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INTRODUCTION

Programs used in a school in Fès in Morokko, in 2008. English version of the manual.
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I. GENERAL OVERVIEW

A general flow chart of the package is the following (new branch):

geninput

epsnes

vind

lpmb

icmp

ors

intcal

GAMESS

GAUSSIAN

MOLPRO

DALTON

Molden

FIG. 1. Flow chart

II. THE PROGRAM GENINPUT

This programs generates the input for the several SCF branches, for the moment the ORTHO series of programs,
the DALTON SCF and the GAMESS package. An interface to MOLPRO and GAUSSIAN is as well implemented.

One file is absolutely necessary to run the input generator: the description of the system. This can be in any file,
e.g. system, which is then used as input like

geninput_mol < system

A. Description of the System

The structure of the file (lines in free format) is the following:

1) NATOM: number of atoms in the molecule

For each atom a set of cards has to be given

2) NAT, NSHL, POS: atomic number, number of shells and position with respect to the center of the reference cell
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For each shell:

3) ISTYPE, NPRIM: shell type (0,1,2 for s, p, d) and number of primitives for this shell.

For each primitive:

4) EXX, COEFF: Exponent and coefficient

As example might serve the input for NH3 in a small basis

4 4 atoms in this molecule

7 6 -2.481795969 -0.023514305 0.000006953 the N

0 5

4177.5687 0.001829476

627.23610 0.013995972

142.77926 0.06836863

40.271825 0.23023378

12.893158 0.46369183

0 1

4.4175095 1.000000

0 1

.76130776 1.000000

0 1

.22402545 1.000000

1 3

14.089373 0.037761819

3.0322858 0.20922098

.82469052 0.50670505

1 1

.22435351 1.0000000

1 2 -2.865352733 1.859673616 -0.000029210 the first H

0 3

13.361500 0.01906000

2.0133000 0.13424000

.45375700 0.47449000

0 1

.12331700 1.0

1 2 -3.312917613 -0.792592254 1.552599025 the second H

0 3

13.361500 0.01906000

2.0133000 0.13424000

.45375700 0.47449000

0 1

.12331700 1.0

1 2 -3.312654127 -0.792598221 -1.552723180 the third H

0 3

13.361500 0.01906000

2.0133000 0.13424000

.45375700 0.47449000

0 1

.12331700 1.0

It is necessary to include for every atom a separate basis set, even if the basis sets are the same for several atoms.
No pseudopotentials are supported.

B. Program directives

With an additional file INPUT.GEN the various features of the program can be addressed. If this file is not present,
a default will be assumed, in this case the ORTHO sequence of programs with a neutral molecule.
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The file INPUT.GEN is scanned until a line starting with *INP is found. The lines between this line and a line *END
are considered as relevant input for the program geninput mol.

Several keywords are possible:

• GAMESS: produces input for the GAMESS package.

• MOLPRO: produces input for the MOLPRO package.

• GAUSSIAN: produces input for a Gaussian RHF input.

• DALTON produces input for the DALTON SCF

• ORTHO produces input for the ORTHO series of programs (default)

• Two further keywords may be relevant:

– 5 D asks for a run with spherical basis functions, i.e. 5 d functions, 7 f functions etc.

– 6 D asks for a run with cartesian basis functions, i.e. xx, xy, xz, yy, yz and zz for the d functions, xxx
etc. for f and so on.

• CHARGE plus a next line containing an integer puts a charge on the molecule. The programs, however, does
not like open-shell systems, thus an uneven number of electrons.

• ATOMIC specifies that positions are to be taken in atomic units (1 a.u. = 0.529177249 Å). This is assumed by
default.

• ANGSTR specifies that units are Ångstrøms.

C. Files created

• Having specified GAMESS a file GAMESS.inp and a file gamess script are created. GAMESS can be invoked with
the command sh gamess script. It may be necessary to specify the environment variable $TMPDIR pointing to
the scratch space. In the directory containing the files gamess script and GAMESS.inp the GAMESS output is
found in a file gamess.output and files GAMESS.dat, GAMESS.PUNCH, and GAMESS.DICTNRY are saved.

• With the option DALTON the DALTON input files DALTON.INP and MOLECULE.INP, as well as a script
script dalton are put on disk. Typing sh script dalton launches the SCF calculation with the DALTON
program.

