Reseau français de chimie théorique (IdF) cours Master II : interactions intermoléculaires

Peter Reinhardt

Laboratoire de Chimie Théorique, Université Paris VI, 75252 Paris CEDEX 05, Peter.Reinhardt@upmc.fr

Plan du cours

- Introduction
- Termes classiques : électrostatique, induction et dispersion
- Méthodes supermoleculaires
- Décompositions : Heitler-London, CSOV, Morokuma
- Perturbation intermoléculaire (SAPT)

Introduction

règle empirique de Trouton (1884)

$$10 R T_{eb} \approx \Delta H_{vap} \approx \frac{n}{2} \epsilon \mathcal{N}_A$$

Introduction

règle empirique de Trouton (1884)

$$10 R T_{eb} \approx \Delta H_{vap} \approx \frac{n}{2} \epsilon \mathcal{N}_A$$

	$T_{eb}/{ m K}$	n	$(20T_{eb}/n)/K$	$(\epsilon_{exp.}/k)/K$	$\epsilon/(kJ/mol)$
He	4.2	12	7	11	0.091
Ar	87	12	145	142	1.18
Xe	166	12	277	281	2.34
CH_4	111.5	12	86	180–300	1.5-2.5
H_2O	373.2	4	1866	≈ 2400	≈ 20

Introduction

règle empirique de Trouton (1884)

$$10 R T_{eb} \approx \Delta H_{vap} \approx \frac{n}{2} \epsilon \mathcal{N}_A$$

	T_{eb}/K	n	$(20T_{eb}/n)/K$	$(\epsilon_{exp.}/k)/K$	$\epsilon/(kJ/mol)$
He	4.2	12	7	11	0.091
Ar	87	12	145	142	1.18
Xe	166	12	277	281	2.34
CH_4	111.5	12	86	180–300	1.5-2.5
H_2O	373.2	4	1866	≈ 2400	≈ 20

Termes classiques

Electrostatique

$$E_{Pol} = \int \int \frac{\rho_A(\vec{r}_1)\rho_B(\vec{r}_2)}{|\vec{r}_1 - \vec{r}_2|} d^3r_1 d^3r_2$$
(1)

Induction

$$E_{ind} = -\vec{E} \cdot \vec{\mu} = -\vec{E} \,\alpha_B \,\vec{E} = -\alpha_B \,E^2$$

Dispersion (effet quantique)

$$E_{Disp} = -\frac{C_6}{|\vec{R}_A - \vec{R}_B|^6}$$
(2)

Méthodes supermoléculaires

Interaction NH₃ — NH₃, MP2

	sans	correction	avec	correction
	d (Å)	E_{int} (kcal/mol)	d (Å)	Eint (kcal/mol)
petite base				
Hartree-Fock	3.495	-2.43	3.518	-2.17
CCSD(T)	3.345	-3.48	3.438	-2.54
grande base				
Hartree-Fock	3.560	-1.88	3.564	-1.85
CCSD(T)	3.350	-3.21	3.390	-2.75
base aug-cc-pvtz				
Hartree-Fock	3.570	-1.79	3.572	-1.76
CCSD(T)	3.323	-3.10	3.348	-2.83

Décompositions

Heitler-London

Heitler-London

	2.80 Å	3.17 Å	3.40 Å	4.00\AA
Hartree-Fock :				
$E_{lec.stat.}$	-14.80	-6.64	-4.3	-1.75
Heitler-London :				
Δ T	150.61	58.27	31.57	5.98
Δ V	-96.42	-38.17	-20.82	-3.96
Δ échange	-28.39	-12.26	-7.04	-1.50
E_{HL}	25.79	7.84	3.71	0.52
interaction orbitalaire :				
Δ T	-81.44	-36.37	-21.99	-6.49
Δ V	65.10	29.74	18.20	5.60
Δ échange	9.72	4.52	2.70	0.65
Eorb.int.	-6.61	-2.11	-1.09	-0.24
Δ E	4.37	-0.91	-1.68	-1.47

Heitler-London

	2.80 Å	3.17 Å	3.40 Å	4.00\AA
Perdew-Wang 91 :				
E _{lec.stat.}	-15.07	-6.75	-4.33	-1.69
Heitler-London :				
Δ T	165.46	68.46	39.10	8.71
Δ V	-106.77	-45.41	-26.21	-5.91
Δ échange	-35.14	-16.31	-9.99	-2.75
E_{HL}	23.55	6.74	2.90	0.05
interaction orbitalaire :				
Δ T	-107.17	-52.77	-33.69	-11.09
Δ V	83.41	41.27	26.30	8.68
Δ échange	15.31	8.43	5.69	2.01
Eorb.int.	-8.45	-3.07	-1.70	-0.40
Δ E	0.03	-3.08	-3.13	-2.04

