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I. WHY THEORETICAL (QUANTUM) CHEMISTRY

• not toxic

• not explosive

FIG. 1. Explosion in Oppau 1921, 4500 tons NH4NO3 and (NH4)2SO4, ≈ 600 victims. Illustra-

tion from Popular Mechanics Magazine 1921

• few fundamental laws

II. WHAT TO DO ?

Solve Schrödinger’s equation

Ĥ Ψ = E Ψ (1)
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E. Schrödinger “An undulatory theory of the mechanics of atoms and molecules”,
Phys.Rev. 28 (1926) 1049

”The general theory of quantum mechanics is now complete... The underlying physical
laws necessary for the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known.”

P.A.M. Dirac “Quantum Mechanics of Many-Electron Systems”, Proc.R.Soc.Lond.
A123 (1929) 714-733

III. HOW TO START

Write down Ĥ and a form of Ψ.

Too complicated ? Start simpler.
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• Where do they come from ?

• Are they always valid ?

• How to achieve chemical accuracy ?

IV. SIMPLEST MULTI-ELECTRON WAVEFUNCTION RESPECTING PAULI’S

PRINCIPLE

Slater determinant, built from occupied orbitals

Ψ(~r1, σ1, ~r2, σ2, . . . , ~r2, σn) =
1√
n!
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(2)

for fixed positions of the nuclei (Born-Oppenheimer approximation, justified by the mass
difference of electrons and protons).
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V. TOTAL ENERGY

E = 〈Ψ|Ĥ|Ψ〉 but not Ĥ Ψ = E Ψ (3)

Best orbitals: minimize 〈Ψ|Ĥ|Ψ〉 with respect to orbital parameters. The Hamiltonian Ĥ
contains

• the kinetic energy −(1/2)∆ of each electron

• the electron-nucleus attraction

• the electron-electron repulsion

• perhaps external fields, acting on each electron individually

This approach is called the Hartree-Fock approximation, one single determinant and
the exact non-relativistic Hamiltonian. We do not solve Schrödinger’s equations, but we
use the variational principle: the total energy 〈Ψ|Ĥ|Ψ〉 is always higher than the energy
for the exact solution of Schrödinger’s equation. So we do the best we can with one single
determinant.

VI. HOW DOES HARTREE-FOCK PERFORM

• Good geometries, slightly too short bond lengths

• Good ionization potentials (Koopmans theorem)

• Bad binding energies (50 % of experimental values)

• Bad vibrational frequencies (much too high)

• Incapable to dissociate closed-shell systems continously into two separated open-shell
systems

• Only high-spin states possible, no open-shell singlet for instance

VII. WHAT PROPERTIES CAN WE CALCULATE

• Total energy −→ geometry optimization, dissociation energies (but no continuous dis-
sociation potential curves, only the difference between equilibrium and end points),
formation enthalpies, vibrational spectra, rotational constants, polarizabilities

• Orbitals −→ density, multipolar moments, population analysis, atomic basins

• Orbital energies −→ excitation energies, ionization potentials, electron affinities
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VIII. HOW CAN WE GO BEYOND THE HARTREE-FOCK APPROXIMATION

• Change the total energy expression by adding a density-dependent exchange-
correlation term EXC [ρ], but keep the single-determinant wavefunction and the varia-
tional principle: DFT. As the functional is not exactly known, the variational principle
does not lead to the correct Schrödinger equation. Justification of DFT: the electronic
density gives through Kato’s theorem (locally (∇ρ)/ρ = 2 Z) the positions and Z of
the nuclei, thus one can write the exact Schrödinger equation to be solved — from the
knowledge of the eletronic density only.

• Take into account experimental results for creating parametrized model hamiltonians
and find energy minima through variation of orbital parameters: semi-empirical

methods. Again, the variational principle does not guarantee the exact energy.