• With the option GAUSSIAN an input file GAUSSIAN.inp is created as input file. The atomic coordinates are
stored as cartesian coordinates, and for every atom a separate basis set is defined. A script gaussian script

contains two lines for launching Gaussian.

• With the option MOLPRO a file MOLPRO.inp and as well a two-line script molpro script is put on disk. The
atomic coordinates are stored in XYZ format, and for every atom a separate basis set is defined. For every atom
a separate basis set is specified.

• The ORTHO series of programs needs the DALTON for the calculation of integrals, thus having specified ORTHO

as SCF package, the files SYSTEM.ORTHO, Startvektor, MOLECULE.INP, DALTON.INP, and script ortho are
created. The file Startvektor (well, I know, it is german ...) contains the default starting vector for the SCF
iterations, that is the unit matrix as coefficients, specified by E in the first line, and two more lines specifying
occupation numbers.
The script launches the series of programs like in the flow chart until the completion of ors can mol.
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III. CALCULATION OF INTEGRALS INTCAL

In order to calculate integrals a program called Intcal is available, based on the McMurchie-Davidson algorithm.
The program can understand the following options, in a file INIPUT.INT between keywords *INT and *END:

• NOMONO: no mono-electronic integrals are calculated.

• NOBIEL: no-bielectronic integrals are calculated.

• THRESH: integrals smaller in abolute value than the threshold in the next line are not stored on file.

• FORMAT: bielectronic integrals are written out formatted instead of a binary output.

• CARTES: integrals are calculated in cartesion Gaussians (i.e. 6D, corresponding to the option 6D for Geninput

and Ors).

Upon completion there should be the following files

• KINETIC contains kinetic energy integrals − 1
2
〈χα|∆|χβ〉

• HAMILTO are the mono-electronic integrals (kinetic energy and electron-nuclei attraction −〈χα|
∑

I(1/|~r −
~RI)|χβ〉).
• DIPOL X, DIPOL Y, DIPOL Z contain integrals over the components of the dipole operator ~µαβ = 〈χα|~r|χβ〉, used
for Boys localization.

• OVERLAP are the overlap integrals Sαβ = 〈χα|χβ〉
• FILE04 contains all bielectronic integrals (χαχβ |χγχδ) in a binary file.

• AOTWOINT FORMATTED are the bielectronic integrals on a formatted file. (χαχβ |χγχδ) together with indices.

IV. THE CLOSED-SHELL SCF PROGRAM ORS

As input data files OVERLAP, HAMILTON, KINETIC and AOTWO are needed apart from the system definition file
SYSTEM.ORTHO, and the programs stops if any of these files is missing. The multiplicity of each integral through
index permutations is taken into account, and expected from the integral file prepared by extract.
Options for the program ors mol have to be in a file INPUT.ORS between labels *ORS and *END, and are the

following:

• ECONVE: convergency criterion is the change of the total energy between two SCF iteration.

• FCONVE: the convergency criterion is the mean size of the Fock-martrix elements coupling occupied and virtual
orbitals, which has to be zero for a Hartree-Fock solution.

• TEST: read options, files, and stop.

• CANONI: do the canonical SCF iterations, that is diagonalizing the Fock matrix in every cycle. The default
SCF algorithm is the Singles-CI, producing localized orbitals.

• COREHA: start the canonical SCF iteration with the Core Hamiltonian, that is without the bielectronic integrals
in the Fock matrix. This is equivalent to setting the density matrix to zero for the first iteration. Default is the
density matrix created from the starting orbitals found on the file GUESS.

• MAXITE: maximal number of SCF iterations.

• FMIXIN: Fock matrix mixing as convergency accelerator, the value or the percentage can be given: 0.30 or 30%.

• MOLDEN: put a MOLDEN input file on disk.

• ODA: we will employ the Optimal Damping Algorithm of E.Cancès (see next section).

• DIPOL: dipole and quadrupole moments of the molecule will be calculated. Results are the same as Dalton,
slightly different from Gaussian.

