1. P. H. Fries, J. Richardi et H. Krienke, “Dielectric and Structural Results for Liquid Acetonitrile, Acetone, and Chloroform from the HNC Molecular Integral Equation”, Mol. Phys. 90, 841-853 (1997).
  2. J. Richardi, H. Krienke et P. H. Fries, “The Dielectric Constants of Formamide, N-Methyl-formamide, and Dimethylformamide Via the Molecular Ornstein-Zernike Theory”,         
    Chem.
    Phys. Lett. 273, 115-121 (1997).
  3. J. Richardi, P. H. Fries, R. Fischer, S. Rast et H. Krienke, “The Structure and Thermodynamics of Liquid Acetonitrile Via Monte Carlo Simulation and Ornstein-Zernike Theories”,           
    J. Mol. Liq.73 , 465-485 (1997).
  4. J. Richardi, P. H.  Fries, R. Fischer, S. Rast et H. Krienke, “Liquid chloroform and acetone: A comparison between molecular Ornstein-Zernike theory, Site-Site Ornstein-Zernike theory, and Monte Carlo simulation”,
    Mol.
    Phys. 93, 925-938 (1998).
  5. J. Richardi, P. H. Fries et H. Krienke, “The solvation of ions in acetonitrile and acetone: A molecular Ornstein-Zernike study”,          
    J. Chem.
    Phys. 108, 4079-4089 (1998).
  6. J. Richardi, P. H. Fries et H. Krienke, “Liquid Properties of Tetrahydrofuran and Methylene Chloride via the Molecular Hypernetted Chain Approximation”,       
    J. Phys.
    Chem. 102, 5196-5201 (1998).
  7. P. Jedlovszky et J. Richardi, “Comparison of different water models from ambient to supercritical conditions: A Monte Carlo simulation and molecular Ornstein-Zernike study”,
    J. Chem.
    Phys.110, 8019-8031 (1999).
  8. J. Richardi, C. Millot et P. H. Fries, “A molecular Ornstein-Zernike study of popular models for water and methanol”,          
    J. Chem.
    Phys. 110, 1138-1147 (1999). (joint au dossier)
  9. J. Richardi, P. H. Fries et H. Krienke, “Influence of the intermolecular electrostatic potential on properties of polar polarizable aprotic solvents”,
    Mol.
    Phys. 96, 1411-1422 (1999).
  10. J. Richardi, P. Jedlovszky, C. Millot et P. H. Fries, “Can the molecular Ornstein-Zernike theory be used to study water under supercritical conditions?”,
    J. Mol. Liq. 87 , 177-189 (2000).
  11. P. Jedlovszky, R. Vallauri et J. Richardi, “The change of the structural and thermodynamic properties of water from ambient to supercritical conditions as seen by computer simulations”,         
    J. Phys.: Condens.
    Matter 12, A115-A122 (2000).
  12. J. Richardi, P. H. Fries et J.-C. Soetens, “A generalized self-consistent mean-field theory for fluids of molecules with distributed polarizabilities: Comparisons with computer simulations”,
    J. Mol. Liq. 88, 209-228 (2000).
  13. P. H. Fries et J. Richardi, “The solution of Wertheim association theory for molecular liquids: Application to hydrogen fluoride”,    
    J. Chem. Phys. 113 , 9169-9179 (2000).
  14. P. H. Fries, J. Richardi, S. Rast et E. Belorizky, “Theories of structural and dynamic properties of ions in discrete solvents. Application to magnetic resonance imaging”,
    Pure Appl. Chem. 73 , 1689-1703 (2001).
  15. R. Fischer, J. Richardi, P. H. Fries et H. Krienke, “The solvation of ions in acetonitrile and acetone: II. Monte Carlo simulations using polarizable solvent models”,  
    J. Chem. Phys. 117, 1-12 (2002).
  16. J. Richardi, D. Ingert et M. P. Pileni, ”Labyrinthine Instability in Magnetic Fluids Revisited”,   
    J. Phys.
    Chem. B  106, 1521-1523 (2002).
