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I. WHY THEORETICAL (QUANTUM) CHEMISTRY

• not toxic

• not explosive

FIG. 1. Explosion in Oppau 1921, 4500 tons NH4NO3 and (NH4)2SO4, ≈ 600 victims. Illustration from Popular Mechanics
Magazine 1921

• few fundamental laws

II. WHAT TO DO ?

Solve Schrödinger’s equation

Ĥ Ψ = EΨ (1)

E. Schrödinger “An undulatory theory of the mechanics of atoms and molecules”, Phys.Rev. 28 (1926) 1049
”The general theory of quantum mechanics is now complete... The underlying physical laws necessary for the

mathematical theory of a large part of physics and the whole of chemistry are thus completely known.”
P.A.M. Dirac “Quantum Mechanics of Many-Electron Systems”, Proc.R.Soc.Lond. A123 (1929) 714-733
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III. HOW TO START

Write down Ĥ and a form of Ψ.

Too complicated ? Start simpler.

1s

σ

2s 2p2p 2p

π

zx y

σ
σ

σ

σ

σ

σ

π

π

πx yσ

Atom

Molecule

• Where do they come from ?

• Are they always valid ?

• How to achieve chemical accuracy ?

IV. SIMPLEST MULTI-ELECTRON WAVEFUNCTION RESPECTING PAULI’S PRINCIPLE

A wavefunction must be normalized and anti-symmetric with respect to an exchange of two electrons. A Slater
determinant, built from occupied (spin-)orbitals

Ψ(~r1, σ1, ~r2, σ2, . . . , ~r2, σn) =
1√
n!
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(2)

for fixed positions of the nuclei (Born-Oppenheimer approximation, justified by the mass difference of electrons and
protons) obeys to the two conditions. φi(~r) is a function in space at point ~r, and χi(σ) a spin function with a formal
variable σ. χi can be either α or β. Thus an electron does not “have” a spin ’up’ or ’down’ for it’s entire life, but
delivers ’up’ when being in a spin-orbital with χ(σ) = α and ’down’ when in a spin-orbital with χ(σ) = β.

The spatial part of the orbitals are linear combinations of “atomic orbitals” or “basis functions”:

φi(~r) =
∑

α

cα i ϕα(~r) (3)

Linear combinations of Slater determinants Ψ =
∑

I cI ΦI are still anti-symmetric and can be used as wavefunctions.

V. EXCURSION TO ORTHOGONALITY

In order to speak of a norm, we have to introduce a scalar product and a notion of orthogonality. We need a
set of numbers (scalars), usually complex numbers c = a + ib, a vector space with an operation “+” (elements of
the vector space should satisfy (x+y)+z = x+(y+z), x+y=y+x, existence of a neutral element and an inverse),
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and multiplication of a scalar with a vector. A scalar product takes two vectors, and produces a scalar, again with
necessary rules: (x, y) = (y, x)∗, (x, µy + λz) = µ(x, y) + lambda(x, z), (x, x) ≥ 0, and = 0 only if x is the neutral
element (“zero” vector).
In our case, orbitals or determinants span respective vectors spaces, and the scalar product is defined as the “overlap

integral”

(f, g) :=

∫

f(x) g(x) dx

where x runs over all variables as arguments of f and g.
Orthogonal means that the integral is exactly zero, and normalized stands for an integral (f, f) equal to one.

VI. TWO-ELECTRON WAVEFUNCTIONS

For 2 electrons we can separate the wavefunction into a space and a spin part. With one determinant

ΨS(~r1, σ1, ~r2, σ2) =
1√
2
φ(~r1)φ(~r2) (α(σ1)β(σ2)− β(σ1)α(σ2))

ΨT
1 (~r1, σ1, ~r2, σ2) =

1√
2
(φ1(~r1)φ2(~r2)− φ2(~r1)φ1(~r2))α(σ1)α(σ2)

ΨT
−1(~r1, σ1, ~r2, σ2) =

1√
2
(φ1(~r1)φ2(~r2)− φ2(~r1)φ1(~r2))β(σ1)β(σ2) (4)

and with two determinants

ΨS(~r1, σ1, ~r2, σ2) =
1√
2
(φ1(~r1)φ2(~r2) + φ2(~r1)φ1(~r2))×

1√
2
(αβ − βα)

ΨT
0 (~r1, σ1, ~r2, σ2) =

1√
2
(φ1(~r1)φ2(~r2)− φ2(~r1)φ1(~r2))×

1√
2
(αβ + βα)

(5)

We wrote as shorthand αβ − βα for α(σ1)β(σ2) − β(σ1)α(σ2), and we see that the three functions ΨT
i have all the

same (anti-symmetric) spatial part, but different spin parts.