• 6 D: calculation expects integrals in cartesian Gaussians and writes an output vector to the file VECTOR.???.6D.
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A. Some words concerning the Singles CI

In order to obtain localized orbitals, the default option for the SCF is to pass via a Singles CI step. The loop consists
of i) orthogonalization, ii) construction of the Fock matrix and calculation of the total energy, iii) construction of the
CI matrix, iv) diagonalization of the CI matrix, v) generation of new molecular orbitals. In step ii) we test whether
the Fock-matrix elements coupling occupied and virtual orbitals are on average small — convergence is reached for
vanishing coupling elements due to Brillouin’s theorem 〈Φ0|H|Φa

i 〉 = Fia → 0.
The Singles CI matrix is reduced to its Fock-matrix contributions, neglecting pure bielectronic interactions like

〈Φa
i |H|Φb

j〉 = (ia|jb)− (ib|ja)δσiσj
. We take as well the spin-adapted combination (Φa

i +Φā
ı̄ )/
√
2. This leads to

〈Φ0|H|Φa
i 〉 =

1√
2
〈Φ0|H|(Φa

i +Φā
ı̄ )〉 =

√
2Fia

a 6= b : 〈Φa
i |H|Φb

i 〉 = hab + (ab|ii) + (ai|ib)
︸ ︷︷ ︸

=〈Φa
i
|H|Φb̄

ı̄
〉

+
∑

j∈occ, j 6=i

(2 (ab|jj)− (aj|jb)) = Fab − (ab|ii) + 2 (ai|ib)

→ 〈Φa
i |H− E0 1|Φb

j〉 = Fabδij − Fijδab (1)

Diagonalization of the CI matrix leads to coefficients cai which are used to update the molecular orbitals:

φi ← φi +
∑

a∈virt.

cai φa ; φa ← φa −
∑

i∈occ.

cai φi

This ensures that if occupied and virtual orbitals were orthonormal, the spaces remain orthogonal:

〈φnew
i |φnew

a 〉 =

〈

φi +
∑

b∈virt

cbiφb

∣
∣
∣
∣
∣
φa +

∑

j∈occ

cajφj

〉

= 〈φi|φa〉+
∑

b∈virt

cbi 〈φb|φa〉+
∑

j∈occ

caj 〈φi|φj〉+
∑

b∈virt

∑

j∈occ

cbi c
a
j 〈φb|φj〉

= cai (〈φa|φa〉 − 〈φi|φi〉) = 0 . (2)

Within the block of occupied orbitals, and within the block of virtual orbitals, we have to reorthogonlize the new
orbitals, preferably by S−1/2, in order to maintain the initial properties of the starting orbitals as best as possible.
The obtained Hartree-Fock orbitals ressemble the most the initial orbitals, however we have no criterion to maximize

or minimize any localization functional, as the Boys or the Pipek-Mezey mesure. The advantage lies in the fact that
we never have to deal with the diagonalization of the Fock matrix, thus we never delocalize explicitely. Instead we
try to keep localized what was initially localized. Of course, for small molecules this seems not very interesting. But
for longer chains, rings etc, where building blocks can be defined, final Hartree-Fock orbitals can be qualified through
their difference to the starting orbitals, without the obligation to resort to a localization scheme with an arbitrary
functional to be optimized, giving different results for fragments and the supermolecule.

B. The optimal damping algorithm of E.Cancès

With the keyword ODA the Optimal Damping Algorithm of Eric Cancès and Claude Le Bris is addressed. The
idea is to look for a mixture of the old and a new density matrix for evaluating the Hartree-Fock energy and for
constructing a new Fock matrix to be handled. The optimal density matrix should lie somewhere between the old
and the new one

P̃ (λ) = (1− λ)P old + λPnew with λ ∈ [0, 1] .

We may express the Hartree-Fock energy through the parametrized density matrix

E(λ) = EN +
∑

µν

P̃µν(λ)hµν +
1

2

∑

µν

P̃µν(λ)
∑

ρσ

P̃ρσ(λ) [2(µν|ρσ)− (µσ|ρν)]

and look for the minimum with respect to λ. If it is beyond 1 we restrict the step to one.
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V. A POSTERIORI LOCALIZATION, LPMB

This program read a set of orbitals from a file VECTOR, and transformed them into a new set, localized or partially
canonicalized. So there a principally two different ways to use the programs, either a group of orbitals is transformed
to be localized, optimizing the Pipek-Mezey or the Boys localization criterion, or canonialc orbitals are generated,
diagonalizing the Fock matrix on a set of orbitals.
Input keywords are

• GROUP

• CANONIcal

• PIPEKMezey

• BOYS

• MOLDEN

• FRAGMEnt

• EXTREMely localized orbitals

• QMC: output for the QMC program. If the option EXTREME is given, the orbitals are not orthogonalized.

