Next: 9.3 Specifying sorted integral Up: 9 AO integral interface Previous: 9.1 Computing AO integrals

9.2 Reading sorted AO integrals

      logical function ao_integral_available ()
says whether or not sorted ao integrals are currently available.
      subroutine ao_integral_status(new_basis,new_geometry,
     >                        new_symmetry,new_charges)
returns detailed information about status of current AO integrals:
new_basis=-1
no basis set available
new_basis=0
basis unchanged since last integral evaluation
new_basis=1
basis changed since last integral evaluation
new_geometry=-1
no geometry or no integrals available
new_geometry=0
geometry unchanged since last integral evaluation
new_geometry=1
geometry or number of centers changed since last integral evaluation
new_symmetry=-1
no symmetry info or no integrals available
new_symmetry=0
symmetry unchanged since last integral evaluation
new_symmetry=1
symmetry or number of centers changed since last integral evaluation
new_charges=-1
no nuclear charges or no integrals available
new_charges=0
nuclear charges unchanged since last integral evaluation
new_charges=1
nuclear charges or number of centers changed since last integral evaluation

      subroutine zmat_save
saves geometry and symmetry information for current integrals
      subroutine basis_check(new_basis)
saves basis information for current integrals and updates basis records.

Output:

new_basis=-1
no integrals available
new_basis=0
basis unchanged since last integral evaluation
new_basis=1
basis changed since last integral evaluation

c-----------------------------------------------------------------------
      subroutine ao_integral_reserve (n_integral,ifile,irec)
c-----------------------------------------------------------------------
ifile_aoint_, irec_aoint are set by default to 1, 1300 but can be changed any time after the first call to ao_integral_reserve by responsible programmers.

Next: 9.3 Specifying sorted integral Up: 9 AO integral interface Previous: 9.1 Computing AO integrals

P.J. Knowles and H.-J. Werner
molpro-support@tc.bham.ac.uk
Jan 10, 2000