• Go to multi-determinantal wavefunctions:

– no single set of occupied orbitals any more for the system

– binding energies, total energy: electron correlation needed, dynamical correla-

tion

– bond breaking, open-shell singlets : several determinants of comparable weight,
non-dynamical correlation

IX. TREATING DYNAMICAL CORRELATION

Definition of the (dynamical) correlation energy:

ECorr = Etotal − EHF (4)

A. By perturbation

Cut Hamiltonian in two parts and Ψ and E in power series

Ĥ(λ) = Ĥ0 + λ V̂ ; Ψ(λ) =
∞∑

k=0

λkΨ(k) ; E(λ) =
∞∑

k=0

λkE(k) (5)

Write down Ĥ(λ)Ψ(λ) = E(λ)Ψ(λ), and sort by common orders in λ. Leads to order-by-
order contributions to the total energy and the wavefunction. Energies:

E
(n)
0 = 〈 0 | V̂ |n − 1 〉 (6)

Coefficients:

c
(n)
k = 〈Φk|Ψ(n)〉 =

1

E
(0)
0 − E

(0)
k

[

〈 k | V̂ |n − 1 〉

−E
(1)
0 c

(n−1)
k − E

(2)
0 c

(n−2)
k − . . . − E

(n−1)
0 c

(1)
k

]

(7)
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• No explicit wavefunction, density, orbitals and orbital energies

• The first-order wavefunction is assumed to be a good approximation for the exact
wavefunction

• Method is size-consistent in any order

• Each order adds a factor of the number of basis functions for the computational cost:
MP2∼N5, MP3∼N6, MP4∼N7 etc.

• First-order energy is always the Hartree-Fock energy, independent of the decomposition
into Ĥ0 and V̂ .

• Only the infinite order satisfies Schrödinger’s equation ĤΨ = E Ψ.

• Wigner’s 2n + 1 rule : from the coefficients in order n we may calculate the energy in
order 2n + 1: For instance from the 1st-order coefficients we obtain the energy in 3rd
order.

• Formulas give energies which are not invariant to orbital rotations, like localizations.

B. By variation

Ψ = ΦHF +
∑

ia

ca
i Φa

i +
∑

ijab

cab
ij Φab

ij + . . . (8)

Minimizing 〈Ψ|Ĥ|Ψ〉 with respect to the ca
i , cab

ij leads to a system of linear equations,
equivalent to finding the lowest eigenvalue of the hamilton matrix in the determinantal
basis, i.e. the matrix of the elements 〈ΦI |Ĥ|ΦJ〉. The correlation energy is determined via
the coefficients of the double excitations:

ECorr =
∑

ijab

cab
ij 〈ΦHF |Ĥ|Φab

ij 〉 (9)

The method is called “Configuration Interaction” (CI).

• Explicit wavefunction and density. No orbitals and orbital energies.

• Full CI (i.e. all possible configurations) grows exponentially with the size of the basis

• Limited expansion schemes (e.g. CISD with single and double excitations only)
are NOT size-consistent. Corrections possible (Davidson correction, CEPA, ACPF,
AQCC, (SC)2CI).

• As only cab
ij enter the correlation energy, one may argue that this part of the wavefunc-

tion represents better the wavefunction than the simple CISD.

• From the variational principle follows that the energy is independent of orbital rota-
tions.
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C. Selection schemes combining perturbation and variation

Calculate pertubational contribution of each doubly excited determinant to the correla-
tion energy. Select the most important ones, and add all single- and double excited deter-
minants of the selected ones to the wavefunction. Minimize the total energy variationally.
Extrapolate for vanishing selection criterion. CIPSI (J.P. Malrieu, Toulouse) or MRDCI (S.
Peyerimhoff, R. Bunker, Bonn).

D. The Coupled-Cluster approach

Ψ = eŜ ΦHF =
(

1 + Ŝ +
1

2
(Ŝ)2 +

1

3!
(Ŝ)3 + . . .