A. Extremely localized orbitals

Extremely localized orbitals are non-orthogonal, but span the same space as the original set. They are obtained
via projection of the atomic orbitals onto the according space.
We read the given orbital set, and assure that it is composed of orthonormal functions. To obatin extremely

localized occupied orbitals {χ′
α} the virtual orbitals of the system are projected out of the atomic orbitals

χ′
α = χα −

∑

i∈virt

〈φi|χα〉 φi .

From the set of projected basis functions, only the nocc most localized functions are selected, with a localization
criterion to be defined, and it has to checked whether these functions are linearly dependent. If this is the case,
another projected AO has to be considered, until a set of nocc is assembled. This new set is denoted φE

i .
We have for instance for the occupied projected orbitals

|φE
α 〉 = |χα〉 −

∑

n∈virt.

|φn〉〈φn|χα〉 = |χα〉 −
∑

βγ

Sαγ

(
∑

n

cβncγn

)

︸ ︷︷ ︸

Pβγ

|χβ〉

=
∑

β

(

δαβ −
∑

γ

SαγPβγ

)

|χβ〉

This should be, in a finite basis, the same as

|φE
α 〉 =

∑

n∈occ.

|φn〉〈φn|χα〉 =
∑

βγ

Sαγ

(
∑

n

cβncγn

)

︸ ︷︷ ︸

Pβγ

|χβ〉

Two different ways to use these extremely localized orbitals may be employed: either for Quantum Monte-Carlo
calculations, where the orthogonality of of no importance, but the value of the Slater determinant must be conserved,
or as input for the correlation programs, where orthogonal orbitals are needed. In that second case the generated
orbitals can orthogonalized hierarchially by S−1/2, preserving their character as good as possible. This is the default
output of the EXTREME option.
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If, however, the keyword QMC is given, the generated orbitals are assigned to the original φis and normalized for
having |φE

i 〉 = |φi〉+
∑

j 6=i cj |φj〉 for that:

∣
∣
∣
∣
∣
∣
∣

φE
1 (1) · · · φE

1 (n)
...

. . .
...

φE
n (1) · · · φE

n (n)

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

φ1(1) +
∑

j 6=1 cjφj(1) · · · φ1(n) +
∑

j 6=1 cjφj(n)
...

. . .
...

φn(1) +
∑

j 6=n cjφj(1) · · · φn(n) +
∑

j 6=n cjφj(n)

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

φ1(1) · · · φ1(n)
...

. . .
...

φn(1) · · · φn(n)

∣
∣
∣
∣
∣
∣
∣

This is easily achieved by dividing each φE
i by the diagonal of the overlap matrix 〈φE

i |φi〉.

VI. THE FOUR-INDEX TRANSFORMATION VIND

This program implements the four-index transformation

(αβ|γδ)→ (ij|γδ)→ (ij|kl)

with the special feature of sorting and splitting of the integral file in many little files. The idea was pointed out
by Christof Hättig and Thomas Neuheuser of the university of Bonn, and is the following: for sorting a large file of
bielectronic integrals, every pair (αβ| of indices may be stored on a separate file, and subsequently transformed to
(ij|, without the need for fixed-record-length or direct-access files. In particular, when dealing with localized orbitals,
where the number of significant bielectronic integrals is variable with the indices, direct-access files with fixed record
lengths should be avoided. So the integral file AOTWO is read, and stored in about 20 files, each file holding a subset
of all possible (αβ|. After the first lecture and (coarse) sorting, every file is split again for smaller subsets, and the
procedure of reading and sorting is repeated, until after several decompositions every file holds only one single pair
(αβ|. Every integral (αβ|γδ) is stored on two files: one for (αβ| with α ≤ β and one for (γδ| with γ ≤ δ.

(αβ|γδ)

(αβ|γδ)

(γδ|αβ)

FIG. 2. The subsequent splitting of the integral file.

