sum of states is, from the integration theorem

$$N(E) = \int_0^E \rho(E) = \mathcal{L}^{-1}[Q(\beta)/\beta]$$
(34)

For s classical harmonic oscillators

$$N(E) = \prod (h\nu_i)^{-1} \mathcal{L}^{-1}(\beta)^{-(s+1)} = \prod_i^s (h\nu_i)^{-1} \frac{E^s}{s!}$$
(35)

In the Whitten-Rabinovich approximation

$$N(E) = \frac{(E + aE^{ZPE})^s}{s! \prod h\nu_i}$$
(36)

Riccardo Spezia (CNRS)

23/01/2017 23 / 45

B> B

## Sum of states II

The direct count method. This is the most accurate procedure and the most used scheme is the Bayer-Swinehart algorithm.

Algorithm 2 Beyer-Swinehart sum of vibrational states count

1: 
$$N(I) = [1, 1, 1, ...]$$

2: for 
$$J = 1$$
 to  $s$  do

3: for 
$$I = \omega(J)$$
 to  $M$  do

4: 
$$N(I) = N(I) + N(I - \omega(J))$$

5: end for

6: end for

(日) (周) (日) (日)

## Convolution properties

Laplace transform is an integral transform (like Fourier transform) an the convolution theorem holds. Given two partition functions  $Q_1(\beta)$  and  $Q_2(\beta)$ , their product is the Laplace transform of the convolution between  $\rho_1$  and  $\rho_2$ :

$$Q_1 Q_2 = \mathcal{L}[\rho_1 * \rho_2] \tag{37}$$

and thus

$$\rho_{12} = \mathcal{L}^{-1}[Q_1 Q_2] = \rho_1 * \rho_2 \tag{38}$$

For the sum of states we thus have

$$N_{12}(E) = \int_0^E \rho_{12}(x) dx = \int \mathcal{L}^{-1} Q_1 Q_2 dx = \mathcal{L}^{-1} [Q_1 Q_2 / \beta]$$
  
=  $N_1 * \rho_2 = \rho_1 * N_2$  (39)

Riccardo Spezia (CNRS)

23/01/2017 25 / 45

(日) (周) (日) (日)

#### **RRKM** theory

## **RRK** equation

In the classical limit, the vibrational density of states for s oscillators and the sum of states for the s - 1 oscillators at the transition state are:

$$\rho(E) = \frac{E^{s-1}}{(s-1)! \prod_{i=1}^{s} h\nu_i}; N^{\ddagger}(E-E_0) = \frac{(E-E_0)^{s-1}}{(s-1)! \prod_{i=1}^{s-1} h\nu_i^{\ddagger}}$$
(40)

Using these expressions in Eq. 23 we obtain the classical RRKM rate constant

$$k_{cl}(E) = \left(\frac{E - E_0}{E}\right)^{s-1} \frac{\prod_{i=1}^{s} \nu_i}{\prod_{i=1}^{s-1} \nu_i^{\ddagger}}$$
(41)

The numerator has only one additional frequency, that can be identified with the reaction coordinate. We thus obtain the original RRK equation

$$k_{RRK}(E) = \nu \left(\frac{E - E_0}{E}\right)^{s-1}$$
(42)

イロト 不得下 イヨト イヨト

Riccardo Spezia (CNRS)

Réactivité chimique

23/01/2017 26 / 45

#### Canonical rate constant

To obtain an expression of the rate constant at constant temperature (canonical ensemble) we need to average over the internal energy distributions at a given temperature, T. Given the distribution function  $(\beta = 1/k_BT)$ 

$$P(E,\beta) = \frac{\rho(E)e^{-\beta E}}{\int_0^\infty \rho(E)e^{-\beta E}dE} = \frac{\rho(E)e^{-\beta E}}{Q(\beta)}$$
(43)

so for the rate constant

$$k(T) = \int_0^\infty k(E) P(E,\beta) dE = \int_0^\infty \frac{N^{\ddagger}(E-E0)\rho(E)}{h\rho(E)Q(\beta)} e^{-\beta E} dE \qquad (44)$$

Riccardo Spezia (CNRS)