)

ΦHF (10)

with the excitation operator Ŝ =
∑

ia tai âaâ
†
i +

∑

ijab tai âaâbâ
†
i â

†
j = T̂1 + T̂2. Projection of the

Schrödinger equation on the HF determinant and excited determinants leads to non-linear

equations for the coefficients tai , tab
ij of the wavefunction. Energy:

E = 〈ΦHF |e−ŜĤeŜ|ΦHF 〉 = 〈ΦHF |ĤeŜ|ΦHF 〉 (11)

Coefficients:

〈ΦI |e−ŜĤeŜ|ΦHF 〉 = 〈ΦI |ĤeŜ|ΦHF 〉 = 0 (12)

• No explicit wavefunction (infinite summation), density, orbitals and orbital energies.

• Method is size-consistent

• Approximations lead to CEPA–0, (SC)2CI, Epstein-Nesbet perturbation theory.

X. HANDLING NON-DYNAMICAL CORRELATION

Orbitals should represent several determinants equally well. HF orbitals are the best
orbitals for one single specific determinant. MCSCF (multi-configurational SCF) is the
solution, as orbitals and CI coefficients for a selected number of states are optimized at the
same time.

XI. PRINCIPLE OF MCSCF

Wavefunction:

|Ψ〉 =
∑

m

cm |Φm〉 (13)

Excitation operators:

Êij = (a†
iαajα + a†

iβajβ) (14)
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With this the first-order density matrix is

Dij = 〈Ψ|Êij|Ψ〉 =
∑

mn

cmcnD
mn
ij (15)

and the second-order density matrix associated with the wavefunction is

Pijkl =
1

2

∑

mn

cmcn〈Φm|ÊijÊkl − δjkÊil|Φn〉 =
∑

mn

cmcnP
mn
ijkl (16)

In the two cases the density matrices associated with each individual determinant is con-
tracted to the overall densities.

The Hamiltonian is written in second quantization (independent of the electron number)
as

H =
∑

ij

hijÊij +
∑

ijkl

gijkl(ÊijÊkl − δikÊjl). (17)

With these preliminaries the total energy is written in compact form as

E =
∑

ij

hijDij +
∑

ijkl

gijkl Pijkl. (18)

where the one-electron and 2-electron-integrals, hij and gijkl, depend only on the orbitals, and
the one- and two-particle density matrices Dij and Pijkl depend only on the CI coefficients.
The derivatives with respect to the coefficients can then be formed straightforward.

Conserving the norm of the wavefunction: write the wavefunction as an exponential of
the anti-hermitian operator T̂ (T̂ † = −T̂ )

|Ψ′〉 = eT̂ eŜ|Ψ〉 (19)

where Ŝ is an orbital-rotation operator and T̂ the excitation operator, in order to pass from
a MC wavefunction Ψ to a new function Ψ′.1

Energy:

E(κ,C) = 〈Ψ|e−Ŝe−T̂ ĤeT̂ eŜ|Ψ〉 (20)

Expansion to 2nd order through ex =
∑∞

i=0 xn/n! :

E(T, S) = 〈Ψ|Ĥ + [Ĥ, T̂ ] + [Ĥ, Ŝ] +
1

2
[[Ĥ, T̂ ], T̂ ] +

1

2
[[Ĥ, Ŝ], Ŝ] + [[Ĥ, T̂ ], Ŝ] + . . . |Ψ〉 (21)

showing the ingredients to calculate for an optimization procedure like the Newton-Raphson
method using gradients and second derivatives.

1Example a rotation operator between two orbitals:

Ŝ =

(
(cos κ12) â

†
1â1 −(sinκ12) â

†
1â2

(sin κ12) â
†
2â1 (cos κ12) â

†
2â2

)
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• Alternative: optimimzation of the total energy by alternating between orbital and
CI-coefficient update until convergence.

• Analogon for the Hartree-Fock case: Singles-CI and iteration until satisfaction of Bril-
louin’s theorem; 〈Φ0|H|Ψa

i 〉 = Fia = 0 for that Φ0 is a HF solution.