After the first sorting (and doubling) of integrals the first half-transformation is carried out, and the produced
halftransformed integrals are again stored in several files, this time sorted by the indices |γδ).
Up to now, intermediate files AOSRT.TMP and HALFTR.TMP are created, which may become quite large, since the

symmetry of pure AO or MO integrals (αβ|γδ) or (ij|kl) is broken for the halftransfored integrals (ij|γδ). In these
two files the integrals are stored in lexical order, for verifying or reinitialization of the decomposition. In principle the
algorithm may be written up without large intermediate files, reading the smallest units while sorting and transforming
on the fly, and storing in the first decomposition of the next level. However, the internal logic of the program becomes
more complicated, and at a given time, several AO, AO/MO and MO files may be open simultaneously. But it may
be implemented.
At the moment (4/2007) the first half-transformation is done from the sorted AO integrals file, and the second

half-transformation takes the block of lowest-decomposed indices (only one pair on a file) and transformes them to
the final bi-electronic integral. Doing so permits to have never more than 22 files open simultaneously (one for reading
and 20 for writing the smaller units, and the file for the fully-transformed integrals). The file HALFTRF.TMP is not any
more needed.
The program vind has as well several input options, form a file INPUT.VIN between keywords *VIN and *END:

• INFORM: input of bielectronic integrals is formatted.
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• OUTFOR: the produced output file is formatted

• THRE1: a threshold for reading bielectronic AO integrals.

• THRE2: a threshold for storing half-transformed integrals.

• THRE3: a threshold for writing bielectronic MO integrals.

• THRESH: a global threshold for the bielectronic integrals; THRE1, THRE2 and THRE3 will be set to that
value.

• DIRECT: a direct algorithm: we read the AO integrals file several times; on each scan we pick just all pairs
(αβ) for a number of subsets (γδ), so that all these fit in the main buffer. After the scan the buffer is dumped
onto records of a Direct Access file. Thus several pieces (γδ) are on several records. The records are read in for
the second half-transformation and assembled to the final file. The advantage is that there are only two files
open at a time: for reading the DA file and the AO file, and for writing the DA file and the MO file. But: the
algorithm is NOT really integral driven, since ALL intermediate integrals are stored, zero or not zero.

VII. THE DETERMINANT-BASED SINGLE-REFERENCE, SINGLES-AND-DOUBLES CORRELATION

PROGRAM, ICMP

• EPSTEIn-Nesbet: Epstein-Nesbet perturbation energy is calculated. This is not by default since the program
Epsnes is originally desingned for this.

• selection of the dressing of the CI matrix, several options may be given, which will be worked off one after
another:

– LCCD

– CEPA-0

– CEPA-2

– CEPA-3

– SCSC

– CISD

– ACPF

– LCCSD: equivalent to CEPA–0

– AQCC

– AQCC-V

– CIS

– CID

– MP2EGO

– MP2CAN

– EN2CAN

• APPROX: not the real Hamilton matrix is diagonalized but its diagonal approximation (see section VIIC). All
flavours of dressing may be chosen to designe the construction of the Hamilton matrix.

• NITDAV: max. number of iterations in the Davidson scheme.

• ITLCCD: max. number of iterations in the conjugated gradient iterations.

• PRINTL: set a print level for the construction of the determinants.

• NOPERT: ???

• TOLCCD: convengence threshold for the CEPA (conjugated gradients).

• TOLCI: convergence threshold for the CI (Davidson).
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• THRPRI: threshold for printing CI or CEPA amplitudes.

• XGADEA: Xavier Gadea’s speed-up of the Davidson iterations.

• READCI: Starting vector of the CI from separate file.

• READLC: Starting vector of the CEPA from separate file.

• FORMAT: integrals are expected as formatted on file.

• THRINT: threshold for maintaining bielectronic integrals.

• QMC: generate output for the QMC program of M.Caffarel.

• DETAIL: store additional details on the QMC output file.

• SELECT: select excitations to be included in the CI through a threshold for MP2 amplitudes. All singles are
included.

• FREEZE: do not include orbitals in the CI.

• DELETE: delete virtual orbitals from the CI.

• NATORB: calculate and save natural orbitals (see section VIIA

• CALPHP: calculate the real expectation value 〈Ψ|H|Ψ〉, not only the variational energy

E =
∑

I

cI〈Φ0|H|ΦI〉 .

• BANDSTructure: calculate correlated orbital energies through perturbation theory (see section ??).

• MP3: Møller-Plesset 3rd order perturbation calculation, based on determinants instead of diagrams.

• EN3: Epstein-Nesbet 3rd-order perturbation.