23/01/2017 27 / 45

< □ > < □ > < □ > < □ > < □ > < □ >

#### Canonical rate constant

We note that  $N^{\ddagger}$  is different from zero only for  $E > E_0$  , so

$$k(T) = \frac{1}{hQ(\beta)} \int_{E_0}^{\infty} N^{\ddagger}(E - E_0) e^{-\beta E} dE = \frac{e^{-\beta E_0}}{hQ(\beta)} \int_0^{\infty} N^{\ddagger}(E) e^{-\beta E} dE$$
(45)

the last integral is the Laplace transform of the sum of states can be expressed as (following integration theorem)

$$\mathcal{L}[N^{\ddagger}(E)] = \mathcal{L}\left[\int_{0}^{E} \rho^{\ddagger}(E) dE\right] = \frac{\mathcal{L}[\rho^{\ddagger}(E)]}{\beta} = \frac{Q^{\ddagger}(\beta)}{\beta}$$
(46)

and thus the rate constant that is expressed as from canonical TST

$$k(\beta) = \frac{Q^{\ddagger}(\beta)}{h\beta Q(\beta)} e^{-\beta E_0}$$
(47)

(日) (周) (日) (日)

Riccardo Spezia (CNRS)

Réactivité chimique

23/01/2017 28 / 45

# Tunneling

To include tunneling the rate constant is

$$k(E) = \int_{-E_0}^{E-E_0} \kappa(\epsilon_t) k(E, \epsilon_t) d\epsilon_t$$
  
=  $\frac{1}{h\rho(E)} \int_{-E_0}^{E-E_0} \kappa(\epsilon_t) \rho^{\ddagger} (E-E_0-\epsilon_t) d\epsilon_t$  (48)

where  $\kappa(\epsilon_t)$  is the tunneling probability function of the translation energy,  $\epsilon_t$ .

< □ > < □ > < □ > < □ > < □ > < □ >

# Tunneling

For an Eckart barrier, the transmission coefficient is

$$\kappa(\epsilon_{t}) = \frac{\sinh(a)\sinh(b)}{\sinh^{2}[(a+b)/2] + \cosh^{2}(c)}$$
(49)

23/01/2017 30 / 45

Ξ.

イロト イヨト イヨト イヨト

## Tunneling

The three coefficient are function of the three parameters of the Eckart barrier,  $V_0$ ,  $V_1$  and  $\nu_c$ , the curvature at the barrier.

$$a = \frac{4\pi}{h\nu_c} \sqrt{\epsilon_t + V_0} \frac{1}{V_0^{-1/2} + V_1^{-1/2}}$$
(50)  

$$b = \frac{4\pi}{h\nu_c} \sqrt{\epsilon_t + V_1} \frac{1}{V_0^{-1/2} + V_1^{-1/2}}$$
(51)  

$$c = 2\pi \sqrt{\frac{V_0 V_1}{(h\nu_c)^2} - \frac{1}{16}}$$
(52)

23/01/2017 31 / 45

3

< □ > < □ > < □ > < □ > < □ > < □ >

# Tunneling: an example

Unimolecular decomposition of formaldehyde.<sup>1</sup> Potential energy surface



 <sup>1</sup>W.H.Miller. J. Am. Chem. Soc. 101, 6810 (1979)
 Image: Market and M

# Tunneling: an example

#### Unimolecular decomposition of formaldehyde Reactivity



∃ ⊳ 23/01/2017 33 / 45

э

< A

# Tunneling: an example

Unimolecular decomposition of formaldehyde Isotopic effect



23/01/2017 34 / 45

3. 3

## Loose TS

A TS is generally obtained as a saddle point on the potential energy surface. But in some reactions (e.g. dissociations) this topological point can not be present. A loose TS is defined when:

- $\Delta S^{\ddagger} < 0$
- Reactions with no reverse activation energies

In this case we use the more general definition of TS to locate it: the point corresponding to the minimum in the sum of states along the reaction coordinate. This is called Variational Transition State Theory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Variational Transition State Theory I

The TS is obtained by locating the minimum flux setting to zero the derivative of the sum of states and solving for  $R^{\ddagger}$ 

$$\frac{dN^{\ddagger}(E,R)}{dR} = 0 \tag{53}$$



Riccardo Spezia (CNRS)

23/01/2017 36 / 45

## Variational Transition State Theory II

Note that the position of the TS will depend on the energy !