• CI-coefficients only for some determinants, orbitals including core orbitals.

• Starting orbitals: HF orbitals of a cation, adding to the orbital space the correct virtual
orbitals of the obtained set → valence CI, for being able to judge on the quality of the
orbitals. All states possible of the designed CI-space.

• CAS, complete active space. n electrons occupy N orbitals, Full-CI within this space.
Wavefunction and density available, but no orbitals or orbital energies.

• Ionization energies: difference between n-electron WF and n − 1-electron WF.

XII. STATE-SPECIFIC VERSUS STATE-AVERAGED MCSCF

Different problems:

• Dissociation from closed shell to open shells (nightmare: Cr2 −→ 2 Cr with 12 open
shells)

• Multiplet and transition states of a transition metal complex

The first remains a singlet, so only one state is of interest. Orbitals are optimized for that
state.

In the second the use of different orbitals for different states may introduce systematic
error. One should use one single orbital set optimized for all states.

XIII. COMBINING NON-DYNAMICAL AND DYNAMICAL CORRELATION

To the CAS space excitations from the core to the CAS or from the CAS to the virtual
space can be added → dynamical correlation. States within the reference space: P-space;
outside: Q-space. Effect different on different states in the P-sapce, due to symmetry or
flexibility of the basis set (MR-CI). Same size-consistence defect as for single-reference case.

A. Perturbation theory

Basic problem: what is the reference energy for the denominators E(0,P )
n − E(0,Q)

m ?

Barycentric solution: Eref = (1/n)
∑n

i=1 E
(0)
i All perturbing states must be outside the

energy interval spanned by the reference states (intruder problem).

XIV. WHAT PROPERTIES CAN WE CALCULATE

MCSCF provides a density, and as well MR-CISD.
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A. Properties based on total energy

Spin states, IR spectra, geometries, polarizabilities, thermochemistry
Difference between different states: photo-absorption spectra, singlet-triplet optical transi-
tions, ionization potentials, spin flip

B. Other properties

Ionicities, electron density, multipolar moments, continuous dissociation curves, concur-
rent bond breaking

XV. A HELPFUL APPROXIMATION: PSEUDOPOTENTIALS

A. Frozen-core approximation

Freezing core electrons in the correlation treatment is equivalent to modifying the nuclear
repulsion and the one-electron part of the hamiltonian. The Fock matrix is invariant, and
as well the total energy

Fαβ = hαβ +
∑

k∈core

2(αβ|kk) − (αk|kβ)

︸ ︷︷ ︸

h′

αβ

+
∑

k∈valence

2(αβ|kk) − (αk|kβ) (22)

With the modified integrals all correlation calculations can be performed, with less opera-
tions. Indices run over valence orbitals only.

B. Model potentials

Valence orbitals have the full nodal structure; the model potential simplifies the calcula-
tion through fitting procedures (Coulomb operator) and application to atoms before a full
calculation. The model potential operator is added to the Fock operator.

C. Pseudopotentials

Operators V̂ to be added to the Fock matrix. Semilocal form

VPP(r) = −Z − Zcore

r
︸ ︷︷ ︸

Coulomb term

+
∑

i

di r
ni e−ai r2

︸ ︷︷ ︸

local term

+
∑

ℓ

(
∑

i

di,ℓ rni,ℓ e−ai,ℓ r2

)

|Pℓ〉 〈Pℓ|
︸ ︷︷ ︸

semi-local term

(23)

Valence orbitals do not have the nodes to be orthogonal on the core orbitals. Shape
consistent potentials: orbitals are made to ressemble the best the all-electron orbitals
(Durand-Barthelat, Hay-Wadt in GAUSSIAN). Publications in the 80s, no developments
any more. Energy-consistent potentials: different atomic states are reproduced (Dolg-Preuss
or Stuttgart-Dresden-Cologne). Developments still for actinides with partial f occupations.
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