A. Natural orbitals

As explained e.g. in the book of Szabo and Ostlund natural orbitals are derived from the one-particle density matrix

γ(~x,~x′) = N

∫

d3x2 . . . d
3xnΨ(~x,~x2, . . . ,~xn)Ψ(~x′,~x2, . . . ,~xn) (3)

What is may be missing is the link between this one-particle density matrix and the known matris Pαβ =
2
∑

i∈occ cα icβ i. If we assume that we have one single determinant and that the molecular orbitals are orthogo-
nal, we have

γ(~x,~x′) = 2
∑

i∈occ

φi(~x)φi(~x
′) (4)

and thus for the matrix elements of the one-particle matrix

γij =

∫

d3x d3x′φi(~x)γ(~x,~x
′)φj(~x

′)

=
∑

αβ

cα icβ j

∫

d3x d3x′χα(~x)γ(~x,~x
′)χβ(~x

′)

=
∑

αβ

∑

βδ

∑

k∈occ

cα icβ jcγ kcδ k

(∫

d3xχα(~x)χγ(~x)

)(∫

d3x′χβ(~x
′)χδ(~x

′)

)

=
∑

αβ

cα icβ j(S P S)αβ (5)
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Diagonalization of this matrix in molecular orbitals gives the natural orbitals as eigenvectors and occupation num-
bers as eigenvalues.
For a linear combination of determinants we may form a density matrix P i for each determinant, multiply it with

the expansion coefficient in the wavefunctions, and construct a one-particle density matrix in atomic orbitals as

γαβ =

(

S

(
∑

i

P i

)

S

)

αβ

(6)

This matrix is transformed to molecular orbitals and diagonalized.
Much simpler is to construct the density matrix directly in orthogonal molecular orbitals as we have to sum only

occupation numbers multiplied with expansion coefficients, and overlap matrix elements are zero or one.
We transform the density matrix in AOs to occupation numbers and natural orbitals via

Pij =

N∑

k=1

nkδikδjk =

N∑

k=1

nkSikSjk

=

N∑

k=1

nk

∑

αβγδ

cαicβjcγkcδkSαγSβδ

=
∑

αβ

(
∑

γ

Sαγcαi

)

Pγδ

(
∑

δ

Sβδcβj

)

(7)

Proof that the electron number is conserved:

Nel =

N∑

i=1

ni =

N∑

i,j=1

SijPij

=
∑

ij

∑

αβγδµλ

cαicβjcγicδjSαβSγλSδµSαβPµλ

=
∑

µλ

Pµλ

∑

ij

∑

αβγδ

cγiSγλ (cαiSαβcβj)Sδµcδj

=
∑

µλ

Pµλ




∑

ij

SλiSijSjµ



 =
∑

µλ

PµλSµλ (8)

B. Dressed CI methods

The basic idea in this chapter is the fact that any CI eigenvalue problem can be written as system of linear equations,
and vice versa. Kutzelnigg pointed this out for the LCCSD in W.Kutzelnigg, Chem.Phys.Lett., 35 (1975) 283, and the
equality “full CEPA” and “self-consistent size-consistent CI” was developed in J.-P.Daudey, J.-.L.Heully, J.-P.Malrieu,
J.Chem.Phys., 99 (1993) 1240.
The CI eigenvalue problem

(
0 H0I H0J

H0I HII HIJ

H0J HIJ HJJ

) (
1
cI
cJ

)

= Ecorr

(
1
cI
cJ

)

becomes

H0I cI +H0J cJ = Ecorr

H0I + (HII −Ecorr
︸ ︷︷ ︸

+∆I

) cI +
∑

I 6=J

HIJ cJ = 0

which is a system of linear equations with a diagonal dressing ∆I for every determinant ΨI . We start from the
CEPA–0, which is the infinite summation of all double excitations in the perturbation series, with ∆I = 0 for all
determinants. All diagrams are perfectly linked, which assures the size consistency. Dressing through the correlation
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energy introduces unlinked diagrams, which destroy the size consistency for the CISD procedure, but adds as well
unlinked EPV diagrams, which are present in e.g. fourth-order perturbation theory1, and which belong in fact to
the linked diagrams. CEPA–2, CEPA–3, and the self-consistent size-consistent CI add more and more linked EPV
diagrams to the dressing, without introducing any unlinked higher-order terms.

TABLE I. Different CEPA dressings ∆ab
ij to address the variety of CEPA methods within the same

algebra. For CEPA–2 the quadriexcited EPV determinants are explicitely written up and reference is made
to the “e”-tables introduced in M.-B.Lepetit, J.P.Malrieu, Chem.Phys.Lett., 208 (1993) 503. CEPA–0bis,
dressing with the same determinant becomes more meaningful in the diagonal approximation.

