
Solid state calculations and DFT errors

Francesca Peccati

ISCD Summer School, July 2018

Francesca Peccati Solid state calculations and DFT errors July 2018 1 / 87



Overview

1 Solid state calculations
Motivation
Introduction to solid state calculations
Symmetry
The Hamiltonian
The basis set

2 DFT errors
Classification of DFT methods
Motivation
Introduction to error analysis
Performance estimators
A posteriori correction
Using HF and LDA to estimate result variability

Francesca Peccati Solid state calculations and DFT errors July 2018 2 / 87



Bibliography

Solid state DFT

R. Dovesi, B. Civalleri, R. Orlando, C. Roetti, V. R. Saunders Ab initio quantum
simulation in solid state chemistry, Rev. Comput. Chem. 21, 1-125 (2005)

DFT error

Density functional theory is straying from the path toward the exact functional M.
G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, K. A. Lyssenko, Science,
355, 6320, 49-52 (2017)

P. Pernot, B. Civalleri, D. Presti, A. Savin Prediction uncertainty of density
functional approximations for properties of crystals with cubic symmetry J. Phys.
Chem. A, 119, 21, 5288-5304 (2015)

G. N. Simm, J. Proppe, M. Reiher Error assessment of computational models in
chemistry Chimia 71, 202-208 (2017)

Contact

fpeccati@lct.jussieu.fr

Francesca Peccati Solid state calculations and DFT errors July 2018 3 / 87



Solid state calculations

Solid state calculations

Francesca Peccati Solid state calculations and DFT errors July 2018 4 / 87



Solid state calculations Motivation

Outline

1 Solid state calculations
Motivation
Introduction to solid state calculations
Symmetry
The Hamiltonian
The basis set

2 DFT errors
Classification of DFT methods
Motivation
Introduction to error analysis
Performance estimators
A posteriori correction
Using HF and LDA to estimate result variability

Francesca Peccati Solid state calculations and DFT errors July 2018 5 / 87



Solid state calculations Motivation

Why DFT?

The increase in speed and computational power of computers, as well as theoretical
advances, have made computational chemistry a routine validation tool in chemistry;
Since the original applications in condensed matter phyisics, modern solid state DFT
can calculate a vast range of structural, chemical, optical, spectroscopic, elastic,
vibrational and thermodynamic phenomena.

Francesca Peccati Solid state calculations and DFT errors July 2018 6 / 87



Solid state calculations Motivation

Hohenberg-Kohn theorems

Theorem 1
The ground state energy is determined completely by the electron density ρ. There exists
a one-to-one correspondence between the electron density and the energy.

the integral of the density defines the number of electrons N;
the cusps in the density define the position of the nuclei;
the height of the cusps defines the corresponding nucleus.
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Solid state calculations Motivation

Hohenberg-Kohn theorems

ρ(r1) =

∫
· · ·

∫
|Ψ(q1, q2, · · · , qn)|2ds1dq2dq3 · · · dqn (1)

Theorem 2
The ground state energy can be obtained variationally: the density that minimizes the
total energy E [ρ(r)] is the exact ground state density.

E [ρ′(r)] > E [ρ(r)] (2)
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Solid state calculations Motivation

Hohenberg-Kohn theorems

The ground state energy can be obtained variationally: the density that minimizes the
total energy E [ρ(r)] is the exact ground state density.

E [ρ(r)] =

∫
ρ(r)vext(r)dr + F [ρ(r)] (3)

F̂ = T̂ + V̂ee

V̂ee contains the exchange-correlation term V̂xc .

This implies that the relationship between the exchange-correlation functional and the
energy is mediated by the density.

Kohn-Sham theory (analogous to HF) Orbitals are reintroduced (3N variables) and
electron correlation emerges as a separate term.

ρapprox =
N∑
i=1

|φi |2 (4)
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Solid state calculations Motivation

Jacob’s Ladder

hybrid εxc [ρ,∇ρ,∇2ρ,EHF
x ]

meta-GGA εxc [ρ,∇ρ,∇2ρ]

GGA εxc [ρ,∇ρ]

LDA εxc [ρ]
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Solid state calculations Motivation

DFT popularity poll
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Solid state calculations Introduction to solid state calculations

DFT in solid state

Solid systems are usually periodic.

Periodic DFT calculations dominate the computational side of material science due to
their optimal accuracy/cost ration.
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Solid state calculations Introduction to solid state calculations

History

solid state calculations evolved slowly and through solid state physics;

nowadays, several ab initio codes are available, with a large variety of approaches.
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Solid state calculations Introduction to solid state calculations

Ab inito solid state calculations

The model

e.g. a point defect in a crystalline system can be simulated either with a finite cluster, or
with a supercell approach.