VII. TOTAL ENERGY

E = 〈Ψ|Ĥ|Ψ〉 but not Ĥ Ψ = EΨ (6)

Best orbitals: minimize 〈Ψ|Ĥ|Ψ〉 with respect to orbital parameters. The Hamiltonian Ĥ contains

• the kinetic energy −(1/2)∆ of each electron

• the electron-nucleus attraction

• the electron-electron repulsion

• perhaps external fields, acting on each electron individually

This approach is called the Hartree-Fock approximation, one single determinant and the exact non-relativistic
Hamiltonian. We do not solve Schrödinger’s equation, but we use the variational principle: the total energy 〈Ψ|Ĥ|Ψ〉
is always higher than the energy for the exact solution of Schrödinger’s equation. So we do the best we can with one
single determinant.
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VIII. HARTREE-FOCK EQUATIONS

Total energy for one single determinant (closed shell case):

E = 2
∑

i∈occ.

hii +
∑

i,j∈occ.

(2(ii|jj)− (ij|ij))

=
∑

α,β

Pαβhαβ +
1

4

∑

α,β

Pαβ




∑

γ,δ

Pγδ (2(αβ|γδ)− (αδ|γβ))





• Density matrix Pαβ = 2
∑

i∈occ. cαi cβi in a (finite) basis φi(~r) =
∑

α cαiχα(~r).

• We have to derive E wrt the cαi under the condition

δij = 〈φi|φj〉 =
∑

αβ

cαi cβj Sαβ

∂

∂cγi

∑

αβ

Pαβhαβ = 4 cγihγγ + 2
∑

β 6=γ

cβihβγ + 2
∑

β 6=γ

cβihγβ = 4
∑

β

cβihγβ

Lagrange multipliers ǫ :

L = E − 4
∑

ij

ǫij




∑

αβ

cα icβ j Sαβ − δij





leads to equations

0 =
∂

∂cαi
L

= 4
∑

β

cβi



hαβ
+
∑

γδ

Pγδ (2(αβ|γδ)− (αδ|γβ))





︸ ︷︷ ︸

Fock matrix Fαβ

−4
∑

j

∑

β

ǫij cβj Sαβ

In matrix form:

F C = S C ǫ

or

F φi =
∑

j

ǫij φj

beyond the limitations of a (finite) basis set to express molecular orbitals φi

• Self-consistent (F contains the occupied orbitals φi) eigenvalue problem

• Orbitals for lowest energy within single-determinant wavefunction

• Unitary rotations (U † = U−1) within the occupied or the virtual orbital space do not change the energy of
wavefunction.

• Transform orbitals for ǫ diagonal: canonical orbitals

F φi = ǫi φi

• Brillouin’s theorem: occupied and virtual orbital do not mix: Fia = 0 for any set of Hartree-Fock orbitals
(canonical or not).
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IX. BASIS SETS

Hydrogen atom: spans not all possible space of one-electron functions.

• Nodeless Slater functions

φSTF
nℓm(r, θ, ϕ;α) = Yℓm(θ, ϕ)× rn−1 × e−β r ℓ ≤ n− 1

• Gaussian functions

φGTF
ℓm (r, θ, ϕ;α) = Yℓm(θ, ϕ)× rℓ × e−α r2

Why Gaussians ? Try to calculate a four-center bielectronic integral

∫ ∫
e−α|~r1−~RA|e−β|~r1−~RB |e−γ|~r2−~RC |e−δ|~r2−~RD|

|~r1 − ~r2|
d3r1d

3r2

Possible with Gaussians due to product formula

e−a(~r−~RA)2e−b(~r−~RB)2 = e−
ab

a+b
(~RA−~RB)2e−(a+b)(~r−

a~RA+b~RB
a+b

)2

transforming a 4-center integral into a 2-center integral.

• Minimal basis sets: for each atomic occupied level a set of basis functions (H 1s, C 1s2s2p, Ti 1s2s2p3s3p3d4s
etc.)

• Split-valence basis sets: multiple basis functions for each valence orbital (6-31G, double or triple ζ etc.)

• Even-tempered basis sets: Gaussian exponents obey geometrical law αi = α0 × τ i

• add polarization functions of higher angular momentum

• add diffuse functions with small exponents for bond formation

• add correlation functions

• ... ... ... toward complete basis set.

Basis set libraries: https://bse.pnl.gov/bse/portal Basis Set Exchange with ≈ 500 basis sets.

• Nearly every quantum chemistry program has its library

X. HOW DOES HARTREE-FOCK PERFORM

• Good geometries, slightly too short bond lengths

• Good ionization potentials (Koopmans theorem)

• Bad binding energies (50% of experimental values)

• Bad vibrational frequencies (much too high)

• Incapable to dissociate closed-shell systems continously into two separated open-shell systems

• Only high-spin states possible, no open-shell singlet for instance

XI. WHAT PROPERTIES CAN WE CALCULATE

• Total energy −→ geometry optimization, dissociation energies (but no continuous dissociation potential curves,
only the difference between equilibrium and end points), formation enthalpies, vibrational spectra, rotational
constants, polarizabilities

• Orbitals −→ density, multipolar moments, population analysis, atomic basins

• Orbital energies −→ excitation energies, ionization potentials, electron affinities
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XII. HOW CAN WE GO BEYOND THE HARTREE-FOCK APPROXIMATION

• Change the total energy expression by adding a density-dependent exchange-correlation term EXC [ρ], but keep
the single-determinant wavefunction and the variational principle: DFT. As the functional is not exactly known,
the variational principle does not lead to the correct Schrödinger equation. Justification of DFT: the electronic
density gives through Kato’s theorem (locally (∇ρ)/ρ = 2Z) the positions and Z of the nuclei, thus one can
write the exact Schrödinger equation to be solved — from the knowledge of the electronic density only.

