Quelques défis de la chimie théorique

Peter Reinhardt

Laboratoire de Chimie Théorique, Université Paris VI, UPMC, 75252 Paris CEDEX 05,

France

Peter.Reinhardt@upmc.fr

Chimie : modélisation de systèmes chimiques

Marcellin Berthelot (19 $^{\rm e}$ siècle) : "La chimie crée son objet"

Plusieurs possibilités :

- Développement de méthodes de calcul
- Réduction de la nature à des fragments tractables : systèmes isolés, entourages, symétrie, périodicité
- Calcul sur structures connues, structures nouvelles, interactions basées sur structure électronique ou modélisation, paramétrisation

- Energies, géométries
- Densité électronique
- Surface énergétique → réactions
- Excitations

Chimie : modélisation de systèmes chimiques

aug–cc–pvtz 6–31+G*(2s,2p LanlDZ)
MP2 B3LYP HF F12–CCSD(T) M06 PM7	Gaussian VASP CRYSTAL DALTON ORCA GAMESS NWChem Mopac Avogadro

Chimie : modélisation de systèmes chimiques

Nomenclature :

- Liaisons fixes : champ de forces (énergie par ressorts, torsions)
- Distribution d'électrons, paramétrisation : méthodes semi-empiriques (moments multipolaires, densité)
- Equation de Schrödinger sans paramétrisation : méthodes ab-initio (excitations)
 - Hartree-Fock : 1 électron = 1 orbitale, "champ moyen"
 - Corrélation : tenir compte de $|\vec{r}_1 \vec{r}_2|$ explicitement
 - Energie de corrélation : $E_{total} E_{HF} < 0$
 - DFT (fonctionnelle de la densité) : champ moyen qui produit la densité exacte ρ(r), puis E[ρ]

$$\hat{H}|\Psi\rangle = E |\Psi\rangle$$

 $E = \langle \Psi | \hat{H} | \Psi \rangle$

Les défis actuels

- La taille de systèmes
- Solvatations
- Interactions non-covalentes
- Molécules para-magnétiques
- Etats excités
- Conclusions and perspectives

Calculs dans une base donnée : N comme dimension du problème

- Hartree-Fock et DFT : $\sim N^3$ (2 molécules = $2^3 \times 1$ molécule)
- Corrélation électronique : N^5 , N^6 , N^7 etc.

- La limite : IC complet, croissance exponentielle e^N
- DFT, paramétrisation, couplages DFT/autres méthodes

• Convergence avec la taille de la base ?

Systèmes couches fermées

Fonction d'onde: 1 seul Déterminant de Slater

$$\begin{split} \Phi_{0} \rangle &= \Phi_{0}(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{n-1}, \vec{r}_{n}) \\ &= \frac{1}{\sqrt{n!}} \begin{vmatrix} \phi_{1}(\vec{r}_{1})\sigma_{\uparrow} & \cdots & \phi_{n/2}(\vec{r}_{1})\sigma_{\downarrow} \\ \vdots & \ddots & \vdots \\ \phi_{1}(\vec{r}_{n})\sigma_{\uparrow} & \cdots & \phi_{n/2}(\vec{r}_{n})\sigma_{\downarrow} \end{vmatrix} \\ &= |\phi_{1}, \bar{\phi}_{1}, \dots, \phi_{n/2}, \bar{\phi}_{n/2} \rangle \text{ with } |\phi_{i}\rangle = \phi_{i}(\vec{r}) \sigma_{\uparrow} \text{ and } |\bar{\phi}_{i}\rangle = \phi_{i}(\vec{r}) \sigma_{\downarrow} \end{split}$$

Orbitales moléculaires

$$\phi_i(\vec{\mathbf{r}}) = \sum_{\alpha=1}^N c_{\alpha i} \, \chi_\alpha(\vec{\mathbf{r}})$$

Fonction d'onde normée : $\langle \Phi_0 | \Phi_0 \rangle = 1$

• Hamiltonien :

$$\hat{H} = E_{NN} - \frac{1}{2} \sum_{i}^{n} \Delta_{i} - \sum_{I} \sum_{i}^{n} \frac{Z_{I}}{|\vec{R}_{I} - \vec{r}_{i}|} + \sum_{i} \sum_{j>i}^{n} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|}$$

• Orbitales sont solution (auto-cohérente) de $\hat{F}\phi_i(\vec{r}) = \epsilon_i \phi_i(\vec{r})$ avec l'opérateur de Fock

$$\hat{F} \phi_{i}(\vec{r}) = \left[-\frac{1}{2} \Delta - \sum_{I} \frac{Z_{I}}{|\vec{R}_{I} - \vec{r}|} \right] \phi_{i}(\vec{r}) + \\ + \sum_{j \in occ} \left[2 \int \frac{\phi_{j}(\vec{r}')\phi_{j}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^{3}r' \phi_{i}(\vec{r}) - \int \frac{\phi_{j}(\vec{r}')\phi_{i}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^{3}r' \phi_{j}(\vec{r}) \right]$$