CSOV, RVS

	2.80 Å	3.17 Å	3.40 Å	4.00 Å
E _{CEX}	10.89	1.19	-0.59	-1.24
E_{POL} (A)	-1.75	-0.68	-0.41	-0.13
E_{POL} (B)	-1.31	-0.35	-0.16	-0.03
E_{CT} (A)	-0.22	-0.06	-0.03	-0.01
\mathbf{E}_{CT} (B)	-3.20	-1.00	-0.47	-0.06
$\mathbf{E}_{BSSE}\left(\mathbf{A} ight)$	-0.04	-0.02	-0.01	0.00
$\mathbf{E}_{BSSE}\left(\mathbf{B} ight)$	-0.03	-0.01	-0.01	-0.01
Δ E	4.40	-0.90	-1.68	-1.47
Δ E(BSSE)	4.35	-0.92	-1.69	-1.48

• Construction de l'espace virtuel ?

• Occupées : orthogonalisation symétrique $S^{-1/2}$:

$$\phi_{i} = \sum_{j} \mathbf{S}_{ij}^{-1/2} \varphi_{j}$$

$$\langle \phi_{i} | \phi_{j} \rangle = \sum_{kl} \mathbf{S}_{ik}^{-1/2} \langle \varphi_{k} | \varphi_{l} \rangle \mathbf{S}_{lj}^{-1/2} = \sum_{kl} \mathbf{S}_{ik}^{-1/2} \mathbf{S}_{kl} \mathbf{S}_{lj}^{-1/2} = \delta_{ij} (5)$$

• Occupées : orthogonalisation symétrique $S^{-1/2}$:

$$\phi_{i} = \sum_{j} \mathbf{S}_{ij}^{-1/2} \varphi_{j}$$

$$\langle \phi_{i} | \phi_{j} \rangle = \sum_{kl} \mathbf{S}_{ik}^{-1/2} \langle \varphi_{k} | \varphi_{l} \rangle \mathbf{S}_{lj}^{-1/2} = \sum_{kl} \mathbf{S}_{ik}^{-1/2} \mathbf{S}_{kl} \mathbf{S}_{lj}^{-1/2} = \delta_{ij} (7)$$

• Projection :

$$|\phi_{virt}\rangle = |\varphi_{virt}\rangle - \sum_{i \in occ} |\varphi_i\rangle \langle \varphi_i | \varphi_{virt}\rangle$$
(8)

• Occupées : orthogonalisation symétrique $S^{-1/2}$:

$$\phi_{i} = \sum_{j} \mathbf{S}_{ij}^{-1/2} \varphi_{j}$$

$$\langle \phi_{i} | \phi_{j} \rangle = \sum_{kl} \mathbf{S}_{ik}^{-1/2} \langle \varphi_{k} | \varphi_{l} \rangle \mathbf{S}_{lj}^{-1/2} = \sum_{kl} \mathbf{S}_{ik}^{-1/2} \mathbf{S}_{kl} \mathbf{S}_{lj}^{-1/2} = \delta_{ij} (9)$$

• Projection :

$$|\phi_{virt}\rangle = |\varphi_{virt}\rangle - \sum_{i \in occ} |\varphi_i\rangle \langle \varphi_i | \varphi_{virt}\rangle$$
(10)

• Virtuelles : encore $S^{-1/2}$.

• Occupées : orthogonalisation symétrique $S^{-1/2}$:

$$\phi_{i} = \sum_{j} \mathbf{S}_{ij}^{-1/2} \varphi_{j}$$

$$\langle \phi_{i} | \phi_{j} \rangle = \sum_{kl} \mathbf{S}_{ik}^{-1/2} \langle \varphi_{k} | \varphi_{l} \rangle \mathbf{S}_{lj}^{-1/2} = \sum_{kl} \mathbf{S}_{ik}^{-1/2} \mathbf{S}_{kl} \mathbf{S}_{lj}^{-1/2} = \delta_{ij} \mathbf{11}$$

• Projection :

$$|\phi_{virt}\rangle = |\varphi_{virt}\rangle - \sum_{i \in occ} |\varphi_i\rangle \langle \varphi_i | \varphi_{virt}\rangle$$
(12)

- Virtuelles : encore $S^{-1/2}$.
- Orbitales auront des queues sur l'autre fragment.