The Hamiltonian

DFT, which functional? LDA is still used. HF? In some cases it is still preferred.

The basis set?

localized functions or plane waves?

The computational scheme

e.g. direct or reciprocal space representation? All-electron or pseudopotential
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Solid state calculations Symmetry

Translational invariance

A perfect crystal consists of a three-dimensional array of atoms, ions or molecules, a few
of whch form a spatial pattern that is repeated identically throughout the crystal.
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Solid state calculations Symmetry

The lattice

a lattice is a collection of points repeated at
intervals of length a1, a2 and a3, along three
non-coplanar directions;

the constants a1, a2 and a3 are the lattice
parameters;

the vectors a1, a2 and a3 are the basis
vectors;

lattice parameters and angles between basis
vectors define the cell parameters;
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Solid state calculations Symmetry

Lattice vectors

A vector g joining two lattice points is a lattice vector. every lattice vector can be
expressed by the basis vectors and three integer coefficients n1, n2 and n3.

g = n1a1 + n2a2 + n3a3 (5)

Basis vectors a1, a2 and a3 define the unit cell, which can be either primitive or not.
Applying the lattice vectors g to the unit cell, the whole space is filled.
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Solid state calculations Symmetry

Types of cell

All cells containing the same number of lattice points are equivalent.
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Solid state calculations Symmetry

Types of cell
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Solid state calculations Symmetry

Space filling

primitive three dimensional lattices have been classified into seven crystalline
systems, triclinic, monoclinic, orthorombic, tetragonal, cuubic. trigonal and
hexagonal.

these, with additional seven non-primitive lattices, consitute the set of all
conceivable lattices in ordinary space.
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Solid state calculations Symmetry

Bravais lattices
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Solid state calculations Symmetry

Space groups

filling the unit cell of a lattice with matter in a well-defined geometrical arrangement
permits the creation of an ideal crystal;

crystals usually exhibit point symmetry in addition to the set of translations;

point symmetry and translational symmetry combine to form a space group (230).

Francesca Peccati Solid state calculations and DFT errors July 2018 24 / 87



Solid state calculations Symmetry

The reciprocal lattice

The reciprocal lattice is a construction of vast importance for condensed matter physics.
Starting with a Bravais lattice, the reciprocal lattice is defined as:

bi · aj = 2πδij (6)

Like in direct space, any reciprocal lattice vector can be expressed as a linear combination
of the basis vectors with integer coefficients.

K = K1b1 + K2b2 + K3b3 (7)

The first Brillouin zone is a primitive cell in the reciprocal space and is important for the
description of waves in a periodic medium.
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Solid state calculations Symmetry

First Brilloin zone
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Solid state calculations The Hamiltonian

Periodic boundary conditions

Let us imagine a crystal composed of N atoms. The number of atoms at the surface is
proportional to N−1/3. When N is large, the perturbation deriving form the presence of
the boundary is limited only to few surface layers, and has no influence on bulk properties.

The potential energy of the crystal must be a periodic function with the same perodicity
as the lattice, so that for a translation by any direct lattice vector g, the potential energy
does not change.

V (r− g) = V (r) (8)
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Solid state calculations The Hamiltonian

Bloch theorem

The Bloch theorem imposes conditions on the electron wavefunction of a periodic solid.

u

Bloch’s Theorem (1928, developed to describe the conduction of electrons in solids):

Ψn,k(r) = e ik·run,k(r) (9)

where un,k(r) satisifes the condition un,k(r) = un,k(r+R) and k is the crystal wave vector.
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Solid state calculations The Hamiltonian

Periodic boundary conditions

Also the Schrödinger equation for the system must be translation invariant

Ĥ(r)Ψ(r) = EΨ(r) (10)

Ĥ(r− g)Ψ(r− g) = EΨ(r− g) (11)

The correct eigenfunctions must obey Bloch theorem

Φ(r + g; k) = e ik·gΦ(r; k) (12)

This provides a relationship between the values of an eigenfunction at equivalent points
of the lattice, which indicates that the periodicity is generally different from that of the
lattice.
The j-th component of the wavevector kj can be written as

kj =
nj
Nj

bj (13)

The wavevector k can be interpreted as a point in the reciprocal lattice, which can be
written in terms of the reciprocal lattice vectors.
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Solid state calculations The Hamiltonian

Bloch function

Ψn,k(r) = e ik·run,k(r) (14)

e ix = cos(x) + i(sinx) (15)
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Solid state calculations The Hamiltonian

Bloch functions

Φ(r + g; k) = e ik·gΦ(r; k)

r is the position in space and k the wave vector. Different k parameters label the
different solutions to Schrödinger equation.