CEPA–0 0

CEPA–0bis −〈Φab
ij |H|Φabab

ijij 〉 cabij = −〈Φ0|H|Φab
ij 〉 c

ab
ij

CEPA-2 −
∑

cd
〈Φab

ij |H|Φabcd
ijij 〉 ccdij ≈ −

∑

cd
〈Φ0|H|Φcd

ij 〉 c
cd
ij = −e(i,j)

CEPA-3 −
∑

kcd
〈Φ0|H|Φcd

ik 〉 c
cd
ik −

∑

kcd
〈Φ0|H|Φcd

kj 〉 c
cd
kj +

∑

cd
〈Φ0|H|Φcd

ij 〉 c
cd
ij

= −e(i)−e(j)+e(i,j)

(SC)2CI −
∑

EPV(i,j,a,b)
〈Φ0|H|Φcd

kl 〉 c
cd
kl

CISD −ECorr = −
∑

non−EPV(i,j,a,b)

〈Φ0|H|Φcd
kl 〉 c

cd
kl

︸ ︷︷ ︸

unlinked diagrams

−
∑

EPV(i,j,a,b)
〈Φ0|H|Φcd

kl 〉 c
cd
kl

Using the full Hamilton matrix elements HIJ in the CEPA/CI procedure corresponds in perturbation theory to
the Epstein-Nesbet Hamiltonian or the infinite summation of diagonal elements in the Møller-Plesset series. Using
HII − EHF instead of the MP2 denominators 〈Φ0|F|Φ0〉 − 〈ΦI |F|ΦI〉 introduces just an infinite summation of these
diagonal diagrams, and the EPV discussion applies equally well to the fundamental MP2 diagram.

J
I

J
I I

J
µµ

µ

µ

a b c

FIG. 3. Unlinked diagrams: a) true unlinked diagram without any common in-
dex in excitation I and excitation J; b) unlinked diagram with common
index µ; c) the same, but drawn linked. The same level of the interac-
tion line indicates the sum of two diagrams, one with I being the first
excitation, and one with J being the first excitation.

1M.Urban, I.Hubac, V.Kellö, J.Noga, J.Chem.Phys., 72 (1980) 3378
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The diagrams a) to c) lead with Møller-Plesset denominators to the formula

〈0|H |I〉〈I|
EI − E0

H
|I + J〉〈I + J |
EI+J − E0

H
|I〉〈I|

EI − E0

|H|0〉+ 〈0|H |J〉〈J |
EJ − E0

H
|I + J〉〈I + J |
EI+J − E0

H
|I〉〈I|

EI − E0

|H|0〉

which simplifies with 〈J |H|I + J〉 = 〈0|H|I〉 = H0I , 〈I|H|I + J〉 = 〈0|H|J〉 = H0J ,
EI+J − E0 = (EI − E0) + (EJ − E0) and

1

AB
=

1

A(A+B)
+

1

B(A+B)

to

H0IH0JH0I

(EI − E0)(EJ − E0)
= cJ cI H0I

independently of the EPV nature of the intermediate state I + J . To include only diagrams of type c) and not the
unlinked diagrams with disjoint orbital sets, determinant J has to be dressed with the elemets cI H0I with I and J
having at least one orbital index in common.
Averaging the effects of the EPV diagrams results in ACPF (Gdanitz, Ahlrichs) and the AQCC approaches of

Szalay and Bartlett.

TABLE II. Different averaged dressings leading to ACPF and AQCC

ACPF − 2
ne

ECorr

AQCC −ECorr

(

1− (ne−2)(ne−3)
ne(ne−1)

)

AQCC-v −ECorr

(

1− (ne−2)(ne−3)
ne(ne−1)

(nv−2)(nv−3)
nv(nv−1)

)

ne: electrons; nv: virtual orbitals

C. The diagonal approximation

If the CEPA matrix is approximated by only its diagonal, the computational effort is highly reduced, but the infinite
summations of the EPV diagrams are still incorporated. In M.-B.Lepetit, J.P.Malrieu, J.Chem.Phys., 87 (1987) 5937
the procedure is derived directly from the perturbation expansion and in M.-B.Lepetit, J.P.Malrieu, Chem.Phys.Lett.,
208 (1993) 503 the procedure is presented as 2×2 dressed CI submatrices and a eigenvalue problem. Here I will
maintain the CEPA view.
As given already as exercise in the book of Szabo and Ostlund, the CEPA–0 in the diagonal approximation

