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Why DFT?

@ The increase in speed and computational power of computers, as well as theoretical
advances, have made computational chemistry a routine validation tool in chemistry;
@ Since the original applications in condensed matter phyisics, modern solid state DFT
can calculate a vast range of structural, chemical, optical, spectroscopic, elastic,
vibrational and thermodynamic phenomena.
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Solid state calculations [EEVICIVENICH]

Hohenberg-Kohn theorems

Theorem 1

The ground state energy is determined completely by the electron density p. There exists
a one-to-one correspondence between the electron density and the energy.

@ the integral of the density defines the number of electrons NV;

@ the cusps in the density define the position of the nuclei;

@ the height of the cusps defines the corresponding nucleus.
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Solid state calculations [EEVICIVENICH]

Hohenberg-Kohn theorems

pn) / /‘\IJ 4Gy, 4,) | dsida,das - - da, (1)

Theorem 2
The ground state energy can be obtained variationally: the density that minimizes the
total energy E[p(r)] is the exact ground state density.

Elp'(n] > E[p(r)] )
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Solid state calculations [EEVICIVENICH]

Hohenberg-Kohn theorems

The ground state energy can be obtained variationally: the density that minimizes the
total energy E[p(r)] is the exact ground state density.

Elp(r)] = /p(r)vext(r)dr+F[p(r)] ®3)

A A~

F:f—‘i’ ee

Vee contains the exchange-correlation term Vic.

This implies that the relationship between the exchange-correlation functional and the
energy is mediated by the density.

Kohn-Sham theory (analogous to HF) Orbitals are reintroduced (3N variables) and
electron correlation emerges as a separate term.

N
Papprox = Z |¢i‘2 (4)
i=1
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Solid state calculations [EEVICIVENICH]

Jacob's Ladder

heaven of chemical accuracy

hybrids o hybrid exc[p, Vp, V2p, Ef]
mGGA o meta-GGA e.[p, Vp, V2p]
GGA o GGA ex[p, V|
o LDA e[0]
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DFT popularity poll

The annual popularlty poll for Results for the 2017 edition of the Annual DFT Popularity Poll: Primera O}
density functionals:
edition 2017

wB97X-D
B3LYP-D
CAM-B3LYP

DFT2017 poll

B97-D
B3LYP
TPSSh
:14:7

. B2PLY!
organized b 2

marcel swart
f. matthias bickelhaupt
miquel duran

PW91
HSE
LC-wPBE
MO06-2X
revPBE
BLYP
RPA

LDA

BHandH
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REICISEILRETEEIEN  Introduction to solid state calculations
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REICISEILRETEEIEN  Introduction to solid state calculations

DFT in solid state

Solid systems are usually periodic.

Periodic DFT calculations dominate the computational side of material science due to
their optimal accuracy/cost ration.
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REICISEILRETEEIEN  Introduction to solid state calculations

History

Molecular “Journal of ~ “Density-Functional
total energy Computational Theory of Atoms and
GAUSSIAN70 Chemistry” Molecules”
Parr, Yang
] ] ]
1970 1980 1989
| | 1
Semiempirical First solid state ~ First distributed
methods, codes, periodic ab initio
preliminary LDA, PP code
ab inito
calculations

@ solid state calculations evolved slowly and through solid state physics;

@ nowadays, several ab initio codes are available, with a large variety of approaches.
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REICISEILRETEEIEN  Introduction to solid state calculations

Ab inito solid state calculations

The model

e.g. a point defect in a crystalline system can be simulated either with a finite cluster, or
with a supercell approach.

The Hamiltonian

DFT, which functional? LDA is still used. HF? In some cases it is still preferred.

The basis set?

localized functions or plane waves?