  17. J. Richardi, D. Ingert et M. P. Pileni, “A theoretical study of the field-induced pattern formation in magnetic liquids”,
    Phys.
    Rev. E  66, 046306 (2002).
  18. J. Richardi et M. P. Pileni, “Is the labyrinthine instability a transition of first order?”, Progr. Theor. Chem. Phys. (Elsevier) 12, 41-50 (2003).
  19. J. Richardi et M. P. Pileni, “Towards efficient methods for the study of pattern formation in ferrofluid films'', 
    Eur. Phys. J. E  13, 99-106 (2004).
  20. J. Richardi, L. Motte et M. P. Pileni, “Mesoscopic organizations of magnetic  nanocrystals: the influence of short-range interactions”,         
    Current Opinion in Colloid and Interface Science  9, 185-191, (2004).
  21. J. Richardi et M. P. Pileni, “Non-linear theory of pattern formation in ferrofluid films at high field strengths”,
    Phys. Rev. E  69, 016304, 1-9 (2004).
  22. Y. Lalatonne, J. Richardi et M.P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals”,
    Nature Materials, 3, 121-125, (2004).
    (joint au dossier)
  23. J. Richardi, P. H. Fries et C. Millot, “Fast hybrid methods for the simulations of dielectric constants”,  
    J. Mol. Liq. 117, 3-16 (2005).
  24. B. Wurm, M. Münsterer, J. Richardi, R. Buchner, J. Barthel, “Ion association and solvation of perchlorate salts in N,N-dimethylformamide and N,N-dimethylacetamide. A dielectric relaxation study”,
    J. Mol. Liq. 119, 97-106 (2005).
  25. Y. Lalatonne, L. Motte, J. Richardi et M. P. Pileni, “Influence of short-range interactions on the mesoscopic organization of magnetic nanocrystals”,
    Phys.
    Rev. E  71, 011404, 1-10, (2005).
  26. V. Germain, J.Richardi, D. Ingert et M. P. Pileni, “Mesostructures of Cobalt Nanocrystrals. 1. Experiment and Theory”,       
    J. Phys. Chem. 109, 5541-5547 (2005).
  27. A. T. Ngo, J.Richardi et M. P. Pileni, “Mesoscopic Solid Structures of 11-nm Maghemite, g-Fe203, Nanocrystals: Experiment and Theory”,
    Langmuir 21, 10234-10239 (2005).
  28. J. Richardi, “Self-organization of Magnetic Nanocrystals at the Mesoscopic Scale: Example of Liquid-Gas Transitions”,       
    in Nanocrystals Forming Mesoscopic Structures (ed. M. P. Pileni), Wiley, Weinheim, 2005.
  29. J. Richardi, “Assemblage de Nanoparticles Magnétiques”,            
    in Les Nanosciences 2: Nanomatériaux, Belin, Paris, 2006.
  30. J. Richardi, M. P. Pileni et J. J. Weis, “Self-organization of magnetic nanocrystals: A Monte Carlo Study”,
    Phys. Rev. E 77, 061510 (2008).
  31. A. T. Ngo, J. Richardi et M. P. Pileni, “Do directional primary and secondary crack patterns in thin films of magnetic nanocrystals follow a universal scaling law?”,
    J. Phys.
    Chem. 112, 14409–14414 (2008).
  32. A. T. Ngo, J. Richardi et M. P. Pileni, “Do directional and isotropic cracks in magnetic nanocrystal film follow the same scaling law?”,
    Nanoletters 8, 2485 (2008).
  33. J. Richardi, “One-dimensional assemblies of charged nanoparticles in water: A simulation study”,
    J. Chem.
    Phys. 130, 044701 (2009).
  34. C. Salzemann, J. Richardi, I. Lisiecki, J. J. Weis and M. P. Pileni, “Mesoscopic void structures in cobalt nanocrystal films”,
    Phys.
    Rev. Lett., 102, 144502 (2009).
