- P. H. Fries, J. Richardi et H. Krienke, “Dielectric and Structural Results for Liquid
Acetonitrile, Acetone, and Chloroform from the HNC Molecular Integral
Equation”, Mol. Phys. 90, 841-853 (1997).
- J. Richardi, H. Krienke
et P. H. Fries, “The Dielectric Constants of Formamide,
N-Methyl-formamide, and Dimethylformamide Via the Molecular
Ornstein-Zernike Theory”,
Chem. Phys. Lett.
273, 115-121 (1997).
- J. Richardi, P. H. Fries, R. Fischer, S. Rast et H. Krienke, “The
Structure and Thermodynamics of Liquid Acetonitrile Via Monte Carlo
Simulation and Ornstein-Zernike Theories”,
J. Mol. Liq.73 , 465-485 (1997).
- J. Richardi, P. H. Fries, R. Fischer, S. Rast et H. Krienke, “Liquid
chloroform and acetone: A comparison between molecular Ornstein-Zernike
theory, Site-Site Ornstein-Zernike theory, and Monte Carlo simulation”,
Mol. Phys. 93, 925-938
(1998).
- J. Richardi, P. H. Fries et H. Krienke, “The solvation of ions in acetonitrile and
acetone: A molecular Ornstein-Zernike study”,
J. Chem. Phys. 108, 4079-4089 (1998).
- J. Richardi, P. H. Fries et H. Krienke, “Liquid Properties of Tetrahydrofuran and
Methylene Chloride via the Molecular Hypernetted
Chain Approximation”,
J. Phys. Chem. 102, 5196-5201 (1998).
- P. Jedlovszky et J. Richardi,
“Comparison of different water models from ambient to supercritical
conditions: A Monte Carlo simulation and molecular Ornstein-Zernike
study”,
J. Chem. Phys.110, 8019-8031 (1999).
- J. Richardi, C. Millot
et P. H. Fries, “A molecular Ornstein-Zernike study of popular models for
water and methanol”,
J. Chem. Phys. 110, 1138-1147 (1999). (joint
au dossier)
- J. Richardi, P. H. Fries et H. Krienke, “Influence of the intermolecular
electrostatic potential on properties of polar polarizable aprotic
solvents”,
Mol. Phys. 96, 1411-1422
(1999).
- J. Richardi, P. Jedlovszky,
C. Millot et P. H. Fries, “Can the molecular
Ornstein-Zernike theory be used to study water under supercritical
conditions?”,
J. Mol. Liq. 87 , 177-189 (2000).
- P. Jedlovszky, R. Vallauri
et J. Richardi, “The change of the structural
and thermodynamic properties of water from ambient to supercritical
conditions as seen by computer simulations”,
J. Phys.: Condens.
Matter
12, A115-A122 (2000).
- J. Richardi, P. H. Fries et J.-C. Soetens, “A generalized self-consistent mean-field
theory for fluids of molecules with distributed polarizabilities:
Comparisons with computer simulations”,
J. Mol. Liq. 88, 209-228 (2000).
- P. H. Fries et J. Richardi, “The solution
of Wertheim association theory for molecular liquids: Application to
hydrogen fluoride”,
J. Chem. Phys. 113 , 9169-9179 (2000).
- P. H. Fries, J. Richardi, S. Rast et E. Belorizky,
“Theories of structural and dynamic properties of ions in discrete
solvents. Application to magnetic resonance imaging”,
Pure Appl. Chem. 73 , 1689-1703 (2001).
- R. Fischer, J. Richardi, P. H. Fries et
H. Krienke, “The solvation of ions in
acetonitrile and acetone: II. Monte Carlo simulations using polarizable
solvent models”,
J. Chem. Phys. 117, 1-12 (2002).
- J. Richardi, D. Ingert
et M. P. Pileni, ”Labyrinthine Instability in
Magnetic Fluids Revisited”,
J. Phys. Chem. B
106, 1521-1523 (2002).
