Next: 11.3 Evaluation of orbitals Up: 11.2.9 grid_obtain_gradwt: obtain a Previous: 11.2.9 grid_obtain_gradwt: obtain a

11.2.9.1 Further technical information

The weight at a grid point is defined
\begin{displaymath}
w({\bf r}) = \frac{P_C({\bf r})}{\sum_A P_A({\bf r})}
\end{displaymath} (7)

where
\begin{displaymath}
P_A({\bf r}) = \prod_{B\ne A} s(\nu_{AB})
\end{displaymath} (8)

in which
\begin{displaymath}
\nu_{AB} = \mu_{AB} + a_{AB}(1-\mu_{AB}^2)
\end{displaymath} (9)


$\displaystyle \mu_{AB}$ $\textstyle =$ $\displaystyle \frac{\vert{\bf {r -A}}\vert - \vert{\bf {r -B}}\vert}
{\vert{\bf {A -B}}\vert}$ (10)
  $\textstyle =$ $\displaystyle \frac{(r_A - r_B)}{R_{AB}}$ (11)

Note that ${\bf r}$ is tied to atom $C$, i.e., ${\vec\nabla}_X{\bf r}^\dagger=\delta_{CX}{\bf 1}$. We define
\begin{displaymath}
y(\nu)=1-\nu^2
\end{displaymath} (12)

and $s$ chosen such that
\begin{displaymath}
\frac{\partial s(\nu)}{\partial \nu} = A y(\nu)^{m_\mu},
s(-1)=1, s(1)=0,
\end{displaymath} (13)

i.e.,
\begin{displaymath}
s(\nu) = 1/2 - 1/2 \nu \sum_{l=0}^m (2l-1)!! y(\nu)^l / (2^l l!)
\end{displaymath} (14)

We require the derivatives of the grid weights with respect to nuclear coordinates.

$\displaystyle \frac{\partial w}{\partial {\bf X}}$ $\textstyle =$ $\displaystyle \frac{\frac{\partial P_C({\bf r})}
{\partial {\bf X}}}{\sum_A P_A...
...{\partial P_A({\bf r})}
{\partial {\bf X}}}{\left(\sum_A P_A({\bf r})\right)^2}$ (15)
  $\textstyle =$ $\displaystyle w\left(\frac{1}{P_C({\bf r})}\frac{
\partial P_C({\bf r})}
{\part...
... \frac{\partial P_A({\bf r})}{\partial {\bf X}}}
{\sum_A P_A({\bf r}) }
\right)$ (16)

So, we apply the chain rule recursively; firstly, the derivative of $P$ in terms of the derivatives of $\mu$:
$\displaystyle \frac{\partial P_A}{\partial {\bf X}}$ $\textstyle =$ $\displaystyle P_A \sum_{B \ne A}\frac{1}{s(\nu_{AB})}
\frac{\partial s(\nu_{AB})}{\partial {\bf X}}$ (17)
  $\textstyle =$ $\displaystyle P_A \sum_{B \ne A}\frac{1}{s(\nu_{AB})}
\frac{\partial s(\nu_{AB})}{\partial \mu_{AB}}
\frac{\partial \mu_{AB}}{\partial {\bf X}}$ (18)

Next, differential properties of $s$:
\begin{displaymath}
\frac{\partial s}{\partial \nu} = A*y^{m_\mu}
\end{displaymath} (19)


\begin{displaymath}
\frac{\partial \nu}{\partial \mu} = 1 -2 \mu a
\end{displaymath} (20)

Hence
\begin{displaymath}
\frac{\partial s}{\partial \mu} = (1 -2 \mu a) (A*y^{m_\mu})
\end{displaymath} (21)

Finally, derivatives of $\mu$:
\begin{displaymath}
\frac{\partial \mu_{AB}}{\partial {\bf X}} =
(\delta_{CX}-\...
...\delta_{AX}-\delta_{BX}) \frac{(r_A-r_B)({\bf A-B})}{R_{AB}^3}
\end{displaymath} (22)



Next: 11.3 Evaluation of orbitals Up: 11.2.9 grid_obtain_gradwt: obtain a Previous: 11.2.9 grid_obtain_gradwt: obtain a

P.J. Knowles and H.-J. Werner
molpro-support@tc.bham.ac.uk
Jan 10, 2000