• Take into account experimental results for creating parametrized model hamiltonians and find energy minima
through variation of orbital parameters: semi-empirical methods. Again, the variational principle does not
guarantee the exact energy.

• Go to multi-determinantal wavefunctions:

– no single set of occupied orbitals any more for the system

– binding energies, total energy: electron correlation needed, dynamical correlation

– bond breaking, open-shell singlets : several determinants of comparable weight, non-dynamical cor-

relation

XIII. HANDLING NON-DYNAMICAL CORRELATION

Orbitals should represent several determinants equally well. HF orbitals are the best orbitals for one single specific
determinant. MCSCF (multi-configurational SCF) is the solution, as orbitals and CI coefficients for a selected number
of states are optimized at the same time.

XIV. PRINCIPLE OF MCSCF

Wavefunction:

|Ψ〉 =
∑

m

cm |Φm〉 (7)

Excitation operators:

Êij = (a†iαajα + a†iβajβ) (8)

With this the first-order density matrix is

Dij = 〈Ψ|Êij |Ψ〉 =
∑

mn

cmcnD
mn
ij (9)

and the second-order density matrix associated with the wavefunction is

Pijkl =
1

2

∑

mn

cmcn〈Φm|ÊijÊkl − δjkÊil|Φn〉 =
∑

mn

cmcnP
mn
ijkl (10)

In the two cases the density matrices associated with each individual determinant is contracted to the overall densities.
The Hamiltonian is written in second quantization (independent of the electron number) as

H =
∑

ij

hijÊij +
∑

ijkl

gijkl(ÊijÊkl − δikÊjl). (11)

With these preliminaries the total energy is written in compact form as

E =
∑

ij

hijDij +
∑

ijkl

gijkl Pijkl. (12)
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where the one-electron and 2-electron-integrals, hij and gijkl, depend only on the orbitals, and the one- and two-
particle density matrices Dij and Pijkl depend only on the CI coefficients. The derivatives with respect to the
coefficients can then be formed straightforward.
Conserving the norm of the wavefunction: write the wavefunction as an exponential of the anti-hermitian operator

T̂ (T̂ † = −T̂ )

|Ψ′〉 = eT̂ eŜ |Ψ〉 (13)

where Ŝ is an orbital-rotation operator and T̂ the excitation operator, in order to pass from a MC wavefunction Ψ to
a new function Ψ′.1

Energy:

E(κ,C) = 〈Ψ|e−Ŝe−T̂ ĤeT̂ eŜ |Ψ〉 (14)

Expansion to 2nd order through ex =
∑∞

i=0 x
n/n! :

E(T, S) = 〈Ψ|Ĥ + [Ĥ, T̂ ] + [Ĥ, Ŝ] +
1

2
[[Ĥ, T̂ ], T̂ ] +

1

2
[[Ĥ, Ŝ], Ŝ] + [[Ĥ, T̂ ], Ŝ] + . . . |Ψ〉 (15)

showing the ingredients to calculate for an optimization procedure like the Newton-Raphson method using gradients
and second derivatives.

• Alternative: optimization of the total energy by alternating between orbital and CI-coefficient update until
convergence.

• Analogon for the Hartree-Fock case: Singles-CI and iteration until satisfaction of Brillouin’s theorem;
〈Φ0|H|Ψa

i 〉 = Fia = 0 for that Φ0 is a HF solution.

• CI-coefficients only for some determinants, orbitals including core orbitals.

• Starting orbitals: HF orbitals of a cation, adding to the orbital space the correct virtual orbitals of the obtained
set → valence CI, for being able to judge on the quality of the orbitals. All states possible of the designed
CI-space.

• CAS, complete active space. n electrons occupy N orbitals, Full-CI within this space. Wavefunction and density
available, but no orbitals or orbital energies.

• Ionization energies: difference between n-electron WF and n− 1-electron WF.

XV. STATE-SPECIFIC VERSUS STATE-AVERAGED MCSCF

Different problems:

• Dissociation from closed shell to open shells (nightmare: Cr2 −→ 2 Cr with 12 open shells)

• Multiplet and transition states of a transition metal complex

The first remains a singlet, so only one state is of interest. Orbitals are optimized for that state.
In the second the use of different orbitals for different states may introduce systematic error. One should use one

single orbital set optimized for all states.

1Example: a rotation operator between two orbitals:

Ŝ =

(

(cosκ12) â
†
1
â1 −(sinκ12) â

†
1
â2

(sinκ12) â
†
2
â1 (cosκ12) â

†
2
â2

)
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