- SCF de monomères dans les bases des monomères
- Gardons les orbitales virtuelles

- SCF de monomères dans les bases des monomères
- Gardons les orbitales virtuelles

- SCF de monomères dans la base du dimère
- Gardons les orbitales occupées

- SCF de monomères dans les bases des monomères
- Gardons les orbitales virtuelles

- SCF de monomères dans la base du dimère
- Gardons les orbitales occupées

- Occupées : orthogonalisation symétrique $S^{-1/2}$
- Occupées/virtuelles : projection
- Virtuelles : orthogonalisation symétrique $S^{-1/2}$

SCF du dimère par IC de monoexcitations :

- 1. Contruction de la matrice Fock
- 2. Construction d'une matrice IC de mono-excitations
- 3. Meilleure fonction d'onde : $\Psi = \Phi_0 + \sum_{ia} c_i^a \Phi_i^a$
- 4. Corrections des orbitales :

$$\phi'_{i} = \phi_{i} + \sum_{a} c^{a}_{i} \phi_{a}$$
(13)
$$\phi'_{a} = \phi_{a} - \sum_{i} c^{a}_{i} \phi_{i}$$
(14)

- 5. Orthogonalisation occ-occ, virt-virt
- 6. GO TO 1

SCF du dimère par IC de monoexcitations :

- 1. Contruction de la matrice Fock
- 2. Construction d'une matrice IC de mono-excitations
- 3. Meilleure fonction d'onde : $\Psi = \Phi_0 + \sum_{ia} c_i^a \Phi_i^a$
- 4. Corrections des orbitales :

$$\phi'_{i} = \phi_{i} + \sum_{a} c^{a}_{i} \phi_{a}$$
(15)
$$\phi'_{a} = \phi_{a} - \sum_{i} c^{a}_{i} \phi_{i}$$
(16)

- 5. Orthogonalisation occ-occ, virt-virt
- 6. GO TO 1
- Orbitales du dimère ressemblent le plus possibles aux orbitales des monomères.

Application

Evolution d'un moment dipolaire

Décomposition de Morokuma

Décomposition de Morokuma

Décomposition de Morokuma

	2.80 Å	3.17 Å	3.40 Å	4.00 Å
E_{ES}	-15.09	-6.71	-4.33	-1.76
E_{PL}	-13.79	-1.81	-0.88	-0.21
E_{EX}	25.98	7.90	3.74	0.52
E_{CT}	-9.48	-2.02	-0.90	-0.14
E_{mix}	16.66	1.68	0.65	0.09
Δ E	4.29	-0.95	-1.71	-1.49
BSSE	0.09	0.05	0.03	0.02
Δ E(BSSE)	4.38	-0.91	-1.68	-1.47

$$\mathbf{H} = \mathbf{H}^{A} + \mathbf{H}^{B} + \mathbf{V} = \mathbf{H}^{A}_{0} + \mathbf{W}^{A} + \mathbf{H}^{B}_{0} + \mathbf{W}^{B} + \mathbf{V}$$
(18)

$$\mathbf{H} = \mathbf{H}^{A} + \mathbf{H}^{B} + \mathbf{V}$$

=
$$\mathbf{H}^{A}_{0} + \mathbf{W}^{A} + \mathbf{H}^{B}_{0} + \mathbf{W}^{B} + \mathbf{V}$$
(19)

Perturbation en V, $\Phi^{(0)} = |\Phi_A\rangle \cdot |\Phi_B\rangle$, $E^{(0)} = E_A + E_B$

$$\Psi = \Phi_0 + \sum_n \xi^n \Phi_{pol}^{(n)}$$
$$E_{pol}^{(n)} = \langle \Phi_0 | \mathbf{V} | \Phi_{pol}^{(n)} \rangle$$

· p. 15/′

Antisymétrisation

$$E_{SRS}^{(n)} = \frac{1}{\langle \Phi_0 | \mathcal{A} \Phi_0 \rangle} \left[\langle \Phi_0 | \mathbf{V} | \mathcal{A} \Phi_{pol}^{(n-1)} \rangle - \sum_{k=1}^{n-1} E_{SRS}^{(k)} \langle \Phi_0 | \mathcal{A} \Phi_{pol}^{(n-k)} \rangle \right]$$

Antisymétrisation

$$E_{SRS}^{(n)} = \frac{1}{\langle \Phi_0 | \mathcal{A} \Phi_0 \rangle} \left[\langle \Phi_0 | \mathbf{V} | \mathcal{A} \Phi_{pol}^{(n-1)} \rangle - \sum_{k=1}^{n-1} E_{SRS}^{(k)} \langle \Phi_0 | \mathcal{A} \Phi_{pol}^{(n-k)} \rangle \right]$$

$$E_{SRS}^{(1)} = E_{pol}^{(1)} + E_{exch}^{(1)}$$
$$E_{SRS}^{(2)} = E_{pol}^{(2)} + E_{exch}^{(2)}$$
$$etc.$$

Antisymétrisation

$$E_{SRS}^{(n)} = \frac{1}{\langle \Phi_0 | \mathcal{A} \Phi_0 \rangle} \left[\langle \Phi_0 | \mathbf{V} | \mathcal{A} \Phi_{pol}^{(n-1)} \rangle - \sum_{k=1}^{n-1} E_{SRS}^{(k)} \langle \Phi_0 | \mathcal{A} \Phi_{pol}^{(n-k)} \rangle \right]$$

$$E_{SRS}^{(1)} = E_{pol}^{(1)} + E_{exch}^{(1)}$$
$$E_{SRS}^{(2)} = E_{pol}^{(2)} + E_{exch}^{(2)}$$
$$etc.$$