To proof
Ĥ(r)Ψ(r) = EΨ(r)

Ĥ(r− g)Ψ(r− g) = EΨ(r− g)

we can write
Ĥ(r− g)Φ(r− g; k) = E(k)Φ(r− g; k) (16)

corresponding to
Ĥ(r)e−ik·gΦ(r; k) = E(k)e−ik·gΦ(r; k) (17)
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Solid state calculations The Hamiltonian

Periodic boundary conditions

Bloch functions span an infinite crystal and not decay to zero at infinity. To circumvent
normalization problems that may arise form this behavior, be start by considering a finite
crystal of N cells, where N = N1 × N2 × N3 and then let N grow to infinity. So, we start
from a finite crystal.

Φ(r + mNjaj ; k) = Φ(r; k) (18)

According to Bloch theorem

Φ(r + mNjaj ; k) = e imNj k·aj Φ(r; k) (19)

Then
e imNj k·aj = e imNj kj ·aj = 1 (20)
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Solid state calculations The Hamiltonian

K points sampling

The j-th component of the wavevector kj can be written as

kj =
nj
Nj

bj (21)

The wavevector k can be interpreted as a point in the reciprocal lattice, which can be
written in terms of the reciprocal lattice vectors

imNj
nj
Nj

bj · aj = 0 (22)
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Solid state calculations The Hamiltonian

K points sampling

With N approaching to infinity, also the number of k points approches infinity.

In the basis of the Bloch functions, the Hamiltonian of the periodic system in block
diagonal. We can sample the k points.
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Solid state calculations The Hamiltonian

One-electron Electrostatic Hamiltonian

We sample the Hamiltonian at a finite number of k points and solve the Schrödinger
equation in the reciprocal space.

ĤΨn(r; k) = En(k)Ψn(r; k) (23)

Ψn(r; k) are the crystalline orbitals

Ψn(r; k) =
∑
j

cjn(k)Φj(r; k) (24)

where cjn are to be determined.
In the basis of Bloch functions we can write

H(k)C(k) = S(k)C(k)E(k) (25)

the size of all matrices is equal to the number of Bloch functions in the basis and S(k) is
the overlap matrix (non-orthogonal basis sets).
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Solid state calculations The basis set

Gaussian functions or plane waves?
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Solid state calculations The basis set

Gaussian functions or plane waves?
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Solid state calculations The basis set

Pros and cons of Gaussians and plane waves

plane waves are cheaper but require more memory (huge basis sets);

plane wave basis sets are defined by a single parameter, Gaussian basis sets are more
flexible;

from a programming point of view, plane waves are simpler to treat;

with plane waves we do not have basis set superposition error;

with Gaussian functions we can perform all-electron calculations;

due to extremely high computational costs when using delocalized basis sets exact
(Fock-) exchange is rarely calculated with plane waves.
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Solid state calculations The basis set

Pros and cons of Gaussians and plane waves
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Solid state calculations The basis set

Summary of solid state DFT

Solid state calculations are expensive;

Symmetry is important;

In 3D we have less choice of functionals than in 0D.
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DFT errors
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DFT errors Classification of DFT methods

Jacob’s Ladder

hybrid εxc [ρ,∇ρ,∇2ρ,EHF
x ]

meta-GGA εxc [ρ,∇ρ,∇2ρ]

GGA εxc [ρ,∇ρ]

LDA εxc [ρ]
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DFT errors Classification of DFT methods

Hohenberg-Kohn theorems: implications

The ground state energy can be obtained variationally: the density that minimizes the
total energy E [ρ(r)] is the exact ground state density.

E [ρ(r)] =

∫
ρ(r)vext(r)dr + F [ρ(r)] (26)

F̂ = T̂ + V̂ee

V̂ee contains the exchange-correlation term V̂xc .

This implies that the relationship between the exchange-correlation functional and the
energy is mediated by the density.
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DFT errors Classification of DFT methods

DFT functional design

When designing a density functional, what is normally done is to tune the formulas so
that energy differences for some chosen systems are as close to known targets as possible.

This approach overlooks the fact that the reproduction of exact energy is not a feature of
the exact functional, unless the input electron density is exact as well.
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DFT errors Classification of DFT methods

How do we evaluate the quality of a DFT functional?