The computational scheme

e.g. direct or reciprocal space representation? All-electron or pseudopotential
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Solid state calculations [EESYlntSEa%

Translational invariance

reference cell replica replica
[ [ [
[ BN J [ I J o0
o | o
o L ®
[ J o [
T o r+R ® ®
¢ o ® o ® o

1 | |
periodic direction

A perfect crystal consists of a three-dimensional array of atoms, ions or molecules, a few
of whch form a spatial pattern that is repeated identically throughout the crystal.
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The lattice

@ a lattice is a collection of points repeated at
intervals of length ai, a2 and as, along three
non-coplanar directions;

@ the constants ai, a» and as are the lattice
parameters,

@ the vectors a1, a; and a3 are the basis
vectors;

@ lattice parameters and angles between basis
vectors define the cell parameters;
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Solid state calculations [N

Lattice vectors

A vector g joining two lattice points is a lattice vector. every lattice vector can be
expressed by the basis vectors and three integer coefficients ni, n, and ns.

g = nia1 + nxaz + nzas

Basis vectors ai, a> and a3 define the unit cell, which can be either primitive or not.

Applying the lattice vectors g to the unit cell, the whole space is filled.
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Types of cell

Solid state calculations

Symmetry

a;

primitive cell

2a,

unit cell

All cells containing the same number of lattice points are equival
o
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Types of cell

Solid state calculatiol

Symmetry
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Solid state calculations [EESYlntSEa%

Space filling

@ primitive three dimensional lattices have been classified into seven crystalline
systems, triclinic, monoclinic, orthorombic, tetragonal, cuubic. trigonal and
hexagonal.

@ these, with additional seven non-primitive lattices, consitute the set of all
conceivable lattices in ordinary space.
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Solid state calculations [EESYlntSEa%

Bravais lattices
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Solid state calculations [EESYlntSEa%

Space groups

o
e (]
)
a
Simple Face-centered Body-centered
cubic cubic cubic

o filling the unit cell of a lattice with matter in a well-defined geometrical arrangement
permits the creation of an ideal crystal;

@ crystals usually exhibit point symmetry in addition to the set of translations;

@ point symmetry and translational symmetry combine to form a space group (230).
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Solid state calculations [N

The reciprocal lattice

The reciprocal lattice is a construction of vast importance for condensed matter physics.
Starting with a Bravais lattice, the reciprocal lattice is defined as:

b,‘ -aj = 27T(5,j (6)

Like in direct space, any reciprocal lattice vector can be expressed as a linear combination
of the basis vectors with integer coefficients.

K = Kib; + Kzbs + K3bs (7)

The first Brillouin zone is a primitive cell in the reciprocal space and is important for the
description of waves in a periodic medium.

Solid state calculations and DFT errors July 2018 25 /87



Solid state calculations [EESYlntSEa%

First Brilloin zone
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Solid state calculations The Hamiltonian
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RIS EVEYEITEELUE  The Hamiltonian

Periodic boundary conditions

Let us imagine a crystal composed of N atoms. The number of atoms at the surface is
proportional to N™/3. When N is large, the perturbation deriving form the presence of
the boundary is limited only to few surface layers, and has no influence on bulk properties.

The potential energy of the crystal must be a periodic function with the same perodicity

as the lattice, so that for a translation by any direct lattice vector g, the potential energy
does not change.

V(r—g) = V(r) (8)
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RIS EVEYEITEELUE  The Hamiltonian

Bloch theorem

The Bloch theorem imposes conditions on the electron wavefunction of a periodic solid.

Bloch’s Theorem (1928, developed to describe the conduction of electrons in solids):
W, k(1) = €™ uni(r) (9)

where u, «(r) satisifes the condition up k(r) = unk(r+ R) and k is the crystal wave vector.

Solid state calculations and DFT errors July 2018 29 /87



Solid state calculations ERMGERREIMIGHIED]

Periodic boundary conditions

Also the Schrodinger equation for the system must be translation invariant

AW (r) = EW(r) (10)

A

H(r—g)V¥(r—g) = EV(r—g) (11)

The correct eigenfunctions must obey Bloch theorem
(r+ g k) = e™Ed(r; k) (12)

This provides a relationship between the values of an eigenfunction at equivalent points
of the lattice, which indicates that the periodicity is generally different from that of the
lattice.
The j-th component of the wavevector k; can be written as
n:

ki = —Lb; 13

) IVJ J ( )
The wavevector k can be interpreted as a point in the reciprocal lattice, which can be
written in terms of the reciprocal lattice vectors.
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Bloch function

e™ = cos(x) + i(sinx)

(14)



RIS EVEYEITEELUE  The Hamiltonian

Bloch functions

O(r+g; k) = efk'g¢(r; k)

r is the position in space and k the wave vector. Different k parameters label the
different solutions to Schrodinger equation.