Repartition 2e ordre en Induction et Dispersion

$$E_{int} = \underbrace{E_{pol}^{(10)} + E_{pol,resp}^{(12)} + E_{pol,resp}^{(13)} + E_{pol}^{(13)}}_{E_{pol}^{(1)}} + \underbrace{E_{exch}^{(10)} + E_{exch,resp}^{(12)} + E_{exch,resp}^{(13)} + E_{exch,resp}^{(1)} + E_{exch}^{(1)}}_{E_{exch}^{(1)}} + E_{ind}^{(20)} + E_{ind}^{(22)} + E_{ind}^{(30)} + \text{termes d'échange} + E_{disp}^{(20)} + E_{disp}^{(21)} + E_{disp}^{(22)} + E_{ex-disp}^{(20)}$$
(20)

$$E_{int} = \underbrace{E_{pol}^{(10)} + E_{pol,resp}^{(12)} + E_{pol,resp}^{(13)} + E_{pol,resp}^{(1)} + \underbrace{E_{pol}^{(1)}}_{E_{pol}^{(1)}} + \underbrace{E_{exch}^{(10)} + E_{exch,resp}^{(12)} + E_{exch,resp}^{(13)} + E_{exch,resp}^{(1)} + \underbrace{E_{exch}^{(1)}}_{E_{exch}^{(1)}} + E_{ind}^{(20)} + E_{ind}^{(30)} + \text{termes d'échange} + E_{disp}^{(20)} + E_{disp}^{(21)} + E_{disp}^{(22)} + E_{ex-disp}^{(20)}$$
(22)

$$E_{int}^{(2)} = E_{int}(\text{HF-like}) + E_{Corr-inter}^{(20)} + E_{Corr-intra}^{(2m)}$$
(2)
avec $E_{int}(\text{HF-like}) = E_{Pol}^{(10)} + E_{exch}^{(10)} + E_{ind}^{(20)} + E_{exch-ind}^{(30)} + E_{ex$

SAPT, dimère NH₃

	2.80 Å	3.17 Å	3.40 Å	4.00\AA
$E_{Pol}^{(1)}$	-14.91	-6.62	-4.25	-1.69
$E_{exch.}^{(1)}$	27.23	8.76	4.28	0.65
induction (ordre 2)	-2.99	-1.05	-0.60	-0.17
dispersion	-4.40	-2.10	-1.36	-0.48
interaction	4.33	-1.40	-2.21	-1.79
SAPT(hybrid)	1.07	-2.49	-2.75	-1.89

SAPT, autres systèmes

SAPT, autres systèmes

	$H_2O\cdotsHNH_2$	$\mathbf{HOH} \cdots \mathbf{NH}_3$	$H_2O\cdotsHNH_3^+$
	$R_{(NO)} = 3.300 \text{ Å}$	3.000 Å	$2.700\mathrm{\AA}$
niveau Hartree-Fock			
$E_{Pol}^{\left(10 ight) }$ ($E_{exch}^{\left(10 ight) }$)	-3.35 (+2.74)	-10.19 (+8.55)	-24.57 (+16.41)
$E_{ind}^{\left(20 ight) }$ ($E_{exch-ind}^{\left(20 ight) }$)	-0.93 (+0.50)	-4.16 (+2.43)	-12.09 (+4.62)
$E_{ind}^{(30)}$ ($E_{ex-ind}^{(30)st}$)	-0.92 (+0.49)	-3.76 (+2.12)	-6.23 (+2.10)

Corrélation

$E_{disp}^{(20)}$ ($E_{exch-disp}^{(20)}$)	-1.34 (+0.19)	-2.75 (+0.56)	-3.99 (+0.63)
$E_{disp}^{(30)}$	0.03	0.07	0.08
$E_{Pol}^{(12)} + E_{Pol}^{(13)}$	0.08	0.23	1.63
$E_{exch}^{(1)}$	0.56	1.24	1.41
$E_{ind}^{(22)}$ ($E_{ex-ind}^{(22)st}$)	-0.15 (+0.08)	-0.50 (+0.29)	-1.08 (+0.41)
$E_{disp}^{(21)} + E_{disp}^{(22)}$	-0.21	-0.40	-0.24

$$\frac{E_{exch-ind}^{(30)}}{E_{ind}^{(30)}} = \frac{E_{exch-ind}^{(22)}}{E_{ind}^{(22)}} = \frac{E_{exch-ind}^{(20)}}{E_{ind}^{(20)}}$$
-p. 19/