Science 355, 6320, 49-52
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DFT errors Motivation

Practical aspects

If ranking is a concern for density functional approximation designers to assess the overall
performance of new developments, it is less practically useful for end users.

We choose the functional based on availablity, cost and uncertainty.
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DFT errors Motivation

The virtual measurement

The definition of prediction uncertainty for computational chemistry has been formalized
in the virtual measurement framework.

The interest of the virtual measurement framework is to define a statistical approach in
agreement with international standards for the calculation of measurement uncertainty.

It is currently used in some specific applications: the estimation of the prediction
uncertainty for scaled harmonic and anharmonic frequencies. and zero-point energy.
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DFT errors Introduction to error analysis

Precision and accuracy

Precision Accuracy

Precise and accurate
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DFT errors Introduction to error analysis

Uncertainty

Definition

Uncertainty: non-negative parameter characterizing the dispersion of the quantity values
being attributed to a measurand

What is the relationship between precision and uncertainty?

The ± is the uncertainty, and it informs the reader of the precision of the value.
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DFT errors Introduction to error analysis

Error sources in calculations

Numerical errors

Finite precision, truncation.

Discretization errors

Basis set, grid.

Parametrization errors

DFT parameters.

Approximation errors

From Born-Oppenheimer onwards.
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DFT errors Introduction to error analysis

How much do these errors affect the final result?

C A4, diamond. Value of the crystallographic cell parameter a in Å.

expt: 3.5668 Å

.
normal k loose tol param basis
3.5675 3.5704 3.5670 3.5575 3.5866
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DFT errors Performance estimators

Definitions

We use a benchmrak set as a reference for the calculation accuracy.

We call error the difference between the value of a property cm,s , calculated for system s
with a method m, and the corresponding reference value os .

ε = cm,s − os (27)

Em = {em,s ; s = 1,Ns} (28)

mean absolute error

MAE =
1

Ns

Ns∑
s=1

|em,s | (29)

mean absolute deviation, a measure of dispersion

MAD =
1

Ns

Ns∑
s=1

|em,s − Ēm| (30)
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DFT errors Performance estimators

Definitions

mean signed error, a measure of location

MSE = Ēm =
1

Ns

Ns∑
s=1

em,s (31)

root-mean-square error

RMSE =

√√√√ 1

Ns

Ns∑
s=1

e2
m,s (32)

root-mean-square deviation

RMSD =

√√√√ 1

Ns

Ns∑
s=1

(em,s − Ēm)2 (33)

root-mean-square error

RMSE 2 = RMSD2 + MSE 2 (34)
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DFT errors Performance estimators

Performance estimators

RMSE 2 = RMSD2 + MSE 2 (35)

In an error set is affected by a constant (system-independent) contribution, then the
MSE estimates the mean value of the systematic error and the RMSD the standard
deviation of the remaining (random) error.

In the case of negligible contribution of the reference data uncertainty, the RMSD and
uncertainty on MSE could be combined to generate a prediction uncertainty.

Density functional approximations do not produce only constant systematic error, so
besides correcting the systematic error addition corrections are necessary to access the
random contribution of the errors.
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DFT errors Performance estimators

Homo- and heteroscedasticity

Homoscedasticity

re
sid

ua
ls

chemical space

Heteroscedasticity

re
sid

ua
ls

chemical space
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DFT errors Performance estimators

Uncertainty estimation

In the accepted approach to uncertainty estimation, it is assumed that the result of a
measurement has been corrected for all recognized significant systematic effects and that
every effort has been made to identify such effects.

This is a key point in computational chemistry, where most errors in the result are
systematic as a consequence of the various approximations introduced in the
computational model. How do these errors combine?

To estimate uncertainty, we compare computational results with reference data
(benchmarks).

We can build a model to assess prediction uncertianty.

internal calibration;

a posteriori correction.
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DFT errors A posteriori correction

General scheme

build and validate a statistical model of the errors from the benchmark set;

evaluate the uncertainties of the parameters involved in the model;

propagate the uncertainties of the parameters in the calibration model to the
prediction model;

validate the prediction model.
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DFT errors A posteriori correction

Using benchmarks

The experimental data commonly used as benchmark is not necessarily the best, exact
reference to be used.

the calculated quantities do not necessarily correspond to experimental data;

the the theoretical method is not supposed to provide the quantity analyzed (e.g.
bad gaps/Kohn Sham orbital energies);

experimental values are subject to factors that are not taken into account;

the inclusion of systems in the benchmark is subject to data availability.
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DFT errors A posteriori correction

Thermal expansion
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DFT errors A posteriori correction

Error components

be
nc

hm
ar

k
re

su
lt

result of approximate method

For an adequate approximate model, the data would scatter around y = x . Here, we
have a constant deviation.
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DFT errors A posteriori correction

Systematic and random errors

systematic error: points are grouped around a line that is not the identity line;

the remaining error is the random contribution, which is not the same as the random
error in experimental measurements.