• Energie totale :

$$E_{HF} = \langle \Phi_0 | \hat{H} | \Phi_0 \rangle = \sum_{i \in occ} \langle \phi_i | \hat{h} | \phi_i \rangle + \sum_{i,j \in occ} \left[2 \left(ii|jj \right) - \left(ij|ij \right) \right]$$

• Périodicité et symétrie : solides, nanotubes, graphène

• Croissance linéaire par orbitales localisées

• DFT: si pas de terme d'échange, tout est local $\rho(\vec{r}_1) \cdot \rho(\vec{r}_2)$

Hartree-Fock :

$$E_{HF} = 2\sum_{i} \int \phi_{i}(\vec{r}) \hat{h} \phi_{i}(\vec{r}) d^{3}r + \sum_{ij} \left(2 \int \frac{\phi_{i}(\vec{r}_{1})\phi_{i}(\vec{r}_{1})\phi_{j}(\vec{r}_{2})\phi_{j}(\vec{r}_{2})}{|\vec{r}_{1} - \vec{r}_{2}|} d^{3}r_{2} d^{3}r_{2} - \int \frac{\phi_{i}(\vec{r}_{1})\phi_{j}(\vec{r}_{1})\phi_{j}(\vec{r}_{2})\phi_{i}(\vec{r}_{2})}{|\vec{r}_{1} - \vec{r}_{2}|} d^{3}r_{2} d^{3}r_{2} \right) = 2\sum_{i} h_{ii} + \sum_{ij} \left(2(ii|jj) - (ij|ji) \right) = 2\sum_{i} h_{ii} + \frac{1}{2} \int \frac{\rho(\vec{r}_{1})\rho(\vec{r}_{2})}{|\vec{r}_{1} - \vec{r}_{2}|} d^{3}r_{2} d^{3}r_{2} - \sum_{ij} (ij|ji)$$
(1)

DFT :

$$E_{DFT} = 2\sum_{i} h_{ii} + \frac{1}{2} \int \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{|\vec{r}_1 - \vec{r}_2|} d^3r_2 d^3r_2 + E_{xc}[\rho]$$
(2)

avec $E[\rho] = \int \rho(\vec{r}) V_{xc}(\vec{r}) d^3r$ qui peut être un potentiel local $V(\vec{r})$ (e.g. LDA)

Molécules explicites : combien et où ?

Proteine : http://www.biomedcentral.com/content

Variation de l'énergie du solvant plus grandes que celle de configurations

Solvent caractérisé par constante dielectrique ϵ : $\vec{P} = -\frac{\epsilon - 1}{4\pi} \vec{\nabla} V$

- Cavité couverte de tuiles de surface A_k , représentant une charge q_k
- Potentiel local, mono-électronique supplémentaire dans l'Hamiltonien :

$$V(\vec{\mathbf{r}}) = \int_{\Gamma} \frac{\sigma(\vec{\mathbf{s}})}{|\vec{\mathbf{r}} - \vec{\mathbf{s}}|} d^3 s \approx \sum_k \frac{q_k A_k}{|\vec{\mathbf{r}} - \vec{\mathbf{s}}_k|}$$

- Approximation de surface conductrice : COSMO
- PCM (Polarizable Continuum Model) : $q_k \sim \frac{\epsilon 1}{4\pi\epsilon} \frac{\partial}{\partial \vec{n}} (V_M + V_R)$
- Hamiltonien dépend de la densité ρ : autocohérence supplémentaire

Dipôle crée un champ opposé: shift d'énergie d'orbitales et énergie totale

- Cavité couverte de tuiles de surface A_k , représentant une charge q_k
- Hamiltonien dépend de la densité ρ : autocohérence supplémentaire

Calcul Hartree-Fock, base aug-cc-pvtz

	H_2O		CH_4	
	$\epsilon = 1$	$\epsilon = 80$	$\epsilon = 1$	$\epsilon = 80$
énergie totale (a.u.)	-76.0484	-76.0614	-40.2093	-40.2094

Conséquence : CH₄ peu soluble dans l'eau, eau stable comme liquide

Théorème de Hellmann-Feynman

$$\vec{F}_J = -Z_J \left(\sum_I \frac{Z_I(\vec{R}_I - \vec{R}_J)}{|\vec{R}_I - \vec{R}_J|^3} - \int \frac{\rho(\vec{r})(\vec{r} - \vec{R}_J)}{|\vec{r} - \vec{R}_J|^3} \, d^3r \right) \tag{3}$$