Internuclear distance

Riccardo Spezia (CNRS)

Réactivité chimique

23/01/2017 37 / 45

# Variational Transition State Theory: an example<sup>2</sup>

Given the reaction:  $[Ca - NH_2CHO]^{2+} \rightarrow Ca^{2+} + NH_2CHO$ 



<sup>2</sup>A.Martin-Somer et al. Phys. Chem. Chem. Phys. 16, 14813 (2014).

## Rotational energy

Reactants and products have also rotational energy that can vary during the reaction.

If modes can freely exchange the energy they are active: this holds generally for all vibrational modes in RRKM theory.

For rotational energy this is not always the case.

Given a non-linear symmetric topi rotors  $(I_x = I_y)$  the rotational energy is

$$E_r(J,K) = BJ(J+1) + (A-B)K^2$$
(54)

where J and K are the two quantum numbers: J = 0, 1, 2, ... and  $K = 0, \pm 1, \pm 2, ..., \pm J$ . A and B are defined in terms of moments of inertia

$$A = \hbar^2 / 2I_z \tag{55}$$

$$B = \hbar^2/2I_x \tag{56}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二頁 - のへで

## Rotational energy

The *z*-axis is the symmetry axis, thus J is a constant of the motion and always active.

K can be:

- adiabatic: it is conserved
- active rotor: it allows energy exchange between vibration and rotation

### Rotations in RRKM

For adiabatic K, the rate constant is

$$k(E, J, K) = \frac{N^{\ddagger}[E - E_0 - E_r^{\ddagger}(J, K)]}{h\rho[E - E_r(J, K)]}$$
(57)

We have to consider three cases in which rotational energy can be shared

- All the rotational energy is in the (x y) plane, so K = 0 and  $J = (-1 + \sqrt{1 + 4E_{rot}/B})$  where  $E_{rot}$  is the rotational energy got, for example, after a collision.
- **②** The rotational energy is equally distributed among the three axes.
- All the rotational energy is added along the z-axis such that  $K = \sqrt{E_{rot}/[3(A B)]}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Rotations in RRKM

For active-K two ways of obtaining the rate constant are possible:

**(**) By summing over contributions from all possible values of K to give

$$k(E,J) = \frac{\sum_{K=-J}^{K=+J} N^{\ddagger} [E - E_0 - E_r^{\ddagger}(J,K)]}{h \sum_{K=-J}^{K=+J} \rho(E,J,K)}$$
(58)

**②** Considering  $\rho$  and  $N^{\ddagger}$  as convolutions between the densities and sum of states for the internal degrees of freedom and the active external rotation

$$\rho(E_{\nu}) = \int_{0}^{E_{\nu}} \rho_{\nu}(E) \rho_{r}(E_{\nu} - E) dE$$
 (59)

$$N^{\ddagger}(E,J) = \int_{0}^{E^{\ddagger}} N_{\nu}(E) \rho_{r}(E^{\ddagger}-E) dE$$
 (60)

where  $E_T = E_v + E_r(J)$ 

# Example 1. Benzene decomposition<sup>3</sup>

 $C_6H_6 \rightarrow C_6H_5 + H$ 



The effect of J at a constant total energy:  $E_{vib} + E_{rot} = 5.3$  eV. Numerical results from an RRKM calculation in which the rotational constant of the H loss transition state was assumed to be identical to that of the benzene ion;

- Curve A: K-mixing
- Curve B: no K-mixing

<sup>3</sup>A. Kiermeier et al. . J. Chem. Phys. 88, 6182 (1988).□ → <♂ → < ≧ → < ≧ → ⊂ ≧ → ⊃ <

Riccardo Spezia (CNRS)

Réactivité chimique

23/01/2017 43 / 45

#### **RRKM** theory

# Example 2. Butene ion decomposition<sup>4</sup>

 $C_4H_8^+ \rightarrow$ 



<sup>4</sup>J.A.Booze et al.. J. Chem. Phys. 99, 4441 (1993).

Riccardo Spezia (CNRS)

Réactivité chimique

23/01/2017 44 / 45

# Non-RRKM behaviors



Riccardo Spezia (CNRS)

Réactivité chimique

23/01/2017 45 / 45

3