∑

I

H0I cI =
∑

I

EI = ECorr

H0I + (HII −H00) cI = 0

leads directly to cI = −H0I/(HII − H00) and EI = −(H0I)
2/(HII − H00), i.e. the Epstein-Nesbet second-order

energy. Dressing by −EI is equivalent to the two-electron Full CI, thus not introducing any unlinked diagrams, but
only the infinite series of same-index EPV diagrams. This egoistic CI is the CEPA–0bis in the previous section with
the minimal dressing through EPV diagrams, but not yet coupling any different determinants or indices. It can be
solved in a closed form without any iterations:

EI =
1

2

(

H0I −
√

H2
0I − 4HII

)

and prevents the catastrophy for the Epstein-Nesbet 2nd-order energy for vanishing differencesHII−H00 = HII−EHF .
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Of course, all the dressings presented in the last section may be added.
A 2×2 submatrix

(
H00 H0I

H0I HII

)

may be considered for each doubly excited determinant Φab
ij . This matrix may either be diagonalized in an eigenvalue

problem, or it may be considered as as system of linear equations, like before, with a possible dressing ∆I , which we
derived from the CEPA point of view, that is ∆I = 0 for CEPA–0:

(
H00 H0I

H0I EI +HII +∆I

)(
1
cI

)

= EI

(
1
cI

)

︸ ︷︷ ︸

CI-like view

or
H00 + H0I cI = EI

H0I + (HII +∆I) cI = 0
︸ ︷︷ ︸

CEPA-like view

The 2×2 development of the CEPA–0 matrix into submatrices yields exactly the Epstein-Nesbet perturbation
energy in second order, since (SC)2CI dressing ∆I proposed inleads to

H00 + H0I cI = EI

H0I + (HII +∆I) cI = 0
or

(
H00 − EI H0I

H0I HII +∆I

)(
1
cI

)

= E′
I

(
1
cI

)

.

With the equality EI = H0I cI the original equations of the paper are obtained. E′
I is not the correlation energy EI ,

but some fictitious energy, thus the correlation energy is obtained from the coefficients and again EI = H0I cI .
The 2×2 rotations or submatrices are computationally much less demanding than the full diagonalization of the CI

matrix, only the diagonal elements of the Hamilton matrix and the first column are needed, HII and H0I . Couplings
between different determinants are introduced via a dressing CEPA–2, CEPA–3 or (SC)2CI where the dressing contains
other determinants.
Another class of approximations is obtained when taking only the diagonal and the first line/column of the CI

matrix:












0 · · · H0I · · · H0J · · ·
...

. . . 0 0 0 0
H0I 0 HII 0 0 0
... 0 0

. . . 0 0
H0J 0 0 0 HJJ 0
... 0 0 0 0

. . .

























1
...
cI
...
cJ
...













= E













1
...
cI
...
cJ
...













Into this matrix we can incorporate all the different dressing used for the complete CI matrix, from CEPA–0 to AQCC–
V, and we see that for the CEPA-like dressings CEPA–0, CEPA–2, CEPA–3, and (SC)2CI, the same 2×2 submatrix
equations H0I + (HII +∆I) cI = 0, H0I cI = EI , and ECorr =

∑

I EI are obtained as before. However ACPF dresses
now the 2×2 CI matrices with a common, averaged −EI as −(2/n)ECorr = −2/n∑I EI . The same holds for CI
with the complete ∆I = −ECorr = −∑I EI , AQCC and AQCC–V. Thus from the two forms of approximations, we
obtain one for any of the eight dressings presented before, and one completely different one, by dressing every 2×2
matrix by its individual correlation energy EI :

method CEPA dressing approximation

CI −ECorr diagonal approximation
ACPF
AQCC
AQCC−V

}

same as before diagonal approximation

CEPA–0 — Epstein-Nesbet 2nd order
CEPA− 2
CEPA− 3
(SC)2CI

}

same as before 2×2 rotations

IC égöıste −EI 2×2 rotations

VIII. THE IMPLEMENTATION OF SECOND-ORDER PERTURBATION THEORY, EPSNES

The program is integral-driven, based on the graphical approach to perturbation theory.
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