Symétrie :

$$F_R = \frac{Z_A Z_B}{R^2} - \frac{1}{2} \int \rho(\vec{\mathbf{r}}) \left(\frac{Z_A}{r_A^2} \cos\alpha + \frac{Z_B}{r_B^2} \cos\beta\right) d^3r \tag{4}$$

Multiplié par la densité $\rho(\vec{r})$:

Example H₂

liante

anti-liante

Figure 6 - Lignes de forces égales correspondant à la densité électronique des orbitales σ et σ^* de H₂. De rouge foncé à jaune-vert : forces attractives ; de bleu foncé à bleu-vert : forces répulsives ; en vert : force nulle. On note que pour σ^* , le plan médiateur est aussi un plan de force nulle dû à la nullité de ρ .

P. Chaquin, C. Gutlé, P. Reinhardt, Actu.Chim., No 384 (2014) 29

- Intégration numérique sur la partie positive et partie négative
- Compensation de la répusion des noyaux

Liaisons à distance, sans partage d'électrons

• Dimère de benzène (CCSD(T) ou SAPT)

Liaisons à distance, sans partage d'électrons

• π stacking entre groupes phényls

- Basis Set Superposition Error
- Dépend de ma base utilisée
- Correction : calcul des monomères dans la base du dimère

$$s(\vec{\mathbf{r}}) = \frac{|\vec{\nabla}\rho(\vec{\mathbf{r}})|}{\rho^{4/3}(\vec{\mathbf{r}})}$$

quelques situations types :

- A l'extérieur d'une molécule : $(|\vec{\nabla}\rho|)/\rho \longrightarrow E_I$, alors $s \longrightarrow \infty$
- Entre deux molécules : $s \to 0$; la 2^e valeur propre de la Hessienne de ρ peut changer de signe

Tracer s contre sign $(\lambda_2) \times \rho$

- Répulsif : $\rho \neq 0, s \approx 0, \lambda_2 > 0$
- Attractif (liaison H) : $\rho \neq 0, s \approx 0, \lambda_2 < 0$
- Faiblement attractif, dispersion: $\rho \approx 0$, $s \approx 0$

E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, J.A.C.S., **132** (2010) 6498

Le dimère de méthane :

Fonctionnelles différentes = résultats complètement différents

Approches :

- DFT à séparation de portée \longrightarrow conférence de lundi
- DFT sinon : corrections ad hoc, paramétrisations spécifiques
- Méthodes ab-initio : MP2, ICSD (et variantes), CCSD(T), ...
- SAPT = théorie de perturbation à symétrie adaptée
 - Calcul de monomères indépendants
 - Perturbation intra-moléculaire et inter-moléculaire
 - Dimère : 3 séries de perturbation en orbitales non-orthogonales
 - Interactions électrostatiques, induction, dispersion; mais pas transferts de charge

Approches :

- DFT à séparation de portée \longrightarrow conférence de lundi
- DFT sinon : corrections ad hoc, paramétrisations spécifiques
- Méthodes ab-initio : MP2, ICSD (et variantes), CCSD(T), ...
- SAPT = théorie de perturbation à symétrie adaptée
 - Calcul de monomères indépendants
 - Perturbation intra-moléculaire et inter-moléculaire
 - Dimère : 3 séries de perturbation en orbitales non-orthogonales
 - Interactions électrostatiques, induction, dispersion; mais pas transferts de charge

$$E_{int} = E_{pol}^{(10)} + E_{pol}^{(12)} + E_{pol}^{(13)} + E_{exch}^{(10)} + E_{exch}^{(12)} + E_{exch}^{(13)} + + E_{ind}^{(20)} + E_{ind}^{(22)} + E_{ind}^{(30)} + \text{termes d'échange} + E_{disp}^{(20)} + E_{disp}^{(21)} + E_{disp}^{(22)} + E_{ex-disp}^{(20)}$$

(5)

Approches :

- DFT à séparation de portée \longrightarrow conférence de lundi
- DFT sinon : corrections ad hoc, paramétrisations spécifiques
- Méthodes ab-initio : MP2, ICSD (et variantes), CCSD(T), ...
- SAPT = théorie de perturbation à symétrie adaptée
 - Calcul de monomères indépendants
 - Perturbation intra-moléculaire et inter-moléculaire
 - Dimère : 3 séries de perturbation en orbitales non-orthogonales
 - Interactions électrostatiques, induction, dispersion; mais pas transferts de charge