To proof .
H(r)¥(r) = EV(r)

H(r—g)V¥(r—g) = EV(r — g)

we can write .
H(r — g)®(r — g k) = E(k)®(r — g; k) (16)

corresponding to ) _ '
A(r)e ™ 8d(r; k) = E(k)e” b (r; k) (17)
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RIS EVEYEITEELUE  The Hamiltonian

Periodic boundary conditions

Bloch functions span an infinite crystal and not decay to zero at infinity. To circumvent
normalization problems that may arise form this behavior, be start by considering a finite
crystal of N cells, where N = Ny x N> x N3 and then let N grow to infinity. So, we start
from a finite crystal.

&(r + mN;aj; k) = d(r; k) (18)
According to Bloch theorem
(r+ mN;aj; k) = e™ % d(r; k) (19)
Then
omNika; _ gimNjkj-a; _ q (20)
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K points sampling

The j-th component of the wavevector k; can be written as

n:
kj = ~rbj (21)
N;
The wavevector k can be interpreted as a point in the reciprocal lattice, which can be
written in terms of the reciprocal lattice vectors

n:
H I h..q —
lmNjﬁbj aj=0 (22)
j
| R A
LR A A il Vdw
14 Lt Ane P
I " B [ AT fo)x R
3 %y f
\ - /
-
L L 1
2x | 4x 4x
| = —» - - - -
a a a
sC FCC BCC

Solid state calculations and DFT errors July 2018 34 /87



K points sampling

With N approaching to infinity, also the number of k points approches infinity.

Infinite
Hamiltonian
matrix in
direct space

diagonal

In the basis of the Bloch functions, the Hamiltonian of the periodic system in block
diagonal. We can sample the k points.
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RIS EVEYEITEELUE  The Hamiltonian

One-electron Electrostatic Hamiltonian

We sample the Hamiltonian at a finite number of k points and solve the Schrodinger
equation in the reciprocal space.

AWV, (r; k) = E,(K)W,(r; k) (23)

W, (r; k) are the crystalline orbitals

Wa(rik) = cin(k)®;(r; k) (24)

J

where ¢j, are to be determined.
In the basis of Bloch functions we can write

H(k)C(k) = S(k)C(k)E(K) (25)

the size of all matrices is equal to the number of Bloch functions in the basis and S(k) is
the overlap matrix (non-orthogonal basis sets).
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Solid state calculations The basis set
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Solid state calculations [EEIGENEEEREC]

Gaussian functions or plane waves?
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Solid state calculations [EEIGENEEEREC]

Gaussian functions or plane waves?
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Solid state calculations [EEIGENEEEREC]

Pros and cons of Gaussians and plane waves

plane waves are cheaper but require more memory (huge basis sets);

plane wave basis sets are defined by a single parameter, Gaussian basis sets are more
flexible;

from a programming point of view, plane waves are simpler to treat;
with plane waves we do not have basis set superposition error;
with Gaussian functions we can perform all-electron calculations;

due to extremely high computational costs when using delocalized basis sets exact
(Fock-) exchange is rarely calculated with plane waves.