We do not have a truly random processes in the sense of repeated calculations with a
model chemistry for the same system, but calculations on different systems.
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DFT errors A posteriori correction

A posteriori correction

be
nc

hm
ar

k
re

su
lt

result of approximate method

We can fit a linear calibration function through the data, in what is called an a posteriori
correction. This function connects the benchmark with the calculated data. There still
remains a scatter of data around the calibration line.
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DFT errors A posteriori correction

Random model inadequacy

be
nc

hm
ar

k
re

su
lt

result of approximate method

The scatter aroud the calibration line seems random, but the residuals are significantly
larger than the uncertainty on benchmark results. This is a symptom of random model
inadequacy, and implies that the uncertainty of the approximate methods exceeds the
uncertainty of the benchmark
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DFT errors A posteriori correction

Random error

We will consider a linear model

os = cm,s + εs(s = 1,Ns) (36)

where εs are independent random variables of mean 0 and known standard deviation us .
εs are random variables whose realizations are the errors em,s .

In most cases this model is invalid in the sense that values calculated by the DFAs are
not compatible with the reference data within their uncertainty range.

To get a valid calibration model we have to account for the structure of the error set. We
transform the calculated values according to the calibration line.
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DFT errors A posteriori correction

Random model inadequacy

be
nc

hm
ar
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su
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result of approximate method
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DFT errors A posteriori correction

Transformation

os = fm(cm,s ; θm) + εs (37)

θm os the set of parameters defining fm. Here it is important not to overfit data, i.e. we
will always find a high degree polynomial fitting all the errors in the set, but in that case
we will not be able to generalize.

After calibration we look at the residuals

rm,s = os − fm(cm; θm) (38)

And compare them to the reference data uncertainties

χ2 =

Ns∑
s=1

(
rm,s
us

)2 (39)
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DFT errors A posteriori correction

Validation

We compare χ2 with the number of degrees of freedom ndf = Ns − Nθ, where Nθ is the
number of parameters in fm.

If the residual errors present a random-like pattern, we can introduce a new stochastic
term δm, to describe the errors in excess of reference data uncertainty, which we refer to
method inadequacy.

os = os = fm(cm,s ; θm) + εs + δm (40)

δm is a random variable od mean 0 and unknown standard deviation dm.

d2
m can chosen as the difference between the variance of the residual errors and and the

mean variance of reference data. Whith this choice, the corrected calculated values and
reference data are compatible through the combination of their respective error bars.
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DFT errors A posteriori correction

Prediction

Estimation of a new value of a property given the calculated result c∗ (out of
benchmark).

pm(c∗) = fm(c∗; θ̂) + δ̂m (41)

θ̂ is the set of optimal parameters.

u2
pm (c∗) = u2

fm (c∗; θ̂) + d2
m (42)

u2
fm (c∗; θ̂) is the parametric uncertainty on the value of the function fm t c∗.
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DFT errors A posteriori correction

Applications - band gap
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Applications - cell parameters
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DFT errors A posteriori correction

Summary of a posteriori calibration

A posteriori correction is a complex but accurate method to evaluate uncertainty on
calculated data;

To be statistically significant, benchmark sets must be large;

The treatment depends a lot on the quality of reference data.
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Outline
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Introduction
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DFT errors Using HF and LDA to estimate result variability

Error sources in calculations

Numerical errors

Finite precision, truncation.

Discretization errors

Basis set, grid.

Parametrization errors

DFT parameters.

Approximation errors

From Born-Oppenheimer onwards.

Francesca Peccati Solid state calculations and DFT errors July 2018 81 / 87



DFT errors Using HF and LDA to estimate result variability

The delocalization error
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The idea
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Alkali halides
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More structures
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Copper bromide

Francesca Peccati Solid state calculations and DFT errors July 2018 86 / 87
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Summary of HF/LDA error bar

If the delocalization error is the main error source, the HF/LDA separation is a
measure of the variability that the choice of DFT functional introduces in our results.
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