Remplacer la perturbation intramoléculaire par DFT : DFT-SAPT

$$E_{int} = E_{pol}^{(10)} + E_{exch}^{(10)} + \\ + E_{ind}^{(20)} + \text{terme d'échange} + E_{disp}^{(20)} + E_{ex-disp}^{(20)}$$
(6)

Que termes en 2e ordre en perturbation inter-moléculaire

• Exemple O_2 : état triplet, peut être traité par Hartree-Fock

- Mais : complexes avec plusieurs métaux de transition ?
- Plusieurs Couches d ouvertes, localisées

Approche DFT : symétrie de spin brisée, S_z fixe, mais orbitales différentes selon spin α ou spin β : U-DFT.

- Pas fonctions propres des spin
- Fonctionnelles "simulent" un caractère multi-réference
- Par comparaison : calcul MCSCF, puis corrélation par interaction de configuration ou perturbation

Exemple : Ti_2O , système apparemment simple

Calcul Complete Active Space (CAS), multi-référence

Calcul Complete Active Space (CAS) avec corrélation, multi-référence

Orbitales impliqées

- Distance Ti–Ti env. 2 Å
- Triple liaison Ti–Ti
- 6 électrons dans 3 orbitales
- Densité élévée \rightarrow corrélation stabilisante
- Etat singulet beaucoup plus stabilsé que les autres états

trouver le même schéma avec DFT à symétre brisée

 Co_2O_2 : de quel nature est l'état fondamental ?

- Spectrum vibrationnel : D_{2h}
- Hypothèse Co^{2+} and O^{2-}
- 6 électrons d non-appariés
- Tout entre Singulet et Septet

Calcul DFT à symétrie brisée :

- Optimisation de géométrie
- Analyse de fréquence vibrationnelles
- Seul S_z est fixé d'avance, (α et β donnés sur chaque atome de Co)
- S^2 par analyse de la fonction d'onde convergée

S_z	S(S+1) attendu	S(S+1) trouvé
0	0	2.254
1	2	3.215
2	6	6.123
3	12	12.026

fonctionnelle TPSS (*J.Tao, J.P.Perdew, V.N.Staroverov, G.E.Scuseria*, Phys.Rev.Lett., **91** (2003) 146401)

Ab-initio :

- Cation Co²⁺ : configuration 3d⁷4s⁰
- Etat fondamental 4F , premier état excité 4P à 2.0 eV

$$\begin{pmatrix} {}^{4}F(7 \text{ états}) \\ {}^{4}P(3 \text{ états}) \end{pmatrix} \times \begin{pmatrix} {}^{4}F(7 \text{ états}) \\ {}^{4}P(3 \text{ états}) \end{pmatrix} = 100 \text{ états} (49 + 42 + 9)$$

• 14 électrons dans 10 orbitales, états septet pour trouver des orbitales

Co2O2, septet states

Energy /eV

Ab-initio:

- Cation Co²⁺ : configuration 3d⁷4s⁰
- Etat fondamental 4F , premier état excité 4P à 2.0 eV

$$\begin{pmatrix} {}^{4}F(7 \text{ états}) \\ {}^{4}P(3 \text{ états}) \end{pmatrix} \times \begin{pmatrix} {}^{4}F(7 \text{ états}) \\ {}^{4}P(3 \text{ états}) \end{pmatrix} = 100 \text{ états} (49 + 42 + 9)$$

- 14 électrons dans 10 orbitales, états septet pour trouver des orbitales
- les 4 états les plus basses ${}^{7}B_{1u}$, ${}^{7}B_{3u}$, ${}^{7}B_{2g}$, et ${}^{7}A_{u}$, en une fenêtre énerg étique étroite.
- Tout sauf ${}^{7}B_{1u}$ états multi-référence
- ${}^{7}B_{1u}$: occupation $(d_{z^2})^2 (d_{x^2y^2})^2 (d_{xy})^1 (d_{xz})^1 (d_{yz})^1$
- Orbitales des septets \longrightarrow pas d'états de transfert de charge $d^7d^7 \rightarrow d^6d^8$, d^8d^6
- En incluant états quintet, triplet et singulet : éhelles de spin

Fig. 2. CAS-CI results for the four lowest spin ladders in Co_2O_2 .

Conclusions et perspectives

- Nous nous approchons des systèmes naturels
- Cependant : comment décrire température, réactivité, solvatation ?
- Simulations dynamique moléculaire ? Transition Classique ↔ quantique n'est pas évidente.
- Même petits systèmes sont parfois difficiles à traiter.
- Chimie théorique est loin d'être seulement un outil standard de laboratoire, malgré d'énormes progrès.