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Density-functional theory has become the method of choice for computations on large or complex 
systems because it combines the virtues of reasonable accuracy with relative computational ease.  
Unfortunately, approximate density functionals are not uniformly accurate and, when they fail, there is no 
systematic way to improve their results.  This has led to some interest in “generalized density functional 
theories;” these methods are motivated by the premise that if using the electron density is good, then using 
some quantity more complicated than the density is bound to be better.  
 The practical success of density-functional theory rests on three pillars, two of which are theoretical 
and one of which is practical: 

1. The First Hohenberg-Kohn Theorem, which tells us that every property of any electronic 
system can be expressed in terms of its electron density.   

2. The Second Hohenberg-Kohn Theorem, which tells us that the ground state energy and 
electronic density of a system may be determined by minimizing the energy with respect to the 
density. 

3. Accurate functionals for the electronic energy of the system (invariably constructed through 
the Kohn-Sham ansatz), which provide the practical tools by which the variational procedure 
for determining the electronic energy and density is performed. 

In order to be useful, a “generalized” density-functional theory must also address these three issues.  
Probably the simplest “generalized” density-functional theory is one constructed using the pair electron 
density, ( )2 1 2,r r r , which is simply the probability of observing one electron at 1r , given that another 
electron is at 2r .  This function contains most (perhaps all?) of the “chemically relevant” information about 
electron pairing, chemical binding, and other properties of interest.  In addition, if one knows ( )2 1 2,r r r , 
then one can construct every component of the energy except the kinetic energy.  Theories based on the 



pair-density will not be practically useful unless there are accurate kinetic energy functionals.  
Accordingly, we will start by constructing 

3’. Accurate functionals for the kinetic energy in terms of the electron pair density, which can be 
used to determine the kinetic energy (ergo the total energy) to any accuracy. 

Given that there seem to be reasonable energy functionals of the pair-density, the next question is whether 
the pair density can be used to determine other properties of electronic systems.  This is obviously true 
since the pair-density determines the density. 

1’. The rigorous mathematical analysis of Lieb can be extended to the pair density, formally 
eliminating the v-representability and N-representability problems. 

The N-representability problem is particularly problematic, because it bears on the variational procedure.  
We cannot simply minimize the electronic energy as a functional of the pair density; rather, we must 
minimize the electronic energy over the set of N-representable pair densities.  Unfortunately, the literature 
does not seem to contain a characterization of the set of N-representable pair densities.  

2’. A necessary and sufficient condition for the N-representability of the electron pair density will 
be derived.  This allows us to determine the ground state electronic energy and pair density 
using a variational approach. 

 
 