2 2

<wiw,\:7|w,,,w,,> = w,(lw,(zn,‘?\w,ﬂ(l>w,,<2>>

2
‘(ﬁ‘l’m(rlal )V (ra02) d(ryoy) d(ro2). (A1)
r—m

E/l,//,-x(n(ﬂ)l/lj*(rg(fg)
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Solid state calculations [EEIGENEEEREC]

Pros and cons of Gaussians and plane waves

A comparison between plane wave and Gaussian-type orbital basis sets
for hydrogen bonded systems: Formic acid as a test case

Sergio Tosoni
Dipartimento di Chimica IFM, Universita degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
and Nanostructured Interfaces and Surfaces (NIS), Centre of Excellence, Via P. Giuria 7, 10125

Christian Tuma and Joachim Sauer
Institut fiir Chemie, Humboldt-Universitdit zu Berlin, Unter den Linden 6, Berlin, D-10099 Germany

Bartolomeo Civalleri and Piero Ugliengoa'
Dipartimento di Chimica IFM, Universita degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
and Nanostructured Interfaces and Surfaces (NIS), Centre of Excellence, Via P. Giuria 7, 10125

(Received 19 June 2007; accepted 4 September 2007; published online 16 October 2007)
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Summary of solid state DFT

@ Solid state calculations are expensive;
@ Symmetry is important;

@ In 3D we have less choice of functionals than in OD.
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DFT errors
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© DFT errors
@ Classification of DFT methods
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DI NN Classification of DFT methods

Jacob's Ladder

heaven of chemical accuracy

hybrids o hybrid exc[p, Vp, V2p, Ef]
mGGA o meta-GGA e.[p, Vp, V2p]
GGA o GGA ex[p, V|
o LDA e[0]

Solid state calculations and DFT errors July 2018

45 / 87



Hohenberg-Kohn theorems: implications

The ground state energy can be obtained variationally: the density that minimizes the
total energy E[p(r)] is the exact ground state density.

Elp(r)] = /p(r)Vext(r)dr+F[p(f)] (26)

A~

F=T+ Ve
V.e contains the exchange-correlation term Vie.

This implies that the relationship between the exchange-correlation functional and the
energy is mediated by the density.

Solid state calculations and DFT errors July 2018 46 / 87



DFT functional design

When designing a density functional, what is normally done is to tune the formulas so
that energy differences for some chosen systems are as close to known targets as possible.

This approach overlooks the fact that the reproduction of exact energy is not a feature of
the exact functional, unless the input electron density is exact as well.

THEORETICAL CHEMISTRY

Density functional theory is
straying from the path toward
the exact functional

Michael G. Medvedev,>?*{ Ivan S. Bushmarinov,"*t Jianwei Sun,*
John P. Perdew,™*t Konstantin A. Lyssenko't
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How do we evaluate the quality of a DFT functional?

DFT history as seen by the electron density
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Science 355, 6320, 49-52
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© DFT errors

@ Motivation
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Practical aspects

If ranking is a concern for density functional approximation designers to assess the overall
performance of new developments, it is less practically useful for end users.

scaster tPaK

siesta

r

Car

We choose the functional based on availablity, cost and uncertainty.
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The virtual measurement

The definition of prediction uncertainty for computational chemistry has been formalized
in the virtual measurement framework.

The interest of the virtual measurement framework is to define a statistical approach in
agreement with international standards for the calculation of measurement uncertainty.

It is currently used in some specific applications: the estimation of the prediction
uncertainty for scaled harmonic and anharmonic frequencies. and zero-point energy.
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© DFT errors

@ Introduction to error analysis
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DFT errors Introduction to error analysis

Precision and accuracy

| |
Precision

Precise and accurate
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Uncertainty

Definition

Uncertainty: non-negative parameter characterizing the dispersion of the quantity values
being attributed to a measurand

height in cm

170 ™
=169+1
1654
What is the relationship between precision and uncertainty?
The =+ is the uncertainty, and it informs the reader of the precision of the value. J
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DFT errors Introduction to error analysis

Error sources in calculations

Numerical errors

Finite precision, truncation.

v
Discretization errors
Basis set, grid.

v
Parametrization errors
DFT parameters.

v

Approximation errors

From Born-Oppenheimer onwards.
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DFT errors Introduction to error analysis

How much do these errors affect the final result?

C A4, diamond. Value of the crystallographic cell parameter a in A.
expt: 3.5668 A

normal k loose tol param basis
3.5675 3.5704 3.5670 3.5575 3.5866
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@ Performance estimators
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[BIA T Performance estimators

Definitions

We use a benchmrak set as a reference for the calculation accuracy.