  35. J. Richardi, M. P. Pileni et J. J. Weis, “Self-organization of confined dipolar particles in a parallel field”,
    J. Chem.
    Phys., 130, 124515 (2009).
  36. J. Richardi, A.T. Ngo, M. P. Pileni,  “Simulations of cracks supported by experiments: The influence of the film height and  isotropy on the geometry of crack patterns”,
    J. Phys.
    Chem C, 114, 17324 (2010).
  37. E. Klecha, I. Arfaoui, J. Richardi, D. Ingert, M.P. Pileni, “A new method to detect long range order in nanocrystal assembles”, Phys. Chem. Chem. Phys., 12, 1–10 (2011).
  38. N. Goubet, J. Richardi, M.P. Pileni, “How to predict the Growth Mechanism of Supracrystals from Gold Nanocrystals”, J. Phys. Chem. Lett. 2, 417–422 (2011).
  39. N. Goubet, J. Richardi, M.P. Pileni, “Which Forces Control Supracrystal Nucleation in Organic Media?”, Adv. Funct. Mater., 21, 2693-2704 (2011) .
  40. J. Richardi et J. J. Weis, “Low density mesostructures of confined dipolar particles in an external field”, J. Chem. Phys., 132, 124502 (2011).
  41. A. Courty, J. Richardi, P.-A. Albouy and M.P. Pileni, “How To Control the Crystalline Structure of Supracrystals of 5-nm Silver Nanocrystals”, Chem. Mat. 23, 4186–4192 (2011).
  42. N. Goubet, J. Richardi, P.-A. Albouy, M.P. Pileni, “Simultaneous Interfacial and Precipitated Supracrystals of Au Nanocrystals: Experiments and Simulations”, J. Phys. Chem. B 117, 4510 (2013).
  43. A. T. Ngo, J. Richardi et M. P. Pileni, “Crack patterns in superlattices made of maghemite nanocrystals”,  Phys. Chem. Chem. Phys., 15, 10666 (2013).
  44. J. Richardi et J. J. Weis, “Influence of short range potential on field induced chain aggregation in low density dipolar particles”, J. Chem. Phys. 138, 17791 (2013).
  45. T. Djebaili, J. Richardi, A. Abel et M. Marchi, “Atomistic Simulations of the Surface Coverage of Large Gold Nanocrystals”, J. Phys. Chem. C 117, 17791 (2013).
  46. T. Djebaili, J. Richardi*, A. Abel et M. Marchi, “Atomistic Simulations of Self-Assembled Monolayers on Octahedral and Cubic Gold Nanocrystals ”, J. Phys. Chem. C 119, 21146 (2015).
  47. A. Li, J.-P. Piquemal, J. Richardi, M. Calatayud*, "Butanethiol adsorption and dissociation on Ag (111): A periodic DFT study", Surf. Sci., 2016, 646, 247-252 (2016)           
  48. K. Ouadahi, A. Andrieux-Ledier, J. Richardi, P.-A. Albouy, P. Beaunier, P. Sutter, E. Sutter, A. Courty*, "Tuning the growth mode of single 3D silver nanocrystal superlattices via triphenylphosphine", Chem. Mater., 28, 4380–4389 (2016).          
  49. S. Costanzo, G. Simon, J. Richardi, P. Colomban, I. Lisiecki*, "Solvent Effects on Cobalt Nanocrystal Synthesis - A Facile Strategy to Control the Size of Co Nanocrystals", Phys. Chem. C, 120, 22054–22061 (2016).
  50. T. Djebaili, A. Abel, M. Marchi, J. Richardi*, “Influence of Force-Field Parameters on the Atomistic Simulations of Metallic Surfaces and Nanoparticles”, J. Phys. Chem. C 121, 27758−27765 (2018).
  51. A.-T. Ngo, S. Costanzo, P.-A. Albouy, V. Russier, S. Nakamae, J. Richardi*, I. Lisiecki*, "Formation of colloidal crystals of maghemite nanoparticles: Experimental and theoretical investigations", Colloids and Surfaces A, 560, 270-277 (2019).