- J. Richardi, D. Ingert
et M. P. Pileni, “A theoretical study of the
field-induced pattern formation in magnetic liquids”,
Phys. Rev. E 66, 046306 (2002).
- J. Richardi et M. P. Pileni,
“Is the labyrinthine instability a transition of first order?”, Progr. Theor. Chem. Phys. (Elsevier) 12, 41-50 (2003).
- J. Richardi et M. P. Pileni,
“Towards efficient methods for the study of pattern formation in
ferrofluid films'',
Eur. Phys. J. E 13,
99-106 (2004).
- J. Richardi, L. Motte et M. P. Pileni, “Mesoscopic organizations of magnetic nanocrystals: the influence of
short-range interactions”,
Current Opinion in Colloid and
Interface Science 9, 185-191, (2004).
- J. Richardi et M. P. Pileni,
“Non-linear theory of pattern formation in ferrofluid films at high field
strengths”,
Phys. Rev. E 69,
016304, 1-9 (2004).
- Y. Lalatonne, J. Richardi
et M.P. Pileni, “Van der Waals versus dipolar
forces controlling mesoscopic organizations of magnetic nanocrystals”,
Nature Materials, 3, 121-125, (2004). (joint au dossier)
- J. Richardi, P. H. Fries et C. Millot, “Fast hybrid methods for the simulations of
dielectric constants”,
J. Mol. Liq. 117, 3-16 (2005).
- B. Wurm, M. Münsterer,
J. Richardi, R. Buchner, J. Barthel, “Ion
association and solvation of perchlorate salts in N,N-dimethylformamide and N,N-dimethylacetamide.
A dielectric relaxation study”,
J. Mol. Liq.
119, 97-106 (2005).
- Y. Lalatonne, L. Motte, J. Richardi et M. P. Pileni,
“Influence of short-range interactions on the mesoscopic organization of
magnetic nanocrystals”,
Phys. Rev. E 71, 011404, 1-10, (2005).
- V. Germain, J.Richardi,
D. Ingert et M. P. Pileni, “Mesostructures
of Cobalt Nanocrystrals. 1. Experiment
and Theory”,
J. Phys. Chem.
109, 5541-5547 (2005).
- A. T. Ngo, J.Richardi et M. P. Pileni, “Mesoscopic Solid Structures of 11-nm
Maghemite, g-Fe203,
Nanocrystals: Experiment and Theory”,
Langmuir 21, 10234-10239 (2005).
- J. Richardi, “Self-organization of
Magnetic Nanocrystals at the Mesoscopic Scale: Example of Liquid-Gas
Transitions”,
in Nanocrystals Forming Mesoscopic
Structures (ed. M. P. Pileni), Wiley,
Weinheim, 2005.
- J. Richardi,
“Assemblage de Nanoparticles Magnétiques”,
in Les Nanosciences 2:
Nanomatériaux, Belin, Paris, 2006.
- J. Richardi, M. P. Pileni
et J. J. Weis, “Self-organization of magnetic nanocrystals: A Monte Carlo
Study”,
Phys. Rev. E 77, 061510 (2008).
- A. T. Ngo, J. Richardi et M. P. Pileni, “Do directional primary and secondary crack
patterns in thin films of magnetic nanocrystals follow a universal scaling
law?”,
J. Phys. Chem. 112, 14409–14414 (2008).
- A. T. Ngo, J. Richardi et M. P. Pileni, “Do directional and isotropic cracks in
magnetic nanocrystal film follow the same scaling law?”,
Nanoletters 8, 2485 (2008).
- J. Richardi, “One-dimensional assemblies
of charged nanoparticles in water: A simulation study”,
J. Chem. Phys. 130, 044701 (2009).
- C. Salzemann, J. Richardi, I. Lisiecki, J. J.
Weis and M. P. Pileni, “Mesoscopic
void structures in cobalt nanocrystal films”,
Phys. Rev. Lett., 102, 144502 (2009).