We call error the difference between the value of a property cm s, calculated for system s
with a method m, and the corresponding reference value os.

€ = Cm,s — Os (27)

Em = {em,s; s = 17 NS} (28)
mean absolute error N
1 Qe

MAE = ﬁs Sz:; |em,s| (29)

mean absolute deviation, a measure of dispersion

Ns
1 _
MAD = — m,s — Em
2 lens = B (30)
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[BIA T Performance estimators

Definitions

mean signed error, a measure of location

Ns
_ 1
MSE = E,, = ﬁs Zem,s (31)

s=1

root-mean-square error

(32)
root-mean-square deviation
1 &
RMSD =\ | - ;(em,s — En)? (33)
root-mean-square error
RMSE? = RMSD? + MSE? (34)
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[DLANC(CIENN  Performance estimators

Performance estimators

RMSE? = RMSD? + MSE? (35)

In an error set is affected by a constant (system-independent) contribution, then the
MSE estimates the mean value of the systematic error and the RMSD the standard
deviation of the remaining (random) error.

In the case of negligible contribution of the reference data uncertainty, the RMSD and
uncertainty on MSE could be combined to generate a prediction uncertainty.

Density functional approximations do not produce only constant systematic error, so
besides correcting the systematic error addition corrections are necessary to access the
random contribution of the errors.
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[BIA T Performance estimators

Homo- and heteroscedasticity

Homoscedasticity

Heteroscedasticity
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[DLANC(CIENN  Performance estimators

Uncertainty estimation

In the accepted approach to uncertainty estimation, it is assumed that the result of a
measurement has been corrected for all recognized significant systematic effects and that
every effort has been made to identify such effects.

This is a key point in computational chemistry, where most errors in the result are
systematic as a consequence of the various approximations introduced in the
computational model. How do these errors combine?

To estimate uncertainty, we compare computational results with reference data
(benchmarks).

We can build a model to assess prediction uncertianty.

e internal calibration;

@ a posteriori correction.
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Outline

© DFT errors

@ A posteriori correction
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General scheme

@ build and validate a statistical model of the errors from the benchmark set;

@ evaluate the uncertainties of the parameters involved in the model;

propagate the uncertainties of the parameters in the calibration model to the
prediction model,

validate the prediction model.
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Using benchmarks

The experimental data commonly used as benchmark is not necessarily the best, exact
reference to be used.

@ the calculated quantities do not necessarily correspond to experimental data;

@ the the theoretical method is not supposed to provide the quantity analyzed (e.g.
bad gaps/Kohn Sham orbital energies);

@ experimental values are subject to factors that are not taken into account;

@ the inclusion of systems in the benchmark is subject to data availability.
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Thermal expansion

Thermal expansion HCN at 0 GPa
52.0
B3LYP ———
50.0 B3LYP-D3 ———
48.0 +
46.0 +
44.0

420 |

volume (A3%)

40.0

38.0 +

36.0 |

340 Il Il Il Il Il J
0 50 100 150 200 250 300

temperature (K)
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Error components

3t
} {H }
t *}H
¢
¢ § 4
$ H%{.

benchmark result

result of approximate method

For an adequate approximate model, the data would scatter around y = x. Here, we
have a constant deviation.
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Systematic and random errors

@ systematic error. points are grouped around a line that is not the identity line;

@ the remaining error is the random contribution, which is not the same as the random
error in experimental measurements.

We do not have a truly random processes in the sense of repeated calculations with a
model chemistry for the same system, but calculations on different systems.

Solid state calculations and DFT errors July 2018 68 / 87



A posteriori correction

it
} {H }
: { *}H
§ 4
it H*{

benchmark result

result of approximate method

We can fit a linear calibration function through the data, in what is called an a posteriori
correction. This function connects the benchmark with the calculated data. There still
remains a scatter of data around the calibration line.
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Random model inadequacy

3t

¢ *H }

: { *}H
¢ ¢

1

benchmark result

§4

result of approximate method

The scatter aroud the calibration line seems random, but the residuals are significantly
larger than the uncertainty on benchmark results. This is a symptom of random model

inadequacy, and implies that the uncertainty of the approximate methods exceeds the
uncertainty of the benchmark
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Random error

We will consider a linear model
0s = Cm,s + €s(s = 1, Ny) (36)

where €, are independent random variables of mean 0 and known standard deviation ws.
€s are random variables whose realizations are the errors en s.

In most cases this model is invalid in the sense that values calculated by the DFAs are
not compatible with the reference data within their uncertainty range.

To get a valid calibration model we have to account for the structure of the error set. We
transform the calculated values according to the calibration line.
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Random model inadequacy
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Transformation

Os = fm(Cm,s; em) + € (37)

Om os the set of parameters defining f,,. Here it is important not to overfit data, i.e. we
will always find a high degree polynomial fitting all the errors in the set, but in that case
we will not be able to generalize.

After calibration we look at the residuals

Im,s = Os — fm(cm; em) (38)

And compare them to the reference data uncertainties

&= Yy (39)

Us
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Validation

We compare x? with the number of degrees of freedom ngr = Ns — Ny, where Ny is the
number of parameters in fn,.

If the residual errors present a random-like pattern, we can introduce a new stochastic
term &m, to describe the errors in excess of reference data uncertainty, which we refer to
method inadequacy.

Os = Os = fm(cm,s; em) + €+ 5m (40)

Om is a random variable od mean 0 and unknown standard deviation d,,.

d? can chosen as the difference between the variance of the residual errors and and the
mean variance of reference data. Whith this choice, the corrected calculated values and
reference data are compatible through the combination of their respective error bars.
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Prediction

Estimation of a new value of a property given the calculated result cx (out of
benchmark).

pm(cx) = f(cx; 0) + bm (41)

6 is the set of optimal parameters.

uim(c*) = ufm(c*; 9) +d? (42)

u%m(c*; é) is the parametric uncertainty on the value of the function 7, t c*.
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Applications - band gap
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Applications - cell parameters
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Summary of a posteriori calibration

@ A posteriori correction is a complex but accurate method to evaluate uncertainty on
calculated data;

o To be statistically significant, benchmark sets must be large;

@ The treatment depends a lot on the quality of reference data.
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Outline

© DFT errors

o Using HF and LDA to estimate result variability
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DFT errors Using HF and LDA to estimate result variability

Introduction

\ It

) Ky el

e AN\ ‘&Lﬂ
experimental cell parameters calculated cell parameters
Sample: ms1416031, T = 25 C, LDA 5.40796345
P = 0.0 kbar PBE 5.64017502
_database_code_amcsd 0003397 BLYP 5.69647294
_chemical_formula_sum 'Na C1' B3LYP 5.64936094
_cell_length_a 5.6401 Mo62X 5.43723219
_cell_length_b 5.6401 PBEQ 5.60182968
_cell_length_c 5.6401 HF 5.71159899

Tuning simulation parameters we can match perfectly experimental values...

g‘\ ]

o

\ i ... but should we?
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Error sources in calculations

Numerical errors

Finite precision, truncation.

v
Discretization errors
Basis set, grid.

v
Parametrization errors
DFT parameters.

v

Approximation errors

From Born-Oppenheimer onwards.
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The delocalization error

E(N+3)-E(N)

n. electrons

* positive curvature: unphysically
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The idea
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Using HF and LDA to estimate result variability
Alkali halides
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More structures
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DFT errors

Using HF and LDA to estimate result variability

Copper bromide

CuBr IIT CuBrV CuBr VI
216 205 225
_ 30 * The HF-LDA separation is larger for CuBr than
< Ll i % i for “well-behaved” structures;
DI A
g 00 + For CuBr-V, the HF and LDA parameters are
: structures more than 1 A apart.

Ty e ——Y
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Summary of HF /LDA error bar

o If the delocalization error is the main error source, the HF /LDA separation is a
measure of the variability that the choice of DFT functional introduces in our results.
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