- J. Richardi, M. P. Pileni
et J. J. Weis, “Self-organization of confined dipolar particles in a
parallel field”,
J. Chem. Phys., 130, 124515 (2009).
- J. Richardi,
A.T. Ngo, M. P. Pileni, “Simulations of
cracks supported by experiments: The influence of the film height and isotropy on the geometry of crack
patterns”,
J. Phys. Chem C, 114, 17324 (2010).
- E. Klecha,
I. Arfaoui, J. Richardi,
D. Ingert, M.P. Pileni,
“A new method to detect long range order in nanocrystal assembles”, Phys. Chem.
Chem. Phys., 12, 1–10 (2011).
- N. Goubet,
J. Richardi, M.P. Pileni,
“How to predict the Growth Mechanism of Supracrystals
from Gold Nanocrystals”, J. Phys. Chem. Lett. 2, 417–422 (2011).
- N. Goubet,
J. Richardi, M.P. Pileni,
“Which Forces Control Supracrystal Nucleation in
Organic Media?”, Adv. Funct. Mater., 21,
2693-2704 (2011) .
- J. Richardi
et J. J. Weis, “Low density mesostructures of
confined dipolar particles in an external field”, J. Chem. Phys., 132,
124502 (2011).
- A. Courty,
J. Richardi, P.-A. Albouy
and M.P. Pileni, “How To Control the Crystalline
Structure of Supracrystals of 5-nm Silver
Nanocrystals”, Chem. Mat. 23, 4186–4192 (2011).
- N. Goubet,
J. Richardi, P.-A. Albouy, M.P. Pileni,
“Simultaneous Interfacial and Precipitated Supracrystals
of Au Nanocrystals: Experiments and Simulations”, J. Phys. Chem. B 117,
4510 (2013).
- A. T. Ngo, J. Richardi et M. P. Pileni, “Crack patterns in superlattices made of maghemite
nanocrystals”, Phys. Chem. Chem.
Phys., 15, 10666 (2013).
- J. Richardi
et J. J. Weis, “Influence of short range
potential on field induced chain aggregation in low
density dipolar particles”, J. Chem. Phys. 138, 17791 (2013).
- T. Djebaili,
J. Richardi, A. Abel et M. Marchi,
“Atomistic Simulations of the Surface Coverage of Large Gold Nanocrystals”,
J. Phys. Chem. C 117, 17791 (2013).
- T. Djebaili,
J. Richardi*, A. Abel et M. Marchi,
“Atomistic Simulations of Self-Assembled Monolayers on Octahedral and
Cubic Gold Nanocrystals ”, J. Phys. Chem. C 119, 21146 (2015).
- A. Li, J.-P. Piquemal, J. Richardi, M. Calatayud*, "Butanethiol adsorption and
dissociation on Ag (111): A periodic DFT study", Surf. Sci., 2016,
646, 247-252 (2016)
- K. Ouadahi,
A. Andrieux-Ledier, J. Richardi,
P.-A. Albouy, P. Beaunier,
P. Sutter, E. Sutter, A. Courty*, "Tuning
the growth mode of single 3D silver nanocrystal superlattices via
triphenylphosphine", Chem. Mater., 28, 4380–4389 (2016).
- S. Costanzo, G. Simon, J.
Richardi, P. Colomban,
I. Lisiecki*, "Solvent Effects on Cobalt
Nanocrystal Synthesis - A Facile Strategy to Control the Size of Co
Nanocrystals", Phys. Chem. C, 120, 22054–22061 (2016).
- T. Djebaili,
A. Abel, M. Marchi, J. Richardi*,
“Influence of Force-Field Parameters on the Atomistic Simulations of
Metallic Surfaces and Nanoparticles”, J. Phys. Chem. C 121, 27758−27765
(2018).
- A.-T. Ngo, S. Costanzo,
P.-A. Albouy, V. Russier,
S. Nakamae, J. Richardi*,
I. Lisiecki*, "Formation of colloidal crystals of maghemite
nanoparticles: Experimental and theoretical investigations", Colloids and Surfaces A, 560